1
|
Qi J, Amrutha AS, Ishida-Ishihara S, Dokainish HM, Hashim PK, Miyazaki R, Tsuda M, Tanaka S, Tamaoki N. Caging Bioactive Triarylimidazoles: An Approach to Create Visible Light-Activatable Drugs. J Am Chem Soc 2024; 146:18002-18010. [PMID: 38905195 DOI: 10.1021/jacs.4c04468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Imidazoles are crucial structural components in a variety of small-molecule inhibitors designed to target different kinases in anticancer treatment. However, the effectiveness of such inhibitors is often hampered by nonspecific effects and the development of resistance. Photopharmacology provides a compelling solution by enabling external control over drug activity with spatiotemporal precision. Herein, we introduce a novel strategy for caging bioactive triarylimidazole-based drug molecules. This approach involves introducing a dialkylamino group as a photoremovable group on the carbon atom of the imidazole ring, which intrinsically modulates the core structure from planar imidazole to tetrahedral 2H-imidazole, enabling the caged compound to be selectively uncaged upon visible light exposure. We applied this innovative caging technique to SB431542, a triarylimidazole-based small-molecule inhibitor that targets the pivotal TGF-β signaling pathway, the dysregulation of which is linked to several human diseases, including cancer. Our results demonstrated the selective inhibition of human breast cancer cell migration in vitro upon light activation, highlighting the potential of our approach to transform triarylimidazole-based drug molecules into visible light-activatable drugs, thereby facilitating spatiotemporal regulation of their pharmacological activity.
Collapse
Affiliation(s)
- Jiajun Qi
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Ammathnadu S Amrutha
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Sumire Ishida-Ishihara
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Hisham M Dokainish
- Center of Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - P K Hashim
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Ryu Miyazaki
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
2
|
Liu SS, Ma CX, Quan ZY, Ding J, Yang L, Liu SM, Zhang HA, Qing H, Liang JH. Discovery of Novel Diphenyl Acrylonitrile Derivatives That Promote Adult Rats' Hippocampal Neurogenesis. Int J Mol Sci 2024; 25:1241. [PMID: 38279241 PMCID: PMC10816640 DOI: 10.3390/ijms25021241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024] Open
Abstract
We previously discovered WS-6 as a new antidepressant in correlation to its function of stimulating neurogenesis. Herein, several different scaffolds (stilbene, 1,3-diphenyl 1-propene, 1,3-diphenyl 2-propene, 1,2-diphenyl acrylo-1-nitrile, 1,2-diphenyl acrylo-2-nitrile, 1,3-diphenyl trimethylamine), further varied through substitutions of twelve amide substituents plus the addition of a methylene unit and an inverted amide, were examined to elucidate the SARs for promoting adult rat neurogenesis. Most of the compounds could stimulate proliferation of progenitors, but just a few chemicals possessing a specific structural profile, exemplified by diphenyl acrylonitrile 29b, 32a, and 32b, showed better activity than the clinical drug NSI-189 in promoting newborn cells differentiation into mature neurons. The most potent diphenyl acrylonitrile 32b had an excellent brain AUC to plasma AUC ratio (B/P = 1.6), suggesting its potential for further development as a new lead.
Collapse
Affiliation(s)
- Si-Si Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (S.-S.L.); (C.-X.M.); (J.D.); (S.-M.L.)
| | - Cong-Xuan Ma
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (S.-S.L.); (C.-X.M.); (J.D.); (S.-M.L.)
| | - Zheng-Yang Quan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Z.-Y.Q.); (L.Y.); (H.-A.Z.)
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (S.-S.L.); (C.-X.M.); (J.D.); (S.-M.L.)
| | - Liang Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Z.-Y.Q.); (L.Y.); (H.-A.Z.)
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (S.-S.L.); (C.-X.M.); (J.D.); (S.-M.L.)
| | - He-Ao Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Z.-Y.Q.); (L.Y.); (H.-A.Z.)
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Z.-Y.Q.); (L.Y.); (H.-A.Z.)
