1
|
Bauer EB. Recent Catalytic Applications of Ferrocene and Ferrocenium Cations in the Syntheses of Organic Compounds. Molecules 2024; 29:5544. [PMID: 39683702 DOI: 10.3390/molecules29235544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Ferrocene and its oxidized counterpart, the ferrocenium cation, represent a fascinating class of organometallic compounds with broad utility across various fields, including organic synthesis, pharmaceuticals, and materials science. Over the years, ferrocene, ferrocenium cations, and their derivatives have also gained prominence for their versatility in catalytic processes. This review article offers an overview of the research of the last decade into ferrocene- and ferrocenium-based catalysis. Key developments are highlighted in catalytic oxidation, cross-coupling, polymerization reactions, and redox-switchable catalysis, as well as the application of ferrocenium cations as Lewis acid catalysts.
Collapse
Affiliation(s)
- Eike B Bauer
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| |
Collapse
|
2
|
Wang WF, Liu KQ, Niu C, Wang YS, Yao YR, Yin ZC, Chen M, Ye SQ, Yang S, Wang GW. Electrosynthesis of buckyballs with fused-ring systems from PCBM and its analogue. Nat Commun 2023; 14:8052. [PMID: 38052783 DOI: 10.1038/s41467-023-43774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
[6,6]-Phenyl-C61-butyric acid methyl ester (PCBM), a star molecule in the fullerene field, has found wide applications in materials science. Herein, electrosynthesis of buckyballs with fused-ring systems has been achieved through radical α-C-H functionalization of the side-chain ester for both PCBM and its analogue, [6,6]-phenyl-C61-propionic acid methyl ester (PCPM), in the presence of a trace amount of oxygen. Two classes of buckyballs with fused bi- and tricyclic carbocycles have been electrochemically synthesized. Furthermore, an unknown type of a bisfulleroid with two tethered [6,6]-open orifices can also be efficiently generated from PCPM. All three types of products have been confirmed by single-crystal X-ray crystallography. A representative intramolecularly annulated isomer of PCBM has been applied as an additive to inverted planar perovskite solar cells and boosted a significant enhancement of power conversion efficiency from 15.83% to 17.67%.
Collapse
Affiliation(s)
- Wei-Feng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Kai-Qing Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chuang Niu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yun-Shu Wang
- Hefei No. 1 High School, Hefei, Anhui, 230601, P. R. China
| | - Yang-Rong Yao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zheng-Chun Yin
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Muqing Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, P. R. China
| | - Shi-Qi Ye
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shangfeng Yang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China.
| |
Collapse
|
3
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
4
|
Iwabuchi Y, Nagasawa S. The Utility of Oxoammonium Species in Organic Synthesis: Beyond Alcohol Oxidation. HETEROCYCLES 2022. [DOI: 10.3987/rev-21-sr(r)2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Hidasová D, Pohl R, Císařová I, Jahn U. A Diastereoselective Catalytic Approach to Pentasubstituted Pyrrolidines by Tandem Anionic‐Radical Cross‐Over Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Denisa Hidasová
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science Charles University Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| |
Collapse
|
6
|
Heindl S, Riomet M, Matyasovsky J, Lemmerer M, Malzer N, Maulide N. Chemoselektive γ-Oxidation von β,γ-ungesättigten Amiden mit TEMPO. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:19271-19275. [PMID: 38505148 PMCID: PMC10946935 DOI: 10.1002/ange.202104023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/02/2021] [Indexed: 02/05/2023]
Abstract
AbstractEin chemoselektives und robustes Protokoll zur γ‐Oxidation von β,γ‐ungesättigten Amiden wird dargelegt. Bei dieser Methode ermöglicht elektrophile Amidaktivierung eine bei ungesättigten Amiden bisher selten angewendete regioselektive Reaktion mit TEMPO, die zu γ‐aminoxylierten α,β‐ungesättigten Amiden führt. Radikalische Zyklisierungen und Oxidationen der synthetisierten Produkte untermauern die Nützlichkeit der hergestellten Verbindungen.
Collapse
Affiliation(s)
- Sebastian Heindl
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Margaux Riomet
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Ján Matyasovsky
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Miran Lemmerer
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Nicolas Malzer
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Nuno Maulide
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| |
Collapse
|
7
|
Heindl S, Riomet M, Matyasovsky J, Lemmerer M, Malzer N, Maulide N. Chemoselective γ-Oxidation of β,γ-Unsaturated Amides with TEMPO. Angew Chem Int Ed Engl 2021; 60:19123-19127. [PMID: 34146371 PMCID: PMC8456850 DOI: 10.1002/anie.202104023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/02/2021] [Indexed: 12/23/2022]
Abstract
A chemoselective and robust protocol for the γ‐oxidation of β,γ‐unsaturated amides is reported. In this method, electrophilic amide activation, in a rare application to unsaturated amides, enables a regioselective reaction with TEMPO resulting in the title products. Radical cyclisation reactions and oxidation of the synthesised products highlight the synthetic utility of the products obtained.
