1
|
Dong X, Qin LY, Gong Z, Qin S, Zhou HX, Tang C. Preferential Interactions of a Crowder Protein with the Specific Binding Site of a Native Protein Complex. J Phys Chem Lett 2022; 13:792-800. [PMID: 35044179 PMCID: PMC8852806 DOI: 10.1021/acs.jpclett.1c03794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nonspecific binding of crowder proteins with functional proteins is likely prevalent in vivo, yet direct quantitative evidence, let alone residue-specific information, is scarce. Here we present nuclear magnetic resonance (NMR) characterization showing that bovine serum albumin weakly but preferentially interacts with the histidine carrier protein (HPr). Notably, the binding interface overlaps with that for HPr's specific partner protein, EIN, leading to competition. The crowder protein thus decreases the EIN-HPr binding affinity and accelerates the dissociation of the native complex. In contrast, Ficoll-70 stabilizes the native complex and slows its dissociation, as one would expect from excluded-volume and microviscosity effects. Our atomistic modeling of macromolecular crowding rationalizes the experimental data and provides quantitative insights into the energetics of protein-crowder interactions. The integrated NMR and modeling study yields benchmarks for the effects of crowded cellular environments on protein-protein specific interactions, with implications for evolution regarding how nonspecific binding can be minimized or exploited.
Collapse
Affiliation(s)
- Xu Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Ling-Yun Qin
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Sanbo Qin
- Department of Chemistry and Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, United States
| | - Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Pan J, Yang L, Wu W, Li J, Cheng H, Li Y, Xu W, Xue Q, Zhou Y, Peng D, Qiu J, Ma H. Previously Unrecognized Nonreproducible Antibody-Probe Interactions. Anal Chem 2022; 94:1974-1982. [PMID: 35044162 DOI: 10.1021/acs.analchem.1c03264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Antibody-antigen (Ab-Ag) interactions are canonically described by a model that exclusively accommodates noninteraction (0) or reproducible interaction (RI) states, yet this model is inadequate to explain often-encountered nonreproducible signals. Here, by monitoring diverse experimental systems using a peptide-protein hybrid microarray, we observed that Ab-probe interactions comprise a substantial proportion of nonreproducible antibody-based results. This enabled our discovery and capacity to reliably identify nonreproducible Ab-probe interactions (NRIs), as well as our development of a powerful explanatory model ("0-NRI-RI-Hook four-state model") that is mAb concentration-dependent, regardless of specificity, which ultimately shows that both nonspecific interactions and NRIs are not predictable yet certain to happen. Our discoveries challenge the centrality of Ab-Ag interaction specificity data in serology and immunology.
Collapse
Affiliation(s)
- Jiaojiao Pan
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Lan Yang
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Wenya Wu
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Jingzhi Li
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hu Cheng
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Yiting Li
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Wenwen Xu
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Youxin Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jiwan Qiu
- Qyuns Therapeutics, Taizhou 225316, China
| | - Hongwei Ma
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
3
|
Integrating Non-NMR Distance Restraints to Augment NMR Depiction of Protein Structure and Dynamics. J Mol Biol 2020; 432:2913-2929. [DOI: 10.1016/j.jmb.2020.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/24/2022]
|
4
|
Yang QF, Tang C. On the necessity of an integrative approach to understand protein structural dynamics. J Zhejiang Univ Sci B 2019; 20:496-502. [PMID: 31090275 DOI: 10.1631/jzus.b1900135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteins are dynamic, fluctuating between multiple conformational states. Protein dynamics, spanning orders of magnitude in time and space, allow proteins to perform specific functions. Moreover, under certain conditions, proteins can morph into a different set of conformations. Thus, a complete understanding of protein structural dynamics can provide mechanistic insights into protein function. Here, we review the latest developments in methods used to determine protein ensemble structures and to characterize protein dynamics. Techniques including X-ray crystallography, cryogenic electron microscopy, and small angle scattering can provide structural information on specific conformational states or on the averaged shape of the protein, whereas techniques including nuclear magnetic resonance, fluorescence resonance energy transfer (FRET), and chemical cross-linking coupled with mass spectrometry provide information on the fluctuation of the distances between protein domains, residues, and atoms for the multiple conformational states of the protein. In particular, FRET measurements at the single-molecule level allow rapid resolution of protein conformational states, where information is otherwise obscured in bulk measurements. Taken together, the different techniques complement each other and their integrated use can offer a clear picture of protein structure and dynamics.