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (S.-S.L.); (C.-X.M.); (J.D.); (S.-M.L.)
| |
Collapse
|
3
|
Gupta V, Mahata T, Roy R, Gharai PK, Jana A, Garg S, Ghosh S. Discovery of imidazole-based GSK-3 β inhibitors for transdifferentiation of human mesenchymal stem cells to neurons: A potential single-molecule neurotherapeutic foresight. Front Mol Neurosci 2022; 15:1002419. [PMID: 36590911 PMCID: PMC9797524 DOI: 10.3389/fnmol.2022.1002419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/11/2022] [Indexed: 12/16/2022] Open
Abstract
The transdifferentiation of human mesenchymal stem cells (hMSC) to functional neurons is crucial for the development of future neuro-regenerative therapeutics. Currently, transdifferentiation of hMSCs to neurons requires a "chemical cocktail" along with neural growth factors. The role of the individual molecules present in a "chemical cocktail" is poorly understood and may cause unwanted toxicity or adverse effects. Toward, this goal, we have showcased the discovery of an imidazole-based "single-molecule" transdifferentiation initiator SG-145C. This discovery was achieved via screening of a small molecule library through extensive in silico studies to shortlist the best-fitting molecules. This discovery evolved through a careful selection to target Glycogen synthase kinase-3β (GSK-3β), which is one of the important proteins responsible for neurogenesis. Rigorous computational experiments, as well as extensive biological assays, confirmed that SG-145C has significant potential to transdifferentiate hMSCs to neurons. Interestingly, our results suggest that SG-145C can inhibit the proteasomal degradation of phosphorylated β-catenin, in turn promoting transdifferentiation of hMSCs into neurons via the Wnt pathway.
Collapse
Affiliation(s)
- Varsha Gupta
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Tanushree Mahata
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Rajsekhar Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India
| | - Prabir Kumar Gharai
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Aniket Jana
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India
| | - Shubham Garg
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India,Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India,Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, India,*Correspondence: Surajit Ghosh,
| |
Collapse
|
4
|
Xie WS, Shehzadi K, Ma HL, Liang JH. A Potential Strategy for Treatment of Neurodegenerative Disorders by Regulation of Adult Hippocampal Neurogenesis in Human Brain. Curr Med Chem 2022; 29:5315-5347. [DOI: 10.2174/0929867329666220509114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Adult hippocampal neurogenesis is a multistage mechanism that continues throughout the lifespan of human and non-human mammals. These adult-born neurons in the central nervous system (CNS) play a significant role in various hippocampus-dependent processes, including learning, mood regulation, pattern recognition, etc. Reduction of adult hippocampal neurogenesis, caused by multiple factors such as neurological disorders and aging, would impair neuronal proliferation and differentiation and result in memory loss. Accumulating studies have indicated that functional neuron impairment could be restored by promoting adult hippocampal neurogenesis. In this review, we summarized the small molecules that could efficiently promote the process of adult neurogenesis, particularly the agents that have the capacity of crossing the blood-brain barrier (BBB), and showed in vivo efficacy in mammalian brains. This may pave the way for the rational design of drugs to treat humnan neurodegenerative disorders in the future.
Collapse
Affiliation(s)
- Wei-Song Xie
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Kiran Shehzadi
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Hong-Le Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jian-Hua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| |
Collapse
|
5
|
Park SH, Shin I, Kim GH, Ko SK, Shin I. An Autophagy-Disrupting Small Molecule Promotes Cancer Cell Death via Caspase Activation. Chembiochem 2021; 22:3425-3430. [PMID: 34263972 DOI: 10.1002/cbic.202100296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Indexed: 12/15/2022]
Abstract
A novel autophagy inhibitor, autophazole (Atz), which promoted cancer cell death via caspase activation, is described. This compound was identified from cell-based high-content screening of an imidazole library. The results showed that Atz was internalized into lysosomes of cells where it induced lysosomal membrane permeabilization (LMP). This process generated nonfunctional autolysosomes, thereby inhibiting autophagy. In addition, Atz was found to promote LMP-mediated apoptosis. Specifically, LMP induced by Atz caused release of cathepsins from lysosomes into the cytosol. Cathepsins in the cytosol cleaved Bid to generate tBid, which subsequently activated Bax to induce mitochondrial outer membrane permeabilization (MOMP). This event led to cancer cell death via caspase activation. Overall, the findings suggest that Atz will serve as a new chemical probe in efforts aimed at gaining a better understanding of the autophagic process.