Collapse
Affiliation(s)
- Sebastian Heindl
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Margaux Riomet
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Ján Matyasovsky
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Miran Lemmerer
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Nicolas Malzer
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| |
Collapse
|
8
|
Thobokholt EN, Larghi EL, Bracca ABJ, Kaufman TS. Isolation and synthesis of cryptosanguinolentine (isocryptolepine), a naturally-occurring bioactive indoloquinoline alkaloid. RSC Adv 2020; 10:18978-19002. [PMID: 35518305 PMCID: PMC9054090 DOI: 10.1039/d0ra03096a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/04/2020] [Indexed: 11/28/2022] Open
Abstract
Cryptosanguinolentine (isocryptolepine) is one of the minor naturally-occurring monomeric indoloquinoline alkaloids, isolated from the West African climbing shrub Cryptolepis sanguinolenta. The natural product displays such a simple and unique skeleton, which chemists became interested in well before it was found in Nature. Because of its structure and biological activity, the natural product has been targeted for synthesis on numerous occasions, employing a wide range of different strategies. Hence, discussed here are aspects related to the isolation of isocryptolepine, as well as the various approaches toward its total synthesis.
Collapse
Affiliation(s)
- Elida N Thobokholt
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| | - Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| | - Andrea B J Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| |
Collapse
|
9
|
Šimek M, Bártová K, Pohl R, Císařová I, Jahn U. Tandemreaktionen aus anionischer Oxy‐Cope‐Umlagerung und Oxygenierung als vielseitiger Zugang zu verschiedenartigen Gerüsten. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michal Šimek
- Institut für Organische Chemie und BiochemieTschechische Akademie der Wissenschaften Flemingovo náměstí 2 16610 Prag 6 Czech republic
| | - Kateřina Bártová
- Institut für Organische Chemie und BiochemieTschechische Akademie der Wissenschaften Flemingovo náměstí 2 16610 Prag 6 Czech republic
| | - Radek Pohl
- Institut für Organische Chemie und BiochemieTschechische Akademie der Wissenschaften Flemingovo náměstí 2 16610 Prag 6 Czech republic
| | - Ivana Císařová
- Institut für Anorganische ChemieNaturwissenschaftliche FakultätKarls-Universität Prag Hlavova 2030/8 12843 Prag 2 Czech republic
| | - Ullrich Jahn
- Institut für Organische Chemie und BiochemieTschechische Akademie der Wissenschaften Flemingovo náměstí 2 16610 Prag 6 Czech republic
| |
Collapse
|
10
|
Šimek M, Bártová K, Pohl R, Císařová I, Jahn U. Tandem Anionic oxy-Cope Rearrangement/Oxygenation Reactions as a Versatile Method for Approaching Diverse Scaffolds. Angew Chem Int Ed Engl 2020; 59:6160-6165. [PMID: 31994304 DOI: 10.1002/anie.201916188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 12/29/2022]
Abstract
Tandem anionic oxy-Cope rearrangement/radical oxygenation reactions provide δ,ϵ-unsaturated α-(aminoxy) carbonyl compounds, which serve as convenient precursors to diverse compound classes. Functionalized carbocycles are accessible by very rare all-carbon 5-endo-trig cyclizations, but also common 5-exo-trig radical cyclizations, based on the persistent radical effect. The tandem reactions can be further extended by highly diastereoselective allylation or reduction steps to give complex scaffolds.
