1
|
Farré-Gil D, Arcon JP, Laughton CA, Orozco M. CGeNArate: a sequence-dependent coarse-grained model of DNA for accurate atomistic MD simulations of kb-long duplexes. Nucleic Acids Res 2024; 52:6791-6801. [PMID: 38813824 PMCID: PMC11229373 DOI: 10.1093/nar/gkae444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
We present CGeNArate, a new model for molecular dynamics simulations of very long segments of B-DNA in the context of biotechnological or chromatin studies. The developed method uses a coarse-grained Hamiltonian with trajectories that are back-mapped to the atomistic resolution level with extreme accuracy by means of Machine Learning Approaches. The method is sequence-dependent and reproduces very well not only local, but also global physical properties of DNA. The efficiency of the method allows us to recover with a reduced computational effort high-quality atomic-resolution ensembles of segments containing many kilobases of DNA, entering into the gene range or even the entire DNA of certain cellular organelles.
Collapse
Affiliation(s)
- David Farré-Gil
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, E-08028 Barcelona, Spain
| | - Juan Pablo Arcon
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, E-08028 Barcelona, Spain
| | - Charles A Laughton
- School of Pharmacy and Biodiscovery Institute, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, E-08028 Barcelona, Spain
- Department of Biochemistry and Biomedicine, University of Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
2
|
Hannauer F, Black R, Ray AD, Stulz E, Langley GJ, Holman SW. Review of fragmentation of synthetic single-stranded oligonucleotides by tandem mass spectrometry from 2014 to 2022. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9596. [PMID: 37580500 PMCID: PMC10909466 DOI: 10.1002/rcm.9596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 08/16/2023]
Abstract
The fragmentation of oligonucleotides by mass spectrometry allows for the determination of their sequences. It is necessary to understand how oligonucleotides dissociate in the gas phase, which allows interpretation of data to obtain sequence information. Since 2014, a range of fragmentation mechanisms, including a novel internal rearrangement, have been proposed using different ion dissociation techniques. The recent publications have focused on the fragmentation of modified oligonucleotides such as locked nucleic acids, modified nucleobases (methylated, spacer, nebularine and aminopurine) and modification to the carbon 2'-position on the sugar ring; these modified oligonucleotides are of great interest as therapeutics. Comparisons of different dissociation techniques have been reported, including novel approaches such as plasma electron detachment dissociation and radical transfer dissociation. This review covers the period 2014-2022 and details the new knowledge gained with respect to oligonucleotide dissociation using tandem mass spectrometry (without priori sample digestion) during that time, with a specific focus on synthetic single-stranded oligonucleotides.
Collapse
Affiliation(s)
- Fabien Hannauer
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK
| | - Rachelle Black
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, OperationsAstraZenecaMacclesfieldUK
| | - Andrew D. Ray
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, OperationsAstraZenecaMacclesfieldUK
| | - Eugen Stulz
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK
| | - G. John Langley
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK
| | - Stephen W. Holman
- Chemical Development, Pharmaceutical Technology & Development, OperationsAstraZenecaMacclesfieldUK
| |
Collapse
|
3
|
Paulikat M, Aranda J, Ippoliti E, Orozco M, Carloni P. Proton Transfers to DNA in Native Electrospray Ionization Mass Spectrometry: A Quantum Mechanics/Molecular Mechanics Study. J Phys Chem Lett 2022; 13:12004-12010. [PMID: 36540944 PMCID: PMC9806827 DOI: 10.1021/acs.jpclett.2c03100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Native electrospray ionization-ion mobility mass spectrometry (N-ESI/IM-MS) is a powerful approach for low-resolution structural studies of DNAs in the free state and in complex with ligands. Solvent vaporization is coupled with proton transfers from ammonium ions to the DNA, resulting in a reduction of the DNA charge. Here we provide insight into these processes by classical molecular dynamics and quantum mechanics/molecular mechanics free energy calculations on the d(GpCpGpApApGpC) heptamer, for which a wealth of experiments is available. Our multiscale simulations, consistent with experimental data, reveal a highly complex scenario. The proton either sits on one of the molecules or is fully delocalized on both, depending on the level of hydration of the analytes and the size of the droplets formed during the electrospray experiments. This work complements our previous study of the intramolecular proton transfer on the same heptamer occurring after the processes studied here, and together, they provide a first molecular view of proton transfer in N-ESI/IM-MS.