Collapse
Affiliation(s)
- Sang-Hyun Park
- Department of Chemistry, Yonsei University, Seoul, 03722, South Korea
| | - Insu Shin
- Department of Chemistry, Yonsei University, Seoul, 03722, South Korea
| | - Gun-Hee Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, South Korea
| | - Sung-Kyun Ko
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, South Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
6
|
Mayfield RD, Zhu L, Smith TA, Tiwari GR, Tucker HO. The SMYD1 and skNAC transcription factors contribute to neurodegenerative diseases. Brain Behav Immun Health 2020; 9:100129. [PMID: 34589886 PMCID: PMC8474399 DOI: 10.1016/j.bbih.2020.100129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/06/2022] Open
Abstract
SMYD1 and the skNAC isoform of the NAC transcription factor have both previously been characterized as transcription factors in hematopoiesis and cardiac/skeletal muscle. Here we report that comparative analysis of genes deregulated by SMYD1 or skNAC knockdown in differentiating C2C12 myoblasts identified transcripts characteristic of neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's Diseases (AD, PD, and HD). This led us to determine whether SMYD1 and skNAC function together or independently within the brain. Based on meta-analyses and direct experimentation, we observed SMYD1 and skNAC expression within cortical striata of human brains, mouse brains and transgenic mouse models of these diseases. We observed some of these features in mouse myoblasts induced to differentiate into neurons. Finally, several defining features of Alzheimer's pathology, including the brain-specific, axon-enriched microtubule-associated protein, Tau, are deregulated upon SMYD1 loss.
Collapse
Affiliation(s)
- R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| | - Li Zhu
- Department of Pathology, Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, 94305, USA
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| | - Tyler A. Smith
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Gayatri R. Tiwari
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Haley O. Tucker
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| |
Collapse
|
7
|
Nikitina PA, Koldaeva TY, Zakharko MA, Perevalov VP. Synthesis and Study of Prototropic Tautomerism of 2-(2-Furyl)-1-hydroxyimidazoles. Aust J Chem 2020. [DOI: 10.1071/ch20044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Novel 2-(2-furyl)imidazole derivatives were synthesised. 2-(2-Furyl)-1-methoxyimidazoles and 2-(2-furyl)-1-methylimidazole 3-oxides were used as model compounds in the study of the prototropic tautomerism of 2-(2-furyl)-1-hydroxyimidazoles by means of 1H, 13C NMR and UV/vis spectroscopies. It was demonstrated that the interaction of the π-excessive furyl moiety with an electron-withdrawing carbonyl group in position 5 of imidazole stabilised the N-hydroxy tautomeric form in both deuterated chloroform and d6-DMSO. In ethanol the N-oxide tautomer is also present along with the prevailing N-hydroxyimidazole.
Collapse
|
8
|
Rossi R, Ciofalo M. Current Advances in the Synthesis and Biological Evaluation of Pharmacologically Relevant 1,2,4,5-Tetrasubstituted-1H-Imidazole Derivatives. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666191014154129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
:
In recent years, the synthesis and evaluation of the
biological properties of 1,2,4,5-tetrasubstituted-1H-imidazole
derivatives have been the subject of a large number of studies
by academia and industry. In these studies it has been shown
that this large and highly differentiated class of heteroarene
derivatives includes high valuable compounds having important
biological and pharmacological properties such as
antibacterial, antifungal, anthelmintic, anti-inflammatory, anticancer,
antiviral, antihypertensive, cholesterol-lowering, antifibrotic,
antiuricemic, antidiabetic, antileishmanial and antiulcer
activities.