Collapse
Affiliation(s)
- Michal Šimek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Kateřina Bártová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843, Prague 2, Czech Republic
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| |
Collapse
|
11
|
Klychnikov MK, Pohl R, Císařová I, Jahn U. Application of the Brook Rearrangement in Tandem with Single Electron Transfer Oxidative and Radical Processes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mikhail K. Klychnikov
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo náměstí 2 16610 Prague 6 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo náměstí 2 16610 Prague 6 Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry; Faculty of Science; Charles University in Prague; Hlavova 2030/8 12843 Prague 2 Czech Republic
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo náměstí 2 16610 Prague 6 Czech Republic
| |
Collapse
|
12
|
Talasila DS, Queensen MJ, Barnes-Flaspoler M, Jurkowski K, Stephenson E, Rabus JM, Bauer EB. Ferrocenium Cations as Catalysts for the Etherification of Cyclopropyl-Substituted Propargylic Alcohols: Ene-yne Formation and Mechanistic Insights. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Deva Saroja Talasila
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| | - Matthew J. Queensen
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| | - Michael Barnes-Flaspoler
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| | - Kellsie Jurkowski
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| | - Evan Stephenson
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| | - Jordan M. Rabus
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| | - Eike B. Bauer
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| |
Collapse
|
13
|
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Armido Studer
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
14
|
Leifert D, Studer A. The Persistent Radical Effect in Organic Synthesis. Angew Chem Int Ed Engl 2019; 59:74-108. [PMID: 31116479 DOI: 10.1002/anie.201903726] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Radical-radical couplings are mostly nearly diffusion-controlled processes. Therefore, the selective cross-coupling of two different radicals is challenging and not a synthetically valuable transformation. However, if the radicals have different lifetimes and if they are generated at equal rates, cross-coupling will become the dominant process. This high cross-selectivity is based on a kinetic phenomenon called the persistent radical effect (PRE). In this Review, an explanation of the PRE supported by simulations of simple model systems is provided. Radical stabilities are discussed within the context of their lifetimes, and various examples of PRE-mediated radical-radical couplings in synthesis are summarized. It is shown that the PRE is not restricted to the coupling of a persistent with a transient radical. If one coupling partner is longer-lived than the other transient radical, the PRE operates and high cross-selectivity is achieved. This important point expands the scope of PRE-mediated radical chemistry. The Review is divided into two parts, namely 1) the coupling of persistent or longer-lived organic radicals and 2) "radical-metal crossover reactions"; here, metal-centered radical species and more generally longer-lived transition-metal complexes that are able to react with radicals are discussed-a field that has flourished recently.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China.,Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
15
|
Dai C, Li M, Chen M, Luo N, Wang C. Novel synthesis of highly functionalized cyclopentane derivatives via [3 + 2] cycloaddition reactions of donor–acceptor cyclopropanes and (E)-3-aryl-2-cyanoacrylates. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819831883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An efficient [3 + 2] cycloaddition reaction of cyanocyclopropanecarbonates and ( E)-3-aryl-2-cyanoacrylates mediated by 1,8-diazabicyclo[5.4.0]undec-7-ene for the synthesis of highly functionalized cyclopentane derivatives in moderate to good yields (79%−87%) was developed. The structures of two typical products were confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Chenlu Dai
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Mingshuang Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Mengjun Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Naili Luo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P.R. China
| |
Collapse
|
16
|
Just D, Hernandez-Guerra D, Kritsch S, Pohl R, Císařová I, Jones PG, Mackman R, Bahador G, Jahn U. Lithium Chloride Catalyzed Asymmetric Domino Aza-Michael Addition/[3 + 2] Cycloaddition Reactions for the Synthesis of Spiro- and Bicyclic α,β,γ-Triamino Acid Derivatives. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David Just
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Daniel Hernandez-Guerra
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Susanne Kritsch
- Fachbereich Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry; Faculty of Science; Charles University; Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Peter G. Jones
- Fachbereich Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Richard Mackman
- Gilead Sciences, Inc.; 333 Lakeside Drive 94404 Foster City CA USA
| | - Gina Bahador
- Gilead Sciences, Inc.; 333 Lakeside Drive 94404 Foster City CA USA
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| |
Collapse
|
17
|
Hidasová D, Janák M, Jahn E, Císařová I, Jones PG, Jahn U. Diastereoselective Radical Couplings Enable the Asymmetric Synthesis of anti
-β-Amino-α-hydroxy Carboxylic Acid Derivatives. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Denisa Hidasová
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nam. 2 166 10 Prague 6 Czech Republic
| | - Martin Janák
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nam. 2 166 10 Prague 6 Czech Republic
| | - Emanuela Jahn
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nam. 2 166 10 Prague 6 Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry; Faculty of Science; Charles University; Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Peter G. Jones
- Fachbereich Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nam. 2 166 10 Prague 6 Czech Republic
| |
Collapse
|
18
|
Kärkäs MD. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem Soc Rev 2018; 47:5786-5865. [PMID: 29911724 DOI: 10.1039/c7cs00619e] [Citation(s) in RCA: 605] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods for carrying out carbon-hydrogen functionalization and carbon-nitrogen bond formation are typically conducted at elevated temperatures, and rely on expensive catalysts as well as the use of stoichiometric, and perhaps toxic, oxidants. In this regard, electrochemical synthesis has recently been recognized as a sustainable and scalable strategy for the construction of challenging carbon-carbon and carbon-heteroatom bonds. Here, electrosynthesis has proven to be an environmentally benign, highly effective and versatile platform for achieving a wide range of nonclassical bond disconnections via generation of radical intermediates under mild reaction conditions. This review provides an overview on the use of anodic electrochemical methods for expediting the development of carbon-hydrogen functionalization and carbon-nitrogen bond formation strategies. Emphasis is placed on methodology development and mechanistic insight and aims to provide inspiration for future synthetic applications in the field of electrosynthesis.
Collapse
Affiliation(s)
- Markus D Kärkäs
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
19
|
Wu ZJ, Li SR, Long H, Xu HC. Electrochemical dehydrogenative cyclization of 1,3-dicarbonyl compounds. Chem Commun (Camb) 2018; 54:4601-4604. [PMID: 29670957 DOI: 10.1039/c8cc02472c] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intramolecular C(sp3)-H/C(sp2)-H cross-coupling of 1,3-dicarbonyl compounds has been achieved through Cp2Fe-catalyzed electrochemical oxidation. The key to the success of these dehydrogenative cyclization reactions is the selective activation of the acidic α-C-H bond of the 1,3-dicarbonyl moiety to generate a carbon-centered radical.
