1
|
Alexeev MS, Strelkova TV, Ilyin MM, Nelyubina YV, Bespalov IA, Medvedev MG, Khrustalev VN, Kuznetsov NY. Amine adducts of triallylborane as highly reactive allylborating agents for Cu(I)-catalyzed allylation of chiral sulfinylimines. Org Biomol Chem 2024; 22:4680-4696. [PMID: 38716901 DOI: 10.1039/d4ob00291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The implementation of selective catalytic processes with highly active reagents is an attractive strategy that meets the modern principles of sustainable development of chemistry. In the current study, we for the first time describe the method and general principles of Cu(I)-catalyzed allylation of imines with amine adducts of allylic triorganoboranes. Triallylborane is an extremely reactive compound and cannot be used for the catalytic allylation of imines, whereas its amine adducts are ideal substrates for catalysis. The structure of the amine fragment successfully balances the safety, selectivity and stability of the allylboron reagent, allowing it to demonstrate high activity in catalytic allylation reactions, exceeding many times any known allylboranes. The obtained results are supported by quantitative kinetics data and DFT calculations. The catalytic efficacy of the system was demonstrated on model sulfinylimines (23 examples). High diastereoselectivity up to >99% was achieved, including for the gram-scale synthesis of 2-hydroxyphenyl-derivatives. Taking into account the high reactivity and unsurpassed atom-economy of amine adducts of triallylborane (AAT), they can be considered as prospective allylation reagents with Cu(I) and other appropriate metallocatalysts.
Collapse
Affiliation(s)
- Michael S Alexeev
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
| | - Tatiana V Strelkova
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Michael M Ilyin
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
| | - Ivan A Bespalov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
- Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow, 119991, Russian Federation
| | - Michael G Medvedev
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
| | - Victor N Khrustalev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
- Peoples Friendship University of Russia, Miklukho-Maklay st. 6, 117198 Moscow, Russian Federation
| | - Nikolai Yu Kuznetsov
- A.N. Nesmeyanov Institute of Organoelement compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation.
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russian Federation
| |
Collapse
|
2
|
Lei X, Sun Y, Guo Q, Shi J. Base mediated aza-[2 + 1] annulation and regioselective aziridine ring-opening cascade: mild synthesis of functionalized β-amino ketones from cyclic N-sulfonyl aldimines and α-carbonyl sulfonium salts. RSC Adv 2024; 14:17178-17183. [PMID: 38808243 PMCID: PMC11131043 DOI: 10.1039/d4ra02817a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Cyclic N-sulfonyl aldimines are well-known aza-[2C]-synthons for various [2 + n] annulation reactions. Herein we describe a novel base mediated [2 + 1] annulation and a regioselective aziridine ring-opening reaction cascade, which provides an efficient and distinct synthetic strategy from readily available cyclic N-sulfonyl aldimines and α-carbonyl sulfonium salts leading to β-amino ketone derivatives through the corresponding fused tri-substituted aziridines. This one-pot, two-step process involves formation of C-C and C-N bonds and subsequent cleavage of a C-N bond. The features of the developed reaction include the use of mild reaction conditions, broad substrate scope, and excellent yields. The synthetic utility of this approach was demonstrated by gram-scale operation and further product derivatizations.
Collapse
Affiliation(s)
- Xiaoqiang Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Yanyan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Qinglan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| |
Collapse
|
3
|
Zhang Y, Zhang JJ, Lou L, Lin R, Cramer N, Wang SG, Chen Z. Recent advances in Rh(I)-catalyzed enantioselective C-H functionalization. Chem Soc Rev 2024; 53:3457-3484. [PMID: 38411467 DOI: 10.1039/d3cs00762f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Chiral carbon-carbon (C-C) and carbon-heteroatom (C-X) bonds are pervasive and very essential in natural products, bioactive molecules, and functional materials, and their catalytic construction has emerged as one of the hottest research fields in synthetic organic chemistry. The last decade has witnessed vigorous progress in Rh(I)-catalyzed asymmetric C-H functionalization as a complement to Rh(II) and Rh(III) catalysis. This review aims to provide the most comprehensive and up-to-date summary covering the recent advances in Rh(I)-catalyzed C-H activation for asymmetric functionalization. In addition to the development of diverse reactions, chiral ligand design and mechanistic investigation (inner-sphere mechanism, outer-sphere mechanism, and 1,4-Rh migration) will also be highlighted.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, Jiangsu, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Lujun Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Nicolai Cramer
- Institute of Chemical Sciences and Engineering (ISIC), EPFL SB ISIC LCSA, BCH 4305, 1015 Lausanne, Switzerland.