:
The present review with 411 references, in which we focused on the literature data published mainly from 2011
to 2017, aims to update the readers on the recent developments on the synthesis and biological evaluation of
pharmacologically relevant 1,2,4,5-tetrasubstituted-1H-imidazole derivatives with an emphasis on their different
molecular targets and their potential use as drugs to treat various types of diseases. Reference was also
made to substantial literature data acquired before 2011 in this burgeoning research area.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa - via Moruzzi, 3, I-56124 Pisa, Italy
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo - Viale delle Scienze, Edificio 4, I-90128 Palermo, Italy
| |
Collapse
|
9
|
Gong L, Yan Q, Zhang Y, Fang X, Liu B, Guan X. Cancer cell reprogramming: a promising therapy converting malignancy to benignity. Cancer Commun (Lond) 2019; 39:48. [PMID: 31464654 PMCID: PMC6716904 DOI: 10.1186/s40880-019-0393-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
In the past decade, remarkable progress has been made in reprogramming terminally differentiated somatic cells and cancer cells into induced pluripotent cells and cancer cells with benign phenotypes. Recent studies have explored various approaches to induce reprogramming from one cell type to another, including lineage-specific transcription factors-, combinatorial small molecules-, microRNAs- and embryonic microenvironment-derived exosome-mediated reprogramming. These reprogramming approaches have been proven to be technically feasible and versatile to enable re-activation of sequestered epigenetic regions, thus driving fate decisions of differentiated cells. One of the significant utilities of cancer cell reprogramming is the therapeutic potential of retrieving normal cell functions from various malignancies. However, there are several major obstacles to overcome in cancer cell reprogramming before clinical translation, including characterization of reprogramming mechanisms, improvement of reprogramming efficiency and safety, and development of delivery methods. Recently, several insights in reprogramming mechanism have been proposed, and determining progress has been achieved to promote reprogramming efficiency and feasibility, allowing it to emerge as a promising therapy against cancer in the near future. This review aims to discuss recent applications in cancer cell reprogramming, with a focus on the clinical significance and limitations of different reprogramming approaches, while summarizing vital roles played by transcription factors, small molecules, microRNAs and exosomes during the reprogramming process.
Collapse
Affiliation(s)
- Lanqi Gong
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Qian Yan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Yu Zhang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Xiaona Fang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Xinyuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China. .,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China.
| |
Collapse
|
10
|
Goonoo N, Bhaw-Luximon A. Mimicking growth factors: role of small molecule scaffold additives in promoting tissue regeneration and repair. RSC Adv 2019; 9:18124-18146. [PMID: 35702423 PMCID: PMC9115879 DOI: 10.1039/c9ra02765c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/02/2019] [Indexed: 12/31/2022] Open
Abstract
The primary aim of tissue engineering scaffolds is to mimic the in vivo environment and promote tissue growth. In this quest, a number of strategies have been developed such as enhancing cell-material interactions through modulation of scaffold physico-chemical parameters. However, more is required for scaffolds to relate to the cell natural environment. Growth factors (GFs) secreted by cells and extracellular matrix (ECM) are involved in both normal repair and abnormal remodeling. The direct use of GFs on their own or when incorporated within scaffolds represent a number of challenges such as release rate, stability and shelf-life. Small molecules have been proposed as promising alternatives to GFs as they are able to minimize or overcome many shortcomings of GFs, in particular immune response and instability. Despite the promise of small molecules in various TE applications, their direct use is limited by nonspecific adverse effects on non-target tissues and organs. Hence, they have been incorporated within scaffolds to localize their actions and control their release to target sites. However, scanty rationale is available which links the chemical structure of these molecules with their mode of action. We herewith review various small molecules either when used on their own or when incorporated within polymeric carriers/scaffolds for bone, cartilage, neural, adipose and skin tissue regeneration.