Collapse
Affiliation(s)
- Zheng-Jian Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Innovative Collaboration Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Shi-Rui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Innovative Collaboration Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Hao Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Innovative Collaboration Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Innovative Collaboration Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
20
|
Kapras V, Vyklicky V, Budesinsky M, Cisarova I, Vyklicky L, Chodounska H, Jahn U. Total Synthesis of ent-Pregnanolone Sulfate and Its Biological Investigation at the NMDA Receptor. Org Lett 2018; 20:946-949. [DOI: 10.1021/acs.orglett.7b03838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Vojtech Kapras
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| | - Vojtech Vyklicky
- Institute
of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Milos Budesinsky
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| | - Ivana Cisarova
- Department
of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Ladislav Vyklicky
- Institute
of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Hana Chodounska
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| | - Ullrich Jahn
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| |
Collapse
|
21
|
Long H, Song J, Xu HC. Electrochemical synthesis of 7-membered carbocycles through cascade 5-exo-trig/7-endo-trig radical cyclization. Org Chem Front 2018. [DOI: 10.1039/c8qo00803e] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical synthesis of functionalized 7-membered carbocycles through a 5-exo-trig/7-endo-trig radical cyclization cascade has been developed.
Collapse
Affiliation(s)
- Hao Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Key Laboratory of Chemical Biology of Fujian Province
- iChEM and College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Jinshuai Song
- Fujian Institute of Research on Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- P. R. China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Key Laboratory of Chemical Biology of Fujian Province
- iChEM and College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|
22
|
Jagtap PR, Císařová I, Jahn U. Bioinspired total synthesis of tetrahydrofuran lignans by tandem nucleophilic addition/redox isomerization/oxidative coupling and cycloetherification reactions as key steps. Org Biomol Chem 2018; 16:750-755. [DOI: 10.1039/c7ob02848b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three steps suffice to complete a bioinspired total synthesis of tetrahydrofuran lignans using tandem addition/isomerization/dimerization and cycloetherification reactions.
Collapse
Affiliation(s)
- Pratap R. Jagtap
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences
- 166 10 Prague
- Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry
- Charles University in Prague
- 12843 Prague 2
- Czech Republic
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences
- 166 10 Prague
- Czech Republic
| |
Collapse
|
23
|
Smrček J, Pohl R, Jahn U. Total syntheses of all tri-oxygenated 16-phytoprostane classes via a common precursor constructed by oxidative cyclization and alkyl-alkyl coupling reactions as the key steps. Org Biomol Chem 2017; 15:9408-9414. [PMID: 29095476 DOI: 10.1039/c7ob02505j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unified strategy for the total synthesis of the methyl esters of all phytoprostane (PhytoP) classes bearing two ring-oxygen atoms based on an orthogonally protected common precursor is described. Racemic 16-F1t-, 16-E1-PhytoP and their C-16 epimers, which also occur as racemates in Nature, were successfully obtained. The first total synthesis of very sensitive 16-D1t-PhytoP succeeded, however, it quickly isomerized to more stable, but so far also unknown Δ13-16-D1t-PhytoP, which may serve as a more reliable biomarker for D-type PhytoP. The dioxygenated cyclopentane ring carrying the ω-chain with the oxygen functionality in the 16-position was approached by a radical oxidative cyclization mediated by ferrocenium hexafluorophosphate and TEMPO. The α-chain was introduced by a new copper-catalyzed alkyl-alkyl coupling of a 6-heptenyl Grignard reagent with a functionalized cyclopentylmethyl triflate.
Collapse
Affiliation(s)
- Jakub Smrček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic.