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
4
|
Kang X, Cheng C, Chen X, Dong J, Liu Y, Cui Y. Three-Dimensional Homochiral Covalent Organic Frameworks with Intrinsic Chiral qzd Topology. J Am Chem Soc 2024; 146:8407-8416. [PMID: 38482804 DOI: 10.1021/jacs.3c14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Although a variety of chiral porous framework materials have been reported, there are few examples known to combine molecular chirality, helicity, and three-dimensional (3D) intrinsically chiral topology in one structure, which is beneficial for chirality transfer and amplification. Here, we report the synthesis of the first two 3D covalent organic frameworks (COFs) with an intrinsic chiral qzd topology, which exhibit unusual integration of various homochiral and homohelical features. By imine condensation of 4-connected porphyrin tetraamines and 2-connected enantiopure diene dialdehyde, we prepared two isostructural COFs with a noninterpenetrated qzd topology. The specific geometry and conformation flexibility of the V-shaped diene linker control the alignment of square-planar porphyrin units with rotational linkages and facilitate the creation of homochiral extended porous structures that feature a helical arrangement of porphyrins. Post-synthetic metalation of CCOF 23 with Rh(I) affords a heterogeneous catalyst for the asymmetric Michael addition reaction of aryl boronic acids to 2-cyclohexenone, which shows higher enantioselectivities compared to their homogeneous counterparts, presumably due to the confined effect of helical channels. This finding will provide an impetus to explore multichirality materials, offering new insights into the generation and control of helicity, homochirality, and enantioselectivity in the solid state.
Collapse
Affiliation(s)
- Xing Kang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Moniwa H, Yamanaka M, Shintani R. Copper-Catalyzed Regio- and Stereoselective Formal Hydro(borylmethylsilyl)ation of Internal Alkynes via Alkenyl-to-Alkyl 1,4-Copper Migration. J Am Chem Soc 2023; 145:23470-23477. [PMID: 37852271 DOI: 10.1021/jacs.3c06187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Catalytic reactions involving 1,n-metal migration from carbon to carbon enable a nonclassical way of constructing organic molecular skeletons, rapidly providing complex molecules from relatively simple precursors. By utilization of this attractive feature, a new and efficient synthesis of alkenylsilylmethylboronates has been developed by formal hydro(borylmethylsilyl)ation of unsymmetric internal alkynes with silylboronates under copper catalysis. The reaction proceeds regioselectively and involves an unprecedented alkenyl-to-alkyl 1,4-copper migration. The reaction mechanism has been investigated by a series of kinetic, NMR, and deuterium-labeling experiments.
Collapse
Affiliation(s)
- Hirokazu Moniwa
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka560-8531, Japan
| | - Masahiro Yamanaka
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
6
|
Chen XX, Luo H, Chen YW, Liu Y, He ZT. Enantioselective Palladium-Catalyzed Directed Migratory Allylation of Remote Dienes. Angew Chem Int Ed Engl 2023; 62:e202307628. [PMID: 37387558 DOI: 10.1002/anie.202307628] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/01/2023]
Abstract
Chain walking has been an efficient route to realize the functionalization of inert C(sp3 )-H bonds, but this strategy is limited to mono-olefin migration and functionalization. Herein, we demonstrate the feasibility of tandem directed simultaneous migrations of remote olefins and stereoselective allylation for the first time. The adoption of palladium hydride catalysis and secondary amine morpholine as solvent is critical for achieving high substrate compatibility and stereochemical control with this method. The protocol is also applicable to the functionalization of three vicinal C(sp3 )-H bonds and thus construct three continuous stereocenters along a propylidene moiety via a short synthetic process. Preliminary mechanistic experiments corroborated the design of simultaneous walking of remote dienes.