Collapse
Affiliation(s)
- Nowsheen Goonoo
- Biomaterials, Drug Delivery and Nanotechnology (BDDN) Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius Réduit Mauritius
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery and Nanotechnology (BDDN) Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius Réduit Mauritius
| |
Collapse
|
11
|
Rossi R, Angelici G, Casotti G, Manzini C, Lessi M. Catalytic Synthesis of 1,2,4,5‐Tetrasubstituted 1
H
‐Imidazole Derivatives: State of the Art. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801381] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica IndustrialeUniversity of Pisa via G. Moruzzi 13 56124 Pisa Italy
| | - Gaetano Angelici
- Dipartimento di Chimica e Chimica IndustrialeUniversity of Pisa via G. Moruzzi 13 56124 Pisa Italy
| | - Gianluca Casotti
- Dipartimento di Chimica e Chimica IndustrialeUniversity of Pisa via G. Moruzzi 13 56124 Pisa Italy
| | - Chiara Manzini
- Dipartimento di Chimica e Chimica IndustrialeUniversity of Pisa via G. Moruzzi 13 56124 Pisa Italy
| | - Marco Lessi
- Dipartimento di Chimica e Chimica IndustrialeUniversity of Pisa via G. Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
12
|
Pu X, Zhang M, Lan J, Chen S, Liu Z, Liang W, Yang Y, Zhang M, You J. Tandem Rh(III)-Catalyzed C–H Heteroarylation of Indolyl Ketones and Cu(II)-Promoted Intramolecular Cyclization: One-Pot Access to Blue-Emitting Phenanthrone-Type Polyheterocycles. Org Lett 2019; 21:1139-1143. [DOI: 10.1021/acs.orglett.9b00089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xingwen Pu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Mangang Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Shuyou Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Zheng Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Wenbo Liang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Min Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| |
Collapse
|
13
|
Verma I, Seshagiri PB. Directed differentiation of mouse P19 embryonal carcinoma cells to neural cells in a serum- and retinoic acid-free culture medium. In Vitro Cell Dev Biol Anim 2018; 54:567-579. [PMID: 30030768 DOI: 10.1007/s11626-018-0275-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/15/2018] [Indexed: 11/25/2022]
Abstract
P19 embryonal carcinoma cells (EC-cells) provide a simple and robust culture system for studying neural development. Most protocols developed so far for directing neural differentiation of P19 cells depend on the use of culture medium supplemented with retinoic acid (RA) and serum, which has an undefined composition. Hence, such protocols are not suitable for many molecular studies. In this study, we achieved neural differentiation of P19 cells in a serum- and RA-free culture medium by employing the knockout serum replacement (KSR) supplement. In the KSR-containing medium, P19 cells underwent predominant differentiation into neural lineage and by day 12 of culture, neural cells were present in 100% of P19-derived embryoid bodies (EBs). This was consistently accompanied by the increased expression of various neural lineage-associated markers during the course of differentiation. P19-derived neural cells comprised of NES+ neural progenitors (~ 46%), TUBB3+ immature neurons (~ 6%), MAP2+ mature neurons (~ 2%), and GFAP+ astrocytes (~ 50%). A heterogeneous neuronal population consisting of glutamatergic, GABAergic, serotonergic, and dopaminergic neurons was generated. Taken together, our study shows that the KSR medium is suitable for the differentiation of P19 cells to neural lineage without requiring additional (serum and RA) supplements. This stem cell differentiation system could be utilized for gaining mechanistic insights into neural differentiation and for identifying potential neuroactive compounds.
Collapse
Affiliation(s)
- Isha Verma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir CV Raman Road, Bangalore, 560012, India
| | - Polani B Seshagiri
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir CV Raman Road, Bangalore, 560012, India.
| |
Collapse
|
14
|
Induction of morphological and functional differentiation of human neuroblastoma cells by miR-124. J Biosci 2018; 42:555-563. [PMID: 29229874 DOI: 10.1007/s12038-017-9714-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumour in children, and differentiation is considered its most appropriate therapy. In this work, we studied effects of miR-124 overexpression on differentiation in M17 cell line as a model of neuroblastoma cancer. Influence of miR-124 overexpression on differentiation in M17 cells was studied. M17 cells were infected with lentivirus that contained miR-124 precursor sequence and followed for 2 weeks to differentiate. Ectopic expression of miR-124 in M17 cells changed the shape of spherical undifferentiated cells to cells with extended neurites that formed neuronal networks. Overexpression of MiR-124 respectively increased the expression level of markers of β-Tubulin III, MAP2, SYN, NF-M and Nestin by 16-, 5-, 4-, 2.3- and 2-folds at the messenger RNA level. MiR-124 overexpression also increased the protein levels of β-Tubulin III and MAP2. Moreover, exogenous expression of miR-124 significantly increased the intracellular calcium in differentiated M17 cells. Since miR-124 is naturally expressed in neuronal cells and is downregulated in neuroblastoma cancer cells, differentiation with this type of microRNA can be a novel treatment for neuroblastoma cancer.