| | | | | |
Collapse
|
24
|
Li X, Lin F, Huang K, Wei J, Li X, Wang X, Geng X, Jiao N. Selective α-Oxyamination and Hydroxylation of Aliphatic Amides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xinwei Li
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Fengguirong Lin
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Kaimeng Huang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Xinyao Li
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Xiaoyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Xiaoyu Geng
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
- State Key Laboratory of Organometallic Chemistry; Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
25
|
Li X, Lin F, Huang K, Wei J, Li X, Wang X, Geng X, Jiao N. Selective α-Oxyamination and Hydroxylation of Aliphatic Amides. Angew Chem Int Ed Engl 2017; 56:12307-12311. [DOI: 10.1002/anie.201706963] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Xinwei Li
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Fengguirong Lin
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Kaimeng Huang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Xinyao Li
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Xiaoyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Xiaoyu Geng
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Xue Yuan Rd. 38 Beijing 100191 China
- State Key Laboratory of Organometallic Chemistry; Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
26
|
Taninokuchi S, Yazaki R, Ohshima T. Catalytic Aerobic Chemoselective α-Oxidation of Acylpyrazoles en Route to α-Hydroxy Acid Derivatives. Org Lett 2017; 19:3187-3190. [DOI: 10.1021/acs.orglett.7b01293] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Seiya Taninokuchi
- Graduate School of Pharmaceutical
Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryo Yazaki
- Graduate School of Pharmaceutical
Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical
Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
27
|
Wu ZJ, Xu HC. Synthesis of C3-Fluorinated Oxindoles through Reagent-Free Cross-Dehydrogenative Coupling. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701329] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zheng-Jian Wu
- i ChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Hai-Chao Xu
- i ChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| |
Collapse
|
28
|
Wu ZJ, Xu HC. Synthesis of C3-Fluorinated Oxindoles through Reagent-Free Cross-Dehydrogenative Coupling. Angew Chem Int Ed Engl 2017; 56:4734-4738. [DOI: 10.1002/anie.201701329] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Zheng-Jian Wu
- i ChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Hai-Chao Xu
- i ChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| |
Collapse
|
29
|
Chu XQ, Cao WB, Xu XP, Ji SJ. Iron Catalysis for Modular Pyrimidine Synthesis through β-Ammoniation/Cyclization of Saturated Carbonyl Compounds with Amidines. J Org Chem 2017; 82:1145-1154. [DOI: 10.1021/acs.joc.6b02767] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xue-Qiang Chu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Wen-Bin Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
30
|
Qian P, Deng Y, Mei H, Han J, Pan Y. Metal-free nitroxyl radical-mediated β-C(sp3)–H amination of saturated ketones with heteroaryl halides: multiple roles of TEMPO. Chem Commun (Camb) 2017; 53:2958-2961. [DOI: 10.1039/c7cc00145b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first metal-free nitroxyl-radical-mediated β-amination of saturated ketones by using heteroaryl halides as amide precursors has been developed.
Collapse
Affiliation(s)
- Ping Qian
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Yu Deng
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Haibo Mei
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jianlin Han
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Yi Pan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing 210093
- P. R. China
| |
Collapse
|
31
|
Amatov T, Gebauer M, Pohl R, Cisařová I, Jahn U. Oxidative radical cyclizations of diketopiperazines bearing an amidomalonate unit. Heterointermediate reaction sequences toward the asperparalines and stephacidins. Free Radic Res 2016; 50:S6-S17. [PMID: 27806645 DOI: 10.1080/10715762.2016.1223295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel approach to the diazabicyclo[2.2.2]octane core of prenylated bridged diketopiperazine alkaloids is described by direct oxidative cyclizations of functionalized diketopiperazines mediated by ferrocenium hexafluorophosphate or the Mn(OAc)3•2H2O/Cu(OTf)2 system. Divergent reaction pathways take place depending on the substitution pattern of the substrates and the oxidation conditions such as temperature or the presence or absence of persistent radical TEMPO. For ester-substituted diketopiperazines, the ester group exerts a significant influence on the reaction outcome and stereochemistry of the radical cyclizations.
Collapse
Affiliation(s)
- Tynchtyk Amatov
- a Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo namesti 2 , Prague 6, Czech Republic
| | - Martin Gebauer
- a Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo namesti 2 , Prague 6, Czech Republic
| | - Radek Pohl
- a Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo namesti 2 , Prague 6, Czech Republic
| | - Ivana Cisařová
- b Department of Inorganic Chemistry, Faculty of Science , Charles University in Prague , Hlavova 2030/8 , Prague 2, Czech Republic
| | - Ullrich Jahn
- a Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo namesti 2 , Prague 6, Czech Republic
| |
Collapse
|
32
|
Ferreri C, Golding BT, Jahn U, Ravanat JL. COST Action CM1201 "Biomimetic Radical Chemistry": free radical chemistry successfully meets many disciplines. Free Radic Res 2016; 50:S112-S128. [PMID: 27750460 DOI: 10.1080/10715762.2016.1248961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The COST Action CM1201 "Biomimetic Radical Chemistry" has been active since December 2012 for 4 years, developing research topics organized into four working groups: WG1 - Radical Enzymes, WG2 - Models of DNA damage and consequences, WG3 - Membrane stress, signalling and defenses, and WG4 - Bio-inspired synthetic strategies. International collaborations have been established among the participating 80 research groups with brilliant interdisciplinary achievements. Free radical research with a biomimetic approach has been realized in the COST Action and are summarized in this overview by the four WG leaders.