Collapse
Affiliation(s)
- Xian-Xiao Chen
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hao Luo
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ye-Wei Chen
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yang Liu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
7
|
Liang XX, Zhu C, Zhang W, Du YN, Xu L, Liu L, Zhang Y, Han MY. Nucleophilic Allylation of Acylsilanes in Water: An Effective Alternative to Functionalized Tertiary α-Silylalcohols. J Org Chem 2023; 88:12087-12099. [PMID: 37497648 DOI: 10.1021/acs.joc.3c00668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A nucleophilic allylation of acylsilanes in water was developed, generating versatile functionalized tertiary α-silyl alcohols in high yields. With the assistance of hydrogen bonding, a reaction model of less reactive acylsilane was achieved. Unlike the conventional strategy, transition metals and an additional Lewis acid catalyst were not required, and rate acceleration was observed in water.
Collapse
Affiliation(s)
- Xiu-Xia Liang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Chen Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Wang Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Ya-Nan Du
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lihua Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Man-Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
8
|
Abstract
Asymmetric catalysis has emerged as a general and powerful approach for constructing chiral compounds in an enantioselective manner. Hence, developing novel chiral ligands and catalysts that can effectively induce asymmetry in reactions is crucial in modern chemical synthesis. Among such chiral ligands and catalysts, chiral dienes and their metal complexes have received increased attention, and a great progress has been made over the past two decades. This review provides comprehensive and critical information on the essential aspects of chiral diene ligands and their importance in asymmetric catalysis. The literature covered ranges from August 2003 (when the first effective chiral diene ligand for asymmetric catalysis was reported) to October 2021. This review is divided into two parts. In the first part, the chiral diene ligands are categorized according to their structures, and their preparation methods are summarized. In the second part, their applications in asymmetric transformations are presented according to the reaction types.
Collapse
Affiliation(s)
- Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Tamio Hayashi
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
9
|
Rhodium-catalyzed synthesis of 1-silabenzonorbornenes via 1,4-rhodium migration. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Deng XH, Jiang JX, Jiang Q, Yang T, Chen B, He L, Chu WD, He CY, Liu QZ. CuH-Catalyzed Enantioselective Reductive Coupling of 1,3-Dienes and Trifluoromethyl Ketoimines or α-Iminoacetates. Org Lett 2022; 24:4586-4591. [PMID: 35714047 DOI: 10.1021/acs.orglett.2c01683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intermolecular addition of allylic copper species generated from diene and copper hydride remains elusive. Herein copper hydride catalyzed asymmetric cross reductive coupling of conjugated dienes and ketoimines including trifluoromethyl ketoimines and α-iminoacetates was first achieved using chiral Ph-BPE as the ligand, providing rapid access to structurally and optically enriched homoallylic amines containing two vicinal stereogenic centers with up to 95% yield, 99% ee, and 11:1 diastereoselectivities.
Collapse
Affiliation(s)
- Xue-Hua Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Jia-Xi Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Qin Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Ting Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Bo Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Long He
- College of Chemistry and Materials Engineering, Guiyang University, Guiyang 550005, China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
11
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
12
|
Li G, Zhang Y, Zeng H, Feng X, Su Z, Lin L. Water enables diastereodivergency in bispidine-based chiral amine-catalyzed asymmetric Mannich reaction of cyclic N-sulfonyl ketimines with ketones. Chem Sci 2022; 13:4313-4320. [PMID: 35509468 PMCID: PMC9006921 DOI: 10.1039/d2sc00446a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/20/2022] [Indexed: 01/23/2023] Open
Abstract
Tuning diastereoselectivity is a great challenge in asymmetric catalysis for the inherent stereochemical bias of the substrates. Here, we report a diastereodivergent asymmetric Mannich reaction of cyclic N-sulfonyl ketimines with ketones catalyzed by a bispidine-based chiral amine catalyst, in which additional water switches the diastereoselectivity efficiently. Both chiral anti- and syn-benzosultams with potential anti-HIV-1 activity are obtained in excellent yields and good to excellent ee values. Control experiments and density functional theory (DFT) calculations were applied to study the diastereodivergent mechanism, which reveal that the diastereodivergent catalysis should be state-determined, and the water reverses the energies of states to realize the diastereodivergency. The findings are quite new and might inspire more diastereodivergent asymmetric synthesis. A diastereodivergent asymmetric Mannich reaction of cyclic N-sulfonyl ketimines with ketones is realized by employing bispidine-based chiral amine as catalyst and additional water switching the diastereoselectivity.![]()