Collapse
Affiliation(s)
- Qing-Fen Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
5
|
Chakraborty I, Rahamim G, Avinery R, Roichman Y, Beck R. Nanoparticle Mobility over a Surface as a Probe for Weak Transient Disordered Peptide-Peptide Interactions. NANO LETTERS 2019; 19:6524-6534. [PMID: 31456409 DOI: 10.1021/acs.nanolett.9b02764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Weak interactions form the core basis of a vast number of biological processes, in particular, those involving intrinsically disordered proteins. Here, we establish a new technique capable of probing these weak interactions between synthetic unfolded polypeptides using a convenient yet efficient, quantitative method based on single particle tracking of peptide-coated gold nanoparticles over peptide-coated surfaces. We demonstrate that our technique is sensitive enough to observe the influence of a single amino acid mutation on the transient peptide-peptide interactions. Furthermore, the effects of buffer salinity, which are expected to alter weak electrostatic interactions, are also readily detected and examined in detail. The method presented here has the potential to evaluate, in a high-throughput manner, weak interactions for a wide range of disordered proteins, polypeptides, and other biomolecules.
Collapse
Affiliation(s)
| | - Gil Rahamim
- School of Physics and Astronomy , Tel Aviv University , Tel Aviv 6997801 , Israel
| | - Ram Avinery
- School of Physics and Astronomy , Tel Aviv University , Tel Aviv 6997801 , Israel
| | - Yael Roichman
- School of Chemistry , Tel Aviv University , Tel Aviv 6997801 , Israel
- School of Physics and Astronomy , Tel Aviv University , Tel Aviv 6997801 , Israel
| | - Roy Beck
- School of Physics and Astronomy , Tel Aviv University , Tel Aviv 6997801 , Israel
| |
Collapse
|
6
|
Becker W, Bhattiprolu KC, Gubensäk N, Zangger K. Investigating Protein-Ligand Interactions by Solution Nuclear Magnetic Resonance Spectroscopy. Chemphyschem 2018; 19:895-906. [PMID: 29314603 PMCID: PMC5915746 DOI: 10.1002/cphc.201701253] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/04/2018] [Indexed: 12/13/2022]
Abstract
Protein-ligand interactions are of fundamental importance in almost all processes in living organisms. The ligands comprise small molecules, drugs or biological macromolecules and their interaction strength varies over several orders of magnitude. Solution NMR spectroscopy offers a large repertoire of techniques to study such complexes. Here, we give an overview of the different NMR approaches available. The information they provide ranges from the simple information about the presence of binding or epitope mapping to the complete 3 D structure of the complex. NMR spectroscopy is particularly useful for the study of weak interactions and for the screening of binding ligands with atomic resolution.
Collapse
Affiliation(s)
- Walter Becker
- Institute of ChemistryUniversity of GrazHeinrichstrasse 28A-8010GrazAustria
| | | | - Nina Gubensäk
- Institute of ChemistryUniversity of GrazHeinrichstrasse 28A-8010GrazAustria
| | - Klaus Zangger
- Institute of ChemistryUniversity of GrazHeinrichstrasse 28A-8010GrazAustria
| |
Collapse
|
7
|
Abstract
N6-methyladenosine (m6A), a ubiquitous RNA modification, is installed by METTL3-METTL14 complex. The structure of the heterodimeric complex between the methyltransferase domains (MTDs) of METTL3 and METTL14 has been previously determined. However, the MTDs alone possess no enzymatic activity. Here we present the solution structure for the zinc finger domain (ZFD) of METTL3, the inclusion of which fulfills the methyltransferase activity of METTL3-METTL14. We show that the ZFD specifically binds to an RNA containing 5′-GGACU-3′ consensus sequence, but does not to one without. The ZFD thus serves as the target recognition domain, a structural feature previously shown for DNA methyltransferases, and cooperates with the MTDs of METTL3-METTL14 for catalysis. However, the interaction between the ZFD and the specific RNA is extremely weak, with the binding affinity at several hundred micromolar under physiological conditions. The ZFD contains two CCCH-type zinc fingers connected by an anti-parallel β-sheet. Mutational analysis and NMR titrations have mapped the functional interface to a contiguous surface. As a division of labor, the RNA-binding interface comprises basic residues from zinc finger 1 and hydrophobic residues from β-sheet and zinc finger 2. Further we show that the linker between the ZFD and MTD of METTL3 is flexible but partially folded, which may permit the cooperation between the two domains during catalysis. Together, the structural characterization of METTL3 ZFD paves the way to elucidate the atomic details of the entire process of RNA m6A modification.