Collapse
Affiliation(s)
- Carla Ferreri
- a ISOF, Consiglio Nazionale delle Ricerche, BioFreeRadicals Group , Bologna , Italy
| | - Bernard T Golding
- b School of Chemistry, Bedson Building, Newcastle University , Newcastle-upon-Tyne , UK
| | - Ullrich Jahn
- c Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Prague , Czech Republic
| | - Jean-Luc Ravanat
- d INAC-SCIB & CEA, INAC-SyMMES Laboratoire des Lésions des Acides Nucléiques , Université Grenoble Alpes , Grenoble , France
| |
Collapse
|
33
|
Moriyama K, Kuramochi M, Fujii K, Morita T, Togo H. Nitroxyl-Radical-Catalyzed Oxidative Coupling of Amides with Silylated Nucleophiles through N-Halogenation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katsuhiko Moriyama
- Department of Chemistry; Graduate School of Science; Chiba University; 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
- Molecular Chirality Research Center; Chiba University; 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Masako Kuramochi
- Department of Chemistry; Graduate School of Science; Chiba University; 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Kozo Fujii
- Graduate School of Advanced Integration Science; Chiba University; 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Tsuyoshi Morita
- Graduate School of Advanced Integration Science; Chiba University; 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Hideo Togo
- Department of Chemistry; Graduate School of Science; Chiba University; 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| |
Collapse
|
34
|
Moriyama K, Kuramochi M, Fujii K, Morita T, Togo H. Nitroxyl-Radical-Catalyzed Oxidative Coupling of Amides with Silylated Nucleophiles through N-Halogenation. Angew Chem Int Ed Engl 2016; 55:14546-14551. [PMID: 27682318 DOI: 10.1002/anie.201607223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/19/2016] [Indexed: 12/25/2022]
Abstract
A nitroxyl-radical-catalyzed oxidative coupling reaction between amines with an N-protecting electron-withdrawing group (EWG) and silylated nucleophiles was developed to furnish coupling products in high yields, thus opening up new frontiers in organocatalyzed reactions. This reaction proceeded through the activation of N-halogenated amides by a nitroxyl-radical catalyst, followed by carbon-carbon coupling with silylated nucleophiles. Studies of the reaction mechanism indicated that the nitroxyl radical activates N-halogenated amides, which are generated from N-EWG-protected amides and a halogenation reagent, to give the corresponding imines.
Collapse
Affiliation(s)
- Katsuhiko Moriyama
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.,Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Masako Kuramochi
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kozo Fujii
- Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Tsuyoshi Morita
- Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Hideo Togo
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
35
|
Flynn MT, Stott R, Blair VL, Andrews PC. Loss of Chirality through Facile Lewis Base Mediated Aza-enolate Formation in Na and K (S)-N-(α-Methylbenzyl)methallylamides. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew T. Flynn
- School of Chemistry, Monash University, Clayton, Melbourne, Victoria, Australia 3800
| | - Rachel Stott
- School of Chemistry, Monash University, Clayton, Melbourne, Victoria, Australia 3800
| | - Victoria L. Blair
- School of Chemistry, Monash University, Clayton, Melbourne, Victoria, Australia 3800
| | - Philip C. Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, Victoria, Australia 3800
| |
Collapse
|
36
|
Kafka F, Pohl R, Císařová I, Mackman R, Bahador G, Jahn U. N,2,3,4-Tetrasubstituted Pyrrolidines through Tandem Lithium Amide Conjugate Addition/Radical Cyclization/Oxygenation Reactions. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- František Kafka
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo namesti 2 16610 Prague Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo namesti 2 16610 Prague Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry; Faculty of Science; Charles University in Prague; Albertov 6 12843 Prague Czech Republic
| | - Richard Mackman
- Gilead Sciences, Inc.; 333 Lakeside Drive 94404 Foster City CA USA
| | - Gina Bahador
- Gilead Sciences, Inc.; 333 Lakeside Drive 94404 Foster City CA USA
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo namesti 2 16610 Prague Czech Republic
| |
Collapse
|
37
|
Hou ZW, Mao ZY, Zhao HB, Melcamu YY, Lu X, Song J, Xu HC. Electrochemical C-H/N-H Functionalization for the Synthesis of Highly Functionalized (Aza)indoles. Angew Chem Int Ed Engl 2016; 55:9168-72. [PMID: 27240116 DOI: 10.1002/anie.201602616] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 01/17/2023]
Abstract
Indoles and azaindoles are among the most important heterocycles because of their prevalence in nature and their broad utility in pharmaceutical industry. Reported herein is an unprecedented noble-metal- and oxidant-free electrochemical method for the coupling of (hetero)arylamines with tethered alkynes to synthesize highly functionalized indoles, as well as the more challenging azaindoles.