Collapse
Affiliation(s)
- Mirko Paulikat
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Juan Aranda
- Institute
for Research in Biomedicine (IRB) Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Emiliano Ippoliti
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Modesto Orozco
- Institute
for Research in Biomedicine (IRB) Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Department
of Biochemistry and Biomedicine, University
of Barcelona, Avinguda
Diagonal 645, 08028 Barcelona, Spain
| | - Paolo Carloni
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Department
of Physics, RWTH Aachen University, Otto-Blumenthal-Straße, 52062 Aachen, Germany
| |
Collapse
|
4
|
Sharif D, Foroushani SH, Attanayake K, Dewasurendra VK, DeBastiani A, DeVor A, Johnson MB, Li P, Valentine SJ. Capillary Vibrating Sharp-Edge Spray Ionization Augments Field-Free Ionization Techniques to Promote Conformer Preservation in the Gas-Phase for Intractable Biomolecular Ions. J Phys Chem B 2022; 126:8970-8984. [PMID: 36318704 PMCID: PMC10278089 DOI: 10.1021/acs.jpcb.2c04960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Field-free capillary vibrating sharp-edge spray ionization (cVSSI) is evaluated for its ability to conduct native mass spectrometry (MS) experiments. The charge state distributions for nine globular proteins are compared using field-free cVSSI, field-enabled cVSSI, and electrospray ionization (ESI). In general, for both positive and negative ion mode, the average charge state (qavg) increases for field-free cVSSI with increasing molecular weight similar to ESI. A clear difference is that the qavg is significantly lower for field-free conditions in both analyses. Two proteins, leptin and thioredoxin, exhibit bimodal charge state distributions (CSDs) upon the application of voltage in positive ion mode; only a monomodal distribution is observed for field-free conditions. In negative ion mode, thioredoxin exhibits a multimodal CSD upon the addition of voltage to cVSSI. Extensive molecular dynamics (MD) simulations of myoglobin and leptin in nanodroplets suggest that the multimodal CSD for leptin may originate from increased conformational "breathing" (decreased packing) and association with the droplet surface. These properties along with increased droplet charge appear to play critical roles in shifting ionization processes for some proteins. Further exploration and development of field-free cVSSI as a new ionization source for native MS especially as applied to more flexible biomolecular species is warranted.
Collapse
Affiliation(s)
- Daud Sharif
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Samira Hajian Foroushani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Kushani Attanayake
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Vikum K Dewasurendra
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia26506, United States
| | - Anthony DeBastiani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Amanda DeVor
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Matthew B Johnson
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia26506, United States
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| |
Collapse
|
5
|
van Dyck JF, Burns JR, Le Huray KIP, Konijnenberg A, Howorka S, Sobott F. Sizing up DNA nanostructure assembly with native mass spectrometry and ion mobility. Nat Commun 2022; 13:3610. [PMID: 35750666 PMCID: PMC9232653 DOI: 10.1038/s41467-022-31029-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
Recent interest in biological and synthetic DNA nanostructures has highlighted the need for methods to comprehensively characterize intermediates and end products of multimeric DNA assembly. Here we use native mass spectrometry in combination with ion mobility to determine the mass, charge state and collision cross section of noncovalent DNA assemblies, and thereby elucidate their structural composition, oligomeric state, overall size and shape. We showcase the approach with a prototypical six-subunit DNA nanostructure to reveal how its assembly is governed by the ionic strength of the buffer, as well as how the mass and mobility of heterogeneous species can be well resolved by careful tuning of instrumental parameters. We find that the assembly of the hexameric, barrel-shaped complex is guided by positive cooperativity, while previously undetected higher-order 12- and 18-mer assemblies are assigned to defined larger-diameter geometric structures. Guided by our insight, ion mobility-mass spectrometry is poised to make significant contributions to understanding the formation and structural diversity of natural and synthetic oligonucleotide assemblies relevant in science and technology.
Collapse
Affiliation(s)
- Jeroen F van Dyck
- Biomolecular & Analytical Mass Spectrometry, Chemistry Department, University of Antwerp, Antwerpen, Belgium
| | - Jonathan R Burns
- Department of Chemistry & Institute of Structural and Molecular Biology, University College London, London, UK
| | - Kyle I P Le Huray
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Albert Konijnenberg
- Biomolecular & Analytical Mass Spectrometry, Chemistry Department, University of Antwerp, Antwerpen, Belgium.,Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Stefan Howorka
- Department of Chemistry & Institute of Structural and Molecular Biology, University College London, London, UK.