Collapse
|
8
|
Jiang WX, Gu XH, Dong X, Tang C. Lanthanoid tagging via an unnatural amino acid for protein structure characterization. JOURNAL OF BIOMOLECULAR NMR 2017; 67:273-282. [PMID: 28365903 DOI: 10.1007/s10858-017-0106-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Lanthanoid pseudo-contact shift (PCS) provides long-range structural information between a paramagnetic tag and protein nuclei. However, for proteins with native cysteines, site-specific attachment may only utilize functional groups orthogonal to sulfhydryl chemistry. Here we report two lanthanoid probes, DTTA-C3-yne and DTTA-C4-yne, which can be conjugated to an unnatural amino acid pAzF in the target protein via azide-alkyne cycloaddition. Demonstrated with ubiquitin and cysteine-containing enzyme EIIB, we show that large PCSs of distinct profiles can be generated for each tag/lanthanoid combination. The DTTA-based lanthanoid tags are associated with large magnetic susceptibility tensors owing to the rigidity of the tags. In particular, introduction of the DTTA-C3 tag affords intermolecular PCSs and enables structural characterization of a transient protein complex between ubiquitin and a UBA domain. Together, we have expanded the repertoire of paramagnetic tags and the applicability of paramagnetic NMR.
Collapse
Affiliation(s)
- Wen-Xue Jiang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Hua Gu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Xu Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Gui R, Liu Q, Yao Y, Deng H, Ma C, Jia Y, Yi M. Noise Decomposition Principle in a Coherent Feed-Forward Transcriptional Regulatory Loop. Front Physiol 2016; 7:600. [PMID: 27965596 PMCID: PMC5127843 DOI: 10.3389/fphys.2016.00600] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/17/2016] [Indexed: 01/12/2023] Open
Abstract
Coherent feed-forward loops exist extensively in realistic biological regulatory systems, and are common signaling motifs. Here, we study the characteristics and the propagation mechanism of the output noise in a coherent feed-forward transcriptional regulatory loop that can be divided into a main road and branch. Using the linear noise approximation, we derive analytical formulae for the total noise of the full loop, the noise of the branch, and the noise of the main road, which are verified by the Gillespie algorithm. Importantly, we find that (i) compared with the branch motif or the main road motif, the full motif can effectively attenuate the output noise level; (ii) there is a transition point of system state such that the noise of the main road is dominated when the underlying system is below this point, whereas the noise of the branch is dominated when the system is beyond the point. The entire analysis reveals the mechanism of how the noise is generated and propagated in a simple yet representative signaling module.
Collapse
Affiliation(s)
- Rong Gui
- Department of Physics and Institute of Biophysics, Huazhong Normal UniversityWuhan, China; Department of Physics, College of Science, Huazhong Agricultural UniversityWuhan, China; Institute of Applied Physics, College of Science, Huazhong Agricultural UniversityWuhan, China
| | - Quan Liu
- Department of Physics, College of Science, Huazhong Agricultural University Wuhan, China
| | - Yuangen Yao
- Department of Physics, College of Science, Huazhong Agricultural University Wuhan, China
| | - Haiyou Deng
- Department of Physics, College of Science, Huazhong Agricultural University Wuhan, China
| | - Chengzhang Ma
- Department of Physics, College of Science, Huazhong Agricultural University Wuhan, China
| | - Ya Jia
- Department of Physics and Institute of Biophysics, Huazhong Normal University Wuhan, China
| | - Ming Yi
- Department of Physics, College of Science, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
10
|
Schilder J, Ubbink M. Weak self-association of cytochrome c peroxidase molecules observed by paramagnetic NMR. JOURNAL OF BIOMOLECULAR NMR 2016; 65:29-40. [PMID: 27236778 PMCID: PMC4908164 DOI: 10.1007/s10858-016-0035-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/03/2016] [Indexed: 06/05/2023]
Abstract
There is growing experimental evidence that many proteins exhibit a tendency for (ultra)weak homo- or hetero- oligomerization interactions. With the development of paramagnetic relaxation enhancement NMR spectroscopy it has become possible to characterize weak complexes experimentally and even detect complexes with affinities in the 1-25 mM range. We present evidence for a weak complex between cytochrome c peroxidase (CcP) molecules. In a previous study, we attached nitroxide based spin labels at three positions on CcP with the intent of observing intramolecular PRE effects. However, several intermolecular PRE effects were also observed suggesting a weak self-association between CcP molecules. The CcP-CcP complex was characterized using paramagnetic NMR and protein docking. The interaction occurs between the surface that is also part of the stereo-specific binding site for its physiological partner, cytochrome c (Cc), and several small, positively charged patches on the "back" of CcP. The CcP-CcP complex is not a stereo-specific complex. It is a dynamic ensemble of orientations, characteristic of an encounter state. The contact areas resemble those observed for CcP molecules in crystals. The CcP-CcP complex formation competes with that of the CcP-Cc complex. However, the affinity for Cc is much larger and thus it is expected that, under physiological conditions, auto-inhibition will be limited. A weak self-association between cytochrome c peroxidase molecules was characterized using paramagnetic NMR.