Collapse
Affiliation(s)
- Zhong-Wei Hou
- Collaborative Innovation Center of Chemistry for Energy Material, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and, Department of Chemistry, Xiamen University, Xiamen, 361005, P.R. China
| | - Zhong-Yi Mao
- Collaborative Innovation Center of Chemistry for Energy Material, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and, Department of Chemistry, Xiamen University, Xiamen, 361005, P.R. China
| | - Huai-Bo Zhao
- Collaborative Innovation Center of Chemistry for Energy Material, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and, Department of Chemistry, Xiamen University, Xiamen, 361005, P.R. China
| | - Yared Yohannes Melcamu
- Collaborative Innovation Center of Chemistry for Energy Material, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and, Department of Chemistry, Xiamen University, Xiamen, 361005, P.R. China
| | - Xin Lu
- Collaborative Innovation Center of Chemistry for Energy Material, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and, Department of Chemistry, Xiamen University, Xiamen, 361005, P.R. China.
| | - Jinshuai Song
- Collaborative Innovation Center of Chemistry for Energy Material, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and, Department of Chemistry, Xiamen University, Xiamen, 361005, P.R. China.,Fujian Institute of Research on Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
| | - Hai-Chao Xu
- Collaborative Innovation Center of Chemistry for Energy Material, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and, Department of Chemistry, Xiamen University, Xiamen, 361005, P.R. China.
| |
Collapse
|
38
|
Hou Z, Mao Z, Zhao H, Melcamu YY, Lu X, Song J, Xu H. Electrochemical C−H/N−H Functionalization for the Synthesis of Highly Functionalized (Aza)indoles. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602616] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zhong‐Wei Hou
- Collaborative Innovation Center of Chemistry for Energy MaterialState Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory of Chemical Biology of Fujian Province andDepartment of ChemistryXiamen University Xiamen 361005 P.R. China
| | - Zhong‐Yi Mao
- Collaborative Innovation Center of Chemistry for Energy MaterialState Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory of Chemical Biology of Fujian Province andDepartment of ChemistryXiamen University Xiamen 361005 P.R. China
| | - Huai‐Bo Zhao
- Collaborative Innovation Center of Chemistry for Energy MaterialState Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory of Chemical Biology of Fujian Province andDepartment of ChemistryXiamen University Xiamen 361005 P.R. China
| | - Yared Yohannes Melcamu
- Collaborative Innovation Center of Chemistry for Energy MaterialState Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory of Chemical Biology of Fujian Province andDepartment of ChemistryXiamen University Xiamen 361005 P.R. China
| | - Xin Lu
- Collaborative Innovation Center of Chemistry for Energy MaterialState Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory of Chemical Biology of Fujian Province andDepartment of ChemistryXiamen University Xiamen 361005 P.R. China
| | - Jinshuai Song
- Collaborative Innovation Center of Chemistry for Energy MaterialState Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory of Chemical Biology of Fujian Province andDepartment of ChemistryXiamen University Xiamen 361005 P.R. China
- Fujian Institute of Research on Structure of MatterChinese Academy of Sciences Fuzhou 350002 P.R. China
| | - Hai‐Chao Xu
- Collaborative Innovation Center of Chemistry for Energy MaterialState Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory of Chemical Biology of Fujian Province andDepartment of ChemistryXiamen University Xiamen 361005 P.R. China
| |
Collapse
|
39
|
Zhu L, Xiong P, Mao ZY, Wang YH, Yan X, Lu X, Xu HC. Electrocatalytic Generation of Amidyl Radicals for Olefin Hydroamidation: Use of Solvent Effects to Enable Anilide Oxidation. Angew Chem Int Ed Engl 2016; 55:2226-9. [PMID: 26732232 DOI: 10.1002/anie.201510418] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 01/24/2023]
Abstract
Oxidative generation of synthetically important amidyl radicals from N-H amides is an appealing and yet challenging task. Previous methods require a stoichiometric amount of a strong oxidant and/or a costly noble-metal catalyst. We report herein the first electrocatalytic method that employs ferrocene (Fc), a cheap organometallic reagent, as the redox catalyst to produce amidyl radicals from N-aryl amides. Based on this radical-generating method, an efficient intramolecular olefin hydroamidation reaction has been developed.
Collapse
Affiliation(s)
- Lin Zhu
- Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, Xiamen University, Xiamen, 361005, P. R. China
| | - Peng Xiong
- Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhong-Yi Mao
- Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, Xiamen University, Xiamen, 361005, P. R. China
| | - Yong-Heng Wang
- Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaomei Yan
- Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, Xiamen University, Xiamen, 361005, P. R. China
| | - Xin Lu
- Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, Xiamen University, Xiamen, 361005, P. R. China
| | - Hai-Chao Xu
- Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory of Chemical Biology of Fujian Province, Department of Chemistry, Xiamen University, Xiamen, 361005, P. R. China.