Collapse
|
15
|
Tan G, Zhu L, Liao X, Lan Y, You J. Rhodium/Copper Cocatalyzed Highly trans-Selective 1,2-Diheteroarylation of Alkynes with Azoles via C–H Addition/Oxidative Cross-Coupling: A Combined Experimental and Theoretical Study. J Am Chem Soc 2017; 139:15724-15737. [DOI: 10.1021/jacs.7b07242] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Guangying Tan
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Lei Zhu
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China
| | - Xingrong Liao
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yu Lan
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China
| | - Jingsong You
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
16
|
Pino A, Fumagalli G, Bifari F, Decimo I. New neurons in adult brain: distribution, molecular mechanisms and therapies. Biochem Pharmacol 2017; 141:4-22. [PMID: 28690140 DOI: 10.1016/j.bcp.2017.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022]
Abstract
"Are new neurons added in the adult mammalian brain?" "Do neural stem cells activate following CNS diseases?" "How can we modulate their activation to promote recovery?" Recent findings in the field provide novel insights for addressing these questions from a new perspective. In this review, we will summarize the current knowledge about adult neurogenesis and neural stem cell niches in healthy and pathological conditions. We will first overview the milestones that have led to the discovery of the classical ventricular and hippocampal neural stem cell niches. In adult brain, new neurons originate from proliferating neural precursors located in the subventricular zone of the lateral ventricles and in the subgranular zone of the hippocampus. However, recent findings suggest that new neuronal cells can be added to the adult brain by direct differentiation (e.g., without cell proliferation) from either quiescent neural precursors or non-neuronal cells undergoing conversion or reprogramming to neuronal fate. Accordingly, in this review we will also address critical aspects of the newly described mechanisms of quiescence and direct conversion as well as the more canonical activation of the neurogenic niches and neuroblast reservoirs in pathological conditions. Finally, we will outline the critical elements involved in neural progenitor proliferation, neuroblast migration and differentiation and discuss their potential as targets for the development of novel therapeutic drugs for neurodegenerative diseases.
Collapse
Affiliation(s)
- Annachiara Pino
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy.
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy.
| |
Collapse
|
17
|
Abstract
Transition metal-mediated C-H bond activation and functionalization represent one of the most straightforward and powerful tools in modern organic synthetic chemistry. Bi(hetero)aryls are privileged π-conjugated structural cores in biologically active molecules, organic functional materials, ligands, and organic synthetic intermediates. The oxidative C-H/C-H coupling reactions between two (hetero)arenes through 2-fold C-H activation offer a valuable opportunity for rapid assembly of diverse bi(hetero)aryls and further exploitation of their applications in pharmaceutical and material sciences. This review provides a comprehensive overview of the fundamentals and applications of transition metal-mediated/catalyzed oxidative C-H/C-H coupling reactions between two (hetero)arenes. The substrate scope, limitation, reaction mechanism, regioselectivity, and chemoselectivity, as well as related control strategies of these reactions are discussed. Additionally, the applications of these established methods in the synthesis of natural products and exploitation of new organic functional materials are exemplified. In the last section, a short introduction on oxidant- or Lewis acid-mediated oxidative Ar-H/Ar-H coupling reactions is presented, considering that it is a very powerful method for the construction of biaryl units and polycylic arenes.
Collapse
Affiliation(s)
- Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
18
|
Abstract
This review highlights recent advances made using small molecules that promote changes in the fate of cells.
Collapse
Affiliation(s)
- Debojyoti De
- Department of Molecular Cell Biology
- Sungkyunkwan University School of Medicine
- Suwon 16419
- Korea
| | | | - Injae Shin
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology
- Sungkyunkwan University School of Medicine
- Suwon 16419
- Korea
- Department of Health Sciences and Technology
| |
Collapse
|
19
|
A potent and selective small molecule inhibitor of sirtuin 1 promotes differentiation of pluripotent P19 cells into functional neurons. Sci Rep 2016; 6:34324. [PMID: 27680533 PMCID: PMC5041152 DOI: 10.1038/srep34324] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022] Open
Abstract
Sirtuin 1 (SIRT1) is known to suppress differentiation of pluripotent/multipotent cells and neural progenitor cells into neurons by blocking activation of transcription factors critical for neurogenesis. EX-527 is a highly selective and potent inhibitor against SIRT1 and has been used as a chemical probe that modulates SIRT1-associated biological processes. However, the effect of EX-527 on neuronal differentiation in pluripotent cells has not been well elucidated. Here, we report an examination of EX-527 effects on neurogenesis of pluripotent P19 cells. The results showed that EX-527 greatly accelerated differentiation of P19 cells into neurons without generation of cardiac cells and astrocytes. Importantly, neurons derived from P19 cells treated with EX-527 generated voltage-dependent sodium currents and depolarization-induced action potentials. The findings indicate that the differentiated cells have electrophysiological properties. The present study suggests that the selective SIRT1 inhibitor could have the potential of being employed as a chemical inducer to generate functionally active neurons.