Collapse
Affiliation(s)
- Jesika Schilder
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marcellus Ubbink
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
11
|
Visualizing the Ensemble Structures of Protein Complexes Using Chemical Cross-Linking Coupled with Mass Spectrometry. BIOPHYSICS REPORTS 2015; 1:127-138. [PMID: 27340691 PMCID: PMC4871902 DOI: 10.1007/s41048-015-0015-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/11/2015] [Indexed: 11/30/2022] Open
Abstract
Graphical Abstract ![]()
Abstract Chemical cross-linking coupled with mass spectrometry (CXMS) identifies protein residues that are close in space, and has been increasingly used for modeling the structures of protein complexes. Here we show that a single structure is usually sufficient to account for the intermolecular cross-links identified for a stable complex with sub-µmol/L binding affinity. In contrast, we show that the distance between two cross-linked residues in the different subunits of a transient or fleeting complex may exceed the maximum length of the cross-linker used, and the cross-links cannot be fully accounted for with a unique complex structure. We further show that the seemingly incompatible cross-links identified with high confidence arise from alternative modes of protein-protein interactions. By converting the intermolecular cross-links to ambiguous distance restraints, we established a rigid-body simulated annealing refinement protocol to seek the minimum set of conformers collectively satisfying the CXMS data. Hence we demonstrate that CXMS allows the depiction of the ensemble structures of protein complexes and elucidates the interaction dynamics for transient and fleeting complexes. Electronic supplementary material The online version of this article (doi:10.1007/s41048-015-0015-y) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Transient Interactions of a Cytosolic Protein with Macromolecular and Vesicular Cosolutes: Unspecific and Specific Effects. Chembiochem 2015; 16:2633-45. [DOI: 10.1002/cbic.201500451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 01/04/2023]
|
13
|
Liu Z, Gong Z, Jiang WX, Yang J, Zhu WK, Guo DC, Zhang WP, Liu ML, Tang C. Lys63-linked ubiquitin chain adopts multiple conformational states for specific target recognition. eLife 2015; 4. [PMID: 26090905 PMCID: PMC4507786 DOI: 10.7554/elife.05767] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 06/18/2015] [Indexed: 12/16/2022] Open
Abstract
A polyubiquitin comprises multiple covalently linked ubiquitins and recognizes myriad targets. Free or bound to ligands, polyubiquitins are found in different arrangements of ubiquitin subunits. To understand the structural basis for polyubiquitin quaternary plasticity and to explore the target recognition mechanism, we characterize the conformational space of Lys63-linked diubiquitin (K63-Ub2). Refining against inter-subunit paramagnetic NMR data, we show that free K63-Ub2 exists as a dynamic ensemble comprising multiple closed and open quaternary states. The quaternary dynamics enables K63-Ub2 to be specifically recognized in a variety of signaling pathways. When binding to a target protein, one of the preexisting quaternary states is selected and stabilized. A point mutation that shifts the equilibrium between the different states modulates the binding affinities towards K63-Ub2 ligands. This conformational selection mechanism at the quaternary level may be used by polyubiquitins of different lengths and linkages for target recognition.