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, Chemistry Department, University of Antwerp, Antwerpen, Belgium. .,School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
6
|
Gabelica V. Native Mass Spectrometry and Nucleic Acid G-Quadruplex Biophysics: Advancing Hand in Hand. Acc Chem Res 2021; 54:3691-3699. [PMID: 34546031 DOI: 10.1021/acs.accounts.1c00396] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While studying nucleic acids to reveal the weak interactions responsible for their three-dimensional structure and for their interactions with drugs, we also contributed to the field of biomolecular mass spectrometry, both in terms of fundamental understanding and with new methodological developments. A first goal was to develop mass spectrometry approaches to detect noncovalent interactions between antitumor drugs and their DNA target. Twenty years ago, our attention turned toward specific DNA structures such as the G-quadruplex (a structure formed by guanine-rich strands). Mass spectrometry allows one to discern which molecules interact with one another by measuring the masses of the complexes, and quantify the affinities by measuring their abundance. The most important findings came from unexpected masses. For example, we showed the formation of higher- or lower-order structures by G-quadruplexes used in traditional biophysical assays. We also derived complete thermodynamic and kinetic description of G-quadruplex folding pathways by measuring cation binding, one at a time. Getting quantitative information requires accounting for nonspecific adduct formation and for the response factors of the different molecular forms. With these caveats in mind, the approach is now mature enough for routine biophysical characterization of nucleic acids. A second goal is to obtain more detailed structural information on each of the complexes separated by the mass spectrometer. One such approach is ion mobility spectrometry, and even today the challenge lies in the structural interpretation of the measurements. We showed that, although structures such as G-quadruplexes are well-preserved in the MS conditions, double helices actually get more compact in the gas phase. These major rearrangements forced us to challenge comfortable assumptions. Further work is still needed to generalize how to deduce structures in solution from ion mobility spectrometry data and, in particular, how to account for the electrospray charging mechanisms and for ion internal energy effects. These studies also called for complementary approaches to ion mobility spectrometry. Recently, we applied isotope exchange labeling mass spectrometry to characterize nucleic acid structures for the first time, and we reported the first ever circular dichroism ion spectroscopy measurement on mass-selected trapped ions. Circular dichroism plays a key role in assigning the stacking topology, and our new method now opens the door to characterizing a wide variety of chiral molecules by mass spectrometry. In summary, advanced mass spectrometry approaches to characterize gas-phase structures work well for G-quadruplexes because they are stiffened by inner cations. The next objective will be to generalize these methodologies to a wider range of nucleic acid structures.
Collapse
Affiliation(s)
- Valérie Gabelica
- Université de Bordeaux, CNRS, INSERM,
ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
7
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
8
|
Santos IC, Brodbelt JS. Recent developments in the characterization of nucleic acids by liquid chromatography, capillary electrophoresis, ion mobility, and mass spectrometry (2010-2020). J Sep Sci 2021; 44:340-372. [PMID: 32974962 PMCID: PMC8378248 DOI: 10.1002/jssc.202000833] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
The development of new strategies for the analysis of nucleic acids has gained momentum due to the increased interest in using these biomolecules as drugs or drug targets. The application of new mass spectrometry ion activation techniques and the optimization of separation methods including liquid chromatography, capillary electrophoresis, and ion mobility have allowed more detailed characterization of nucleic acids and oligonucleotide therapeutics including confirmation of sequence, localization of modifications and interaction sites, and structural analysis as well as identification of failed sequences and degradation products. This review will cover tandem mass spectrometry methods as well as the recent developments in liquid chromatography, capillary electrophoresis, and ion mobility coupled to mass spectrometry for the analysis of nucleic acids and oligonucleotides.
Collapse
Affiliation(s)
- Inês C Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
9
|
Abi-Ghanem J, Rabin C, Porrini M, Rosu F, Gabelica V. Compaction of RNA Hairpins and Their Kissing Complexes in Native Electrospray Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2035-2043. [PMID: 32812759 DOI: 10.1021/jasms.0c00060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
When electrosprayed from typical native MS solution conditions, RNA hairpins and kissing complexes acquire charge states at which they get significantly more compact in the gas phase than their initial structure in solution. Here, we also show the limits of using force field molecular dynamics to interpret the structures of nucleic acid complexes in the gas phase, as the predicted CCS distributions do not fully match the experimental ones. We suggest that higher level calculation levels should be used in the future.