Collapse
|
20
|
Halder D, Chang GE, De D, Cheong E, Kim KK, Shin I. Combining Suppression of Stemness with Lineage-Specific Induction Leads to Conversion of Pluripotent Cells into Functional Neurons. ACTA ACUST UNITED AC 2016; 22:1512-1520. [PMID: 26590637 DOI: 10.1016/j.chembiol.2015.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/05/2015] [Accepted: 10/09/2015] [Indexed: 01/16/2023]
Abstract
Sox2 is a key player in the maintenance of pluripotency and stemness, and thus inhibition of its function would abrogate the stemness of pluripotent cells and induce differentiation into several types of cells. Herein we describe a strategy that relies on a combination of Sox2 inhibition with lineage-specific induction to promote efficient and selective differentiation of pluripotent P19 cells into neurons. When P19 cells transduced with Skp protein, an inhibitor of Sox2, are incubated with a neurogenesis inducer, the cells are selectively converted into neurons that generate depolarization-induced sodium currents and action potentials. This finding indicates that the differentiated neurons are electrophysiologically active. Signaling pathway studies lead us to conclude that a combination of Skp with the neurogenesis inducer enhances neurogenesis in P19 cells by activating Wnt and Notch pathways. The present differentiation protocol could be valuable to selectively generate functionally active neurons from pluripotent cells.
Collapse
Affiliation(s)
- Debasish Halder
- Department of Chemistry, National Creative Research Initiative Center for Biofunctional Molecules, Yonsei University, Seoul 120-749, Korea
| | - Gyeong-Eon Chang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Debojyoti De
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea.
| | - Injae Shin
- Department of Chemistry, National Creative Research Initiative Center for Biofunctional Molecules, Yonsei University, Seoul 120-749, Korea.
| |
Collapse
|
21
|
Cho HJ, Kim GH, Park SH, Hyun JY, Kim NK, Shin I. Probing the effect of an inhibitor of an ATPase domain of Hsc70 on clathrin-mediated endocytosis. MOLECULAR BIOSYSTEMS 2016; 11:2763-9. [PMID: 25728281 DOI: 10.1039/c4mb00695j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hsc70 is known to be involved in clathrin-mediated endocytosis (CME) by which cells take up various extracellular materials. More specifically, this protein promotes the disassembly of clathrin-coated vesicles (CCVs) by directly binding to clathrin during CME. As the ATPase activity of Hsc70 is required for its association with clathrin, we have investigated the effect of an inhibitor (apoptozole, Az) of an ATPase domain of Hsc70 on CME. The results of biochemical studies show that Az binds to Hsc70 and Hsp70 without binding to other types of heat shock proteins. Structure-activity relationship studies provide information on the structural features responsible for the inhibition of the ATPase activity of Hsc70. The results obtained from cell experiments reveal that Az disrupts the interaction of Hsc70 with clathrin in cells, thereby leading to the accumulation of transferrin in CCVs and suppression of release of free Fe(3+) from CCVs during transferrin receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Hyungseoph J Cho
- National Creative Research Initiative Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea.
| | | | | | | | | | | |
Collapse
|
22
|
Halder D, Kim GH, Shin I. Synthetic small molecules that induce neuronal differentiation in neuroblastoma and fibroblast cells. MOLECULAR BIOSYSTEMS 2016; 11:2727-37. [PMID: 25872738 DOI: 10.1039/c5mb00161g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An investigation was conducted to demonstrate that neurodazine (Nz) and neurodazole (Nzl), two imidazole-based small molecules, promote neuronal differentiation in both neuroblastoma and fibroblast cells. The results show that differentiated cells generated by treatment with Nz and Nzl express neuron-specific markers. The ability of Nz and Nzl to induce neurogenesis of neuroblastoma and fibroblast cells was found to be comparable to those of the known neurogenic factors, retinoic acid and trichostatin A. In addition, the cells differentiated by Nz and Nzl are observed to express different isoforms of glutamate receptors. The results of signaling pathway studies reveal that two substances enhance neurogenesis in neuroblastoma cells by activating Wnt and Shh signaling pathways and neurogenesis in fibroblast cells by mainly activating the Wnt signaling pathway. Observations made in the present study suggest that Nz and Nzl will serve as chemical tools to generate specific populations of neuronal cells from readily available and simply manageable cells.