Collapse
Affiliation(s)
- Zhu Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, China
| | - Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, China
| | - Wen-Xue Jiang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, China
| | - Ju Yang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, China
| | - Wen-Kai Zhu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, China
| | - Da-Chuan Guo
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, China
| | - Wei-Ping Zhang
- Department of Pharmacology and Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Mai-Li Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, China
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
14
|
The low-affinity complex of cytochrome c and its peroxidase. Nat Commun 2015; 6:7073. [PMID: 25944250 PMCID: PMC4432590 DOI: 10.1038/ncomms8073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/30/2015] [Indexed: 01/07/2023] Open
Abstract
The complex of yeast cytochrome c peroxidase and cytochrome c is a paradigm of the biological electron transfer (ET). Building on seven decades of research, two different models have been proposed to explain its functional redox activity. One postulates that the intermolecular ET occurs only in the dominant, high-affinity protein–protein orientation, while the other posits formation of an additional, low-affinity complex, which is much more active than the dominant one. Unlike the high-affinity interaction—extensively studied by X-ray crystallography and NMR spectroscopy—until now the binding of cytochrome c to the low-affinity site has not been observed directly, but inferred mainly from kinetics experiments. Here we report the structure of this elusive, weak protein complex and show that it consists of a dominant, inactive bound species and an ensemble of minor, ET-competent protein–protein orientations, which summarily account for the experimentally determined value of the ET rate constant. The redox activity of cytochrome c in complex with its peroxidase has been rationalized by two possible models; a readily observable high-affinity complex and a more elusive but potentially more active low-affinity complex. Here, the authors provide an NMR-based structural mapping of this low-affinity complex.
Collapse
|
15
|
Liu Z, Gong Z, Dong X, Tang C. Transient protein-protein interactions visualized by solution NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:115-22. [PMID: 25896389 DOI: 10.1016/j.bbapap.2015.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 01/18/2023]
Abstract
Proteins interact with each other to establish their identities in cell. The affinities for the interactions span more than ten orders of magnitude, and KD values in μM-mM regimen are considered transient and are important in cell signaling. Solution NMR including diamagnetic and paramagnetic techniques has enabled atomic-resolution depictions of transient protein-protein interactions. Diamagnetic NMR allows characterization of protein complexes with KD values up to several mM, whereas ultraweak and fleeting complexes can be modeled with the use of paramagnetic NMR especially paramagnetic relaxation enhancement (PRE). When tackling ever-larger protein complexes, PRE can be particularly useful in providing long-range intermolecular distance restraints. As NMR measurements are averaged over the ensemble of complex structures, structural information for dynamic protein-protein interactions besides the stereospecific one can often be extracted. Herein the protein interaction dynamics are exemplified by encounter complexes, alternative binding modes, and coupled binding/folding of intrinsically disordered proteins. Further integration of NMR with other biophysical techniques should allow better visualization of transient protein-protein interactions. In particular, single-molecule data may facilitate the interpretation of ensemble-averaged NMR data. Though same structures of proteins and protein complexes were found in cell as in diluted solution, we anticipate that the dynamics of transient protein protein-protein interactions be different, which awaits awaits exploration by NMR. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.
Collapse
Affiliation(s)
- Zhu Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310028, China; Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310028, China
| | - Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Xu Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China.
| |
Collapse
|
16
|
Thermodynamics and solvent linkage of macromolecule-ligand interactions. Methods 2014; 76:51-60. [PMID: 25462561 DOI: 10.1016/j.ymeth.2014.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 02/06/2023] Open
Abstract
Binding involves two steps, desolvation and association. While water is ubiquitous and occurs at high concentration, it is typically ignored. In vitro experiments typically use infinite dilution conditions, while in vivo, the concentration of water is decreased due to the presence of high concentrations of molecules in the cellular milieu. This review discusses isothermal titration calorimetry approaches that address the role of water in binding. For example, use of D2O allows the contribution of solvent reorganization to the enthalpy component to be assessed. Further, the addition of osmolytes will decrease the water activity of a solution and allow effects on Ka to be determined. In most cases, binding becomes tighter in the presence of osmolytes as the desolvation penalty associated with binding is minimized. In other cases, the osmolytes prefer to interact with the ligand or protein, and if their removal is more difficult than shedding water, then binding can be weakened. These complicating layers can be discerned by different slopes in ln(Ka) vs osmolality plots and by differential scanning calorimetry in the presence of the osmolyte.
Collapse
|