Collapse
Affiliation(s)
- Josephine Abi-Ghanem
- Univ Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Bordeaux, France
| | - Clémence Rabin
- Univ Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Bordeaux, France
| | - Massimiliano Porrini
- Univ Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Bordeaux, France
| | - Frédéric Rosu
- Univ Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Bordeaux, France
| |
Collapse
|
10
|
Re S, Watabe S, Nishima W, Muneyuki E, Yamaguchi Y, MacKerell AD, Sugita Y. Characterization of Conformational Ensembles of Protonated N-glycans in the Gas-Phase. Sci Rep 2018; 8:1644. [PMID: 29374210 PMCID: PMC5786100 DOI: 10.1038/s41598-018-20012-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/10/2018] [Indexed: 12/18/2022] Open
Abstract
Ion mobility mass spectrometry (IM-MS) is a technique capable of investigating structural changes of biomolecules based on their collision cross section (CCS). Recent advances in IM-MS allow us to separate carbohydrate isomers with subtle conformational differences, but the relationship between CCS and atomic structure remains elusive. Here, we characterize conformational ensembles of gas-phase N-glycans under the electrospray ionization condition using molecular dynamics simulations with enhanced sampling. We show that the separation of CCSs between isomers reflects folding features of N-glycans, which are determined both by chemical compositions and protonation states. Providing a physicochemical basis of CCS for N-glycans helps not only to interpret IM-MS measurements but also to estimate CCSs of complex glycans.
Collapse
Affiliation(s)
- Suyong Re
- RIKEN Theoretical Molecular Science Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shigehisa Watabe
- RIKEN Theoretical Molecular Science Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Graduate School of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Wataru Nishima
- RIKEN Theoretical Molecular Science Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,RIKEN iTHES, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Eiro Muneyuki
- Graduate School of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Yuji Sugita
- RIKEN Theoretical Molecular Science Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,RIKEN iTHES, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
11
|
Li J, Lyu W, Rossetti G, Konijnenberg A, Natalello A, Ippoliti E, Orozco M, Sobott F, Grandori R, Carloni P. Proton Dynamics in Protein Mass Spectrometry. J Phys Chem Lett 2017; 8:1105-1112. [PMID: 28207277 DOI: 10.1021/acs.jpclett.7b00127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Native electrospray ionization/ion mobility-mass spectrometry (ESI/IM-MS) allows an accurate determination of low-resolution structural features of proteins. Yet, the presence of proton dynamics, observed already by us for DNA in the gas phase, and its impact on protein structural determinants, have not been investigated so far. Here, we address this issue by a multistep simulation strategy on a pharmacologically relevant peptide, the N-terminal residues of amyloid-β peptide (Aβ(1-16)). Our calculations reproduce the experimental maximum charge state from ESI-MS and are also in fair agreement with collision cross section (CCS) data measured here by ESI/IM-MS. Although the main structural features are preserved, subtle conformational changes do take place in the first ∼0.1 ms of dynamics. In addition, intramolecular proton dynamics processes occur on the picosecond-time scale in the gas phase as emerging from quantum mechanics/molecular mechanics (QM/MM) simulations at the B3LYP level of theory. We conclude that proton transfer phenomena do occur frequently during fly time in ESI-MS experiments (typically on the millisecond time scale). However, the structural changes associated with the process do not significantly affect the structural determinants.
Collapse
Affiliation(s)
- Jinyu Li
- College of Chemistry, Fuzhou University , 350002 Fuzhou, China
| | - Wenping Lyu
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH-Aachen University , 52056 Aachen, Germany
- Computation-Based Science and Technology Research Center, Cyprus Institute , 2121 Aglantzia, Nicosia, Cyprus
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University , 52062 Aachen, Germany
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich , D-52425 Jülich, Germany
| | - Albert Konijnenberg
- Biomolecular & Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp , 2000 Antwerpen, Belgium
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Emiliano Ippoliti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
| | - Modesto Orozco
- Joint BSC-IRB Program on Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Baldiri Reixac 10, Barcelona 08028, Spain
- Departament de Bioquímica i Biomedicina, Facultat de Biologia, Universitat de Barcelona , Avgda Diagonal 647, Barcelona 08028, Spain
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp , 2000 Antwerpen, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds LS2 9JT, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds , Leeds LS2 9JT, United Kingdom
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich , 52425 Jülich, Germany
- JARA-HPC, 52425 Jülich, Germany
| |
Collapse
|
12
|
Dans PD, Danilāne L, Ivani I, Dršata T, Lankaš F, Hospital A, Walther J, Pujagut RI, Battistini F, Gelpí JL, Lavery R, Orozco M. Long-timescale dynamics of the Drew-Dickerson dodecamer. Nucleic Acids Res 2016; 44:4052-66. [PMID: 27084952 PMCID: PMC4872116 DOI: 10.1093/nar/gkw264] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/31/2016] [Indexed: 12/24/2022] Open
Abstract
We present a systematic study of the long-timescale dynamics of the Drew–Dickerson dodecamer (DDD: d(CGCGAATTGCGC)2) a prototypical B-DNA duplex. Using our newly parameterized PARMBSC1 force field, we describe the conformational landscape of DDD in a variety of ionic environments from minimal salt to 2 M Na+Cl− or K+Cl−. The sensitivity of the simulations to the use of different solvent and ion models is analyzed in detail using multi-microsecond simulations. Finally, an extended (10 μs) simulation is used to characterize slow and infrequent conformational changes in DDD, leading to the identification of previously uncharacterized conformational states of this duplex which can explain biologically relevant conformational transitions. With a total of more than 43 μs of unrestrained molecular dynamics simulation, this study is the most extensive investigation of the dynamics of the most prototypical DNA duplex.