Collapse
Affiliation(s)
- Debasish Halder
- National Creative Research Initiative Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea.
| | | | | |
Collapse
|
23
|
Cheng Y, Li G, Liu Y, Shi Y, Gao G, Wu D, Lan J, You J. Unparalleled Ease of Access to a Library of Biheteroaryl Fluorophores via Oxidative Cross-Coupling Reactions: Discovery of Photostable NIR Probe for Mitochondria. J Am Chem Soc 2016; 138:4730-8. [PMID: 26854564 DOI: 10.1021/jacs.5b09241] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The development of straightforward accesses to organic functional materials through C-H activation is a revolutionary trend in organic synthesis. In this article, we propose a concise strategy to construct a large library of donor-acceptor-type biheteroaryl fluorophores via the palladium-catalyzed oxidative C-H/C-H cross-coupling of electron-deficient 2H-indazoles with electron-rich heteroarenes. The directly coupled biheteroaryl fluorophores, named Indazo-Fluors, exhibit continuously tunable full-color emissions with quantum yields up to 93% and large Stokes shifts up to 8705 cm(-1) in CH2Cl2. By further fine-tuning of the substituent on the core skeleton, Indazo-Fluor 3l (FW = 274; λem = 725 nm) is obtained as the lowest molecular weight near-infrared (NIR) fluorophore with emission wavelength over 720 nm in the solid state. The NIR dye 5h specifically lights up mitochondria in living cells with bright red luminescence. Typically, commercially available mitochondria trackers suffer from poor photostability. Indazo-Fluor 5h exhibits superior photostability and very low cytotoxicity, which would be a prominent reagent for in vivo mitochondria imaging.
Collapse
Affiliation(s)
- Yangyang Cheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Yang Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Yang Shi
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Ge Gao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Di Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
24
|
Ko SK, Kim J, Na DC, Park S, Park SH, Hyun JY, Baek KH, Kim ND, Kim NK, Park YN, Song K, Shin I. A small molecule inhibitor of ATPase activity of HSP70 induces apoptosis and has antitumor activities. ACTA ACUST UNITED AC 2015; 22:391-403. [PMID: 25772468 DOI: 10.1016/j.chembiol.2015.02.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/20/2015] [Accepted: 02/05/2015] [Indexed: 01/13/2023]
Abstract
The heat shock protein HSP70 plays antiapoptotic and oncogenic roles, and thus its inhibition has been recognized as a potential avenue for anticancer therapy. Here we describe the small molecule, apoptozole (Az), which inhibits the ATPase activity of HSP70 by binding to its ATPase domain and, as a result, induces an array of apoptotic phenotypes in cancer cells. Affinity chromatography provides evidence that Az binds HSP70 but not other types of heat shock proteins including HSP40, HSP60, and HSP90. We also demonstrate that Az induces cancer cell death via caspase-dependent apoptosis by disrupting the interaction of HSP70 with APAF-1. Animal studies indicate that Az treatment retards tumor growth in a xenograft mouse model without affecting mouse viability. These studies suggest that Az will aid the development of new cancer therapies and serve as a chemical probe to gain a better understanding of the diverse functions of HSP70.
Collapse
Affiliation(s)
- Sung-Kyun Ko
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Jiyeon Kim
- Department of Biochemistry, Yonsei University, Seoul 120-749, Korea
| | - Deuk Chae Na
- Department of Pathology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Sookil Park
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Seong-Hyun Park
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Ji Young Hyun
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Kyung-Hwa Baek
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Nam Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 706-010, Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Kiwon Song
- Department of Biochemistry, Yonsei University, Seoul 120-749, Korea
| | - Injae Shin
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea.
| |
Collapse
|