| |
Collapse
|
40
|
Zhu L, Xiong P, Mao ZY, Wang YH, Yan X, Lu X, Xu HC. Electrocatalytic Generation of Amidyl Radicals for Olefin Hydroamidation: Use of Solvent Effects to Enable Anilide Oxidation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510418] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Lin Zhu
- Collaborative Innovation Center of Chemistry for Energy Material; Key Laboratory of Chemical Biology of Fujian Province; Department of Chemistry; Xiamen University; Xiamen 361005 P. R. China
| | - Peng Xiong
- Collaborative Innovation Center of Chemistry for Energy Material; Key Laboratory of Chemical Biology of Fujian Province; Department of Chemistry; Xiamen University; Xiamen 361005 P. R. China
| | - Zhong-Yi Mao
- Collaborative Innovation Center of Chemistry for Energy Material; Key Laboratory of Chemical Biology of Fujian Province; Department of Chemistry; Xiamen University; Xiamen 361005 P. R. China
| | - Yong-Heng Wang
- Collaborative Innovation Center of Chemistry for Energy Material; Key Laboratory of Chemical Biology of Fujian Province; Department of Chemistry; Xiamen University; Xiamen 361005 P. R. China
| | - Xiaomei Yan
- Collaborative Innovation Center of Chemistry for Energy Material; Key Laboratory of Chemical Biology of Fujian Province; Department of Chemistry; Xiamen University; Xiamen 361005 P. R. China
| | - Xin Lu
- Collaborative Innovation Center of Chemistry for Energy Material; Key Laboratory of Chemical Biology of Fujian Province; Department of Chemistry; Xiamen University; Xiamen 361005 P. R. China
| | - Hai-Chao Xu
- Collaborative Innovation Center of Chemistry for Energy Material; Key Laboratory of Chemical Biology of Fujian Province; Department of Chemistry; Xiamen University; Xiamen 361005 P. R. China
| |
Collapse
|
41
|
Jahn E, Smrček J, Pohl R, Císařová I, Jones PG, Jahn U. Facile and Highly Diastereoselective Synthesis ofsyn- andcis-1,2-Diol Derivatives from Protected α-Hydroxy Ketones. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
42
|
Queensen MJ, Rabus JM, Bauer EB. Ferrocenium hexafluorophosphate as an inexpensive, mild catalyst for the etherification of propargylic alcohols. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2015.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Holan M, Pohl R, Císařová I, Klepetářová B, Jones PG, Jahn U. Highly Functionalized Cyclopentane Derivatives by Tandem Michael Addition/Radical Cyclization/Oxygenation Reactions. Chemistry 2015; 21:9877-88. [PMID: 26012714 DOI: 10.1002/chem.201500424] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 01/26/2023]
Abstract
Densely functionalized cyclopentane derivatives with up to four consecutive stereocenters are assembled by a tandem Michael addition/single-electron transfer oxidation/radical cyclization/oxygenation strategy mediated by ferrocenium hexafluorophosphate, a recyclable, less toxic single-electron transfer oxidant. Ester enolates were coupled with α-benzylidene and α-alkylidene β-dicarbonyl compounds with switchable diastereoselectivity. This pivotal steering element subsequently controls the diastereoselectivity of the radical cyclization step. The substitution pattern of the radical cyclization acceptor enables a switch of the cyclization mode from a 5-exo pattern for terminally substituted olefin units to a 6-endo mode for internally substituted acceptors. The oxidative anionic/radical strategy also allows efficient termination by oxygenation with the free radical 2,2,6,6-tetramethyl-1-piperidinoxyl, and two C-C bonds and one C-O bond are thus formed in the sequence. A stereochemical model is proposed that accounts for all of the experimental results and allows the prediction of the stereochemical outcome. Further transformations of the synthesized cyclopentanes are reported.
Collapse
Affiliation(s)
- Martin Holan
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague (Czech Republic)
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague (Czech Republic)
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague (Czech Republic)
| | - Blanka Klepetářová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague (Czech Republic)
| | - Peter G Jones
- Institut für Anorganische und Allgemeine Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig (Germany)
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague (Czech Republic).
| |
Collapse
|
44
|
Gesmundo NJ, Grandjean JMM, Nicewicz DA. Amide and amine nucleophiles in polar radical crossover cycloadditions: synthesis of γ-lactams and pyrrolidines. Org Lett 2015; 17:1316-9. [PMID: 25695366 DOI: 10.1021/acs.orglett.5b00316] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work we present a direct catalytic synthesis of γ-lactams and pyrrolidines from alkenes and activated unsaturated amides or protected unsaturated amines, respectively. Using a mesityl acridinium single electron photooxidant and a thiophenol cocatalyst under irradiation, we are able to directly forge these important classes of heterocycles with complete regiocontrol.
Collapse
Affiliation(s)
- Nathan J Gesmundo
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | | | | |
Collapse
|
45
|
Siddaraju Y, Prabhu KR. A chemoselective α-aminoxylation of aryl ketones: a cross dehydrogenative coupling reaction catalysed by Bu4NI. Org Biomol Chem 2015; 13:11651-6. [DOI: 10.1039/c5ob01929j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tetrabutyl ammonium iodide (TBAI) catalyzed α-aminoxylation of ketones using aq. TBHP as an oxidant has been accomplished.
Collapse
Affiliation(s)
- Yogesh Siddaraju
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | | |
Collapse
|