Collapse
Affiliation(s)
- Pablo D Dans
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Linda Danilāne
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain School of Chemistry, University of East Anglia (UEA), Norwich Research Park, Norwich NR4 7TJ, UK
| | - Ivan Ivani
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Tomáš Dršata
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám 2, 166 10 Prague, Czech Republic
| | - Filip Lankaš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám 2, 166 10 Prague, Czech Republic Laboratory of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Jürgen Walther
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Ricard Illa Pujagut
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Federica Battistini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Josep Lluis Gelpí
- Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Richard Lavery
- Bases Moléculaires et Structurales des Systèmes Infectieux, Université Lyon I/CNRS UMR 5086, IBCP, 7 Passage du Vercors, Lyon 69367, France
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Joint BSC-IRB Research Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Pujol-Pina R, Vilaprinyó-Pascual S, Mazzucato R, Arcella A, Vilaseca M, Orozco M, Carulla N. SDS-PAGE analysis of Aβ oligomers is disserving research into Alzheimer´s disease: appealing for ESI-IM-MS. Sci Rep 2015; 5:14809. [PMID: 26450154 PMCID: PMC4598734 DOI: 10.1038/srep14809] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/09/2015] [Indexed: 12/20/2022] Open
Abstract
The characterization of amyloid-beta peptide (Aβ) oligomer forms and structures is crucial to the advancement in the field of Alzheimer´s disease (AD). Here we report a critical evaluation of two methods used for this purpose, namely sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), extensively used in the field, and ion mobility coupled to electrospray ionization mass spectrometry (ESI-IM-MS), an emerging technique with great potential for oligomer characterization. To evaluate their performance, we first obtained pure cross-linked Aβ40 and Aβ42 oligomers of well-defined order. Analysis of these samples by SDS-PAGE revealed that SDS affects the oligomerization state of Aβ42 oligomers, thus providing flawed information on their order and distribution. In contrast, ESI-IM-MS provided accurate information, while also reported on the chemical nature and on the structure of the oligomers. Our findings have important implications as they challenge scientific paradigms in the AD field built upon SDS-PAGE characterization of Aβ oligomer samples.
Collapse
Affiliation(s)
- Rosa Pujol-Pina
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain
| | | | - Roberta Mazzucato
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Annalisa Arcella
- Joint IRB-BSC Research Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Marta Vilaseca
- Mass Spectrometry Core Facility, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Modesto Orozco
- Joint IRB-BSC Research Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain.,Department of Biochemistry and Molecular Biology, University of Barcelona, Diagonal 647, Barcelona 08028, Spain
| | - Natàlia Carulla
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona 08028, Spain
| |
Collapse
|
14
|
Riml C, Glasner H, Rodgers MT, Micura R, Breuker K. On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent. Nucleic Acids Res 2015; 43:5171-81. [PMID: 25904631 PMCID: PMC4446422 DOI: 10.1093/nar/gkv288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/24/2015] [Indexed: 12/18/2022] Open
Abstract
Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in ‘top-down’ strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of positively and negatively charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of positive charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M+nH)n+ and (M−nH)n− ions, respectively, is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramolecular proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into c and y ions from phosphodiester bond cleavage.
Collapse
Affiliation(s)
- Christian Riml
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Heidelinde Glasner
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - M T Rodgers
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202-3489, United States
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|