Collapse
Affiliation(s)
- Gonglin Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Yan Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Hongkun Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| |
Collapse
|
13
|
Zhang M, Ji Y, Zhang C. Transition Metal Catalyzed Enantioselective Migratory Functionalization Reactions of Alkenes through Chain‐walking. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Min Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University Weijin Rd. 92 Tianjin 300072 China
| | - Yuqi Ji
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University Weijin Rd. 92 Tianjin 300072 China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University Weijin Rd. 92 Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
14
|
Enantioselective organocatalytic synthesis of α-allylated dihydroquinolines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Catalyst-free Direct Ring-opening of Cyclic Aldimines with Aliphatic Primary Amines to Construct o-Hydroxy Schiff Bases. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Wang F, Huang D, Zhao P, Yang M, Han T, Wang K, Wang J, Su Y, Hu Y. Study on the Allylation of Benzol[ e][1,2,3]oxathiazine-2,2-dioxides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Cheng YY, Li WS, Wu HL. Application of Rh(I)/Bicyclo[2.2.1]heptadiene Catalysts to the Enantioselective Synthesis of Chiral Amines. CHEM REC 2021; 21:3954-3963. [PMID: 34596958 DOI: 10.1002/tcr.202100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/12/2022]
Abstract
The development of efficient synthetic methods for accessing enantioenriched α-chiral amines is of great importance in the disciplines of medicinal and synthetic organic chemistry. Enantioselective Rh-catalyzed 1,2-addition reactions to activated imine derivatives are regarded as useful protocols for forming α-chiral amines. This personal account outlines our efforts to develop chiral bicyclo[2.2.1]heptadiene ligands for Rh-catalyzed asymmetric additions of various organoboron reagents to a wide range of imine derivatives. Transformations of the thus-obtained adducts into known natural products or molecules of pharmaceutical importance serve to confirm their synthetic usefulness.
Collapse
Affiliation(s)
- Yu-Yi Cheng
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| | - Wei-Sian Li
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| |
Collapse
|
18
|
Cooze CJC, McNutt W, Schoetz MD, Sosunovych B, Grigoryan S, Lundgren RJ. Diastereo-, Enantio-, and Z-Selective α,δ-Difunctionalization of Electron-Deficient Dienes Initiated by Rh-Catalyzed Conjugate Addition. J Am Chem Soc 2021; 143:10770-10777. [PMID: 34253021 DOI: 10.1021/jacs.1c05427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metal-catalyzed enantioselective conjugate additions are highly reliable methods for stereoselective synthesis; however, multicomponent reactions that are initiated by conjugate arylation of acyclic π-systems are rare. These reactions generally proceed with poor diastereoselectivity while requiring basic, moisture sensitive organometallic nucleophiles. Here, we show that Rh-catalysts supported by a tetrafluorobenzobarrelene ligand (Ph-tfb) enable the enantio-, diastereo-, and Z-selective α,δ-difunctionalization of electron-deficient 1,3-dienes with organoboronic acid nucleophiles and aldehyde electrophiles to generate Z-homoallylic alcohols with three stereocenters. The reaction accommodates diene substrates activated by ester, amide, ketone, or aromatic groups and can be used to couple aryl, alkenyl, or alkyl aldehydes. Diastereoselective functionalization of the Z-olefin unit in the addition products allows for the generation of compounds with five stereocenters in high dr and ee. Mechanistic studies suggest aldehyde allylrhodation is the rate-determining step, and unlike reactions of analogous Rh-enolates, the Rh-allyl species generated by δ-arylation undergoes aldehyde trapping rather than protonolysis, even when water is present as a cosolvent. These findings should have broader implications in the use of privileged metal-catalyzed conjugate addition reactions as entry points toward the preparation of acyclic molecules containing nonadjacent stereocenters.
Collapse
Affiliation(s)
| | - Wesley McNutt
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Markus D Schoetz
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Bohdan Sosunovych
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Svetlana Grigoryan
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
19
|
Xu C, Reep C, Jarvis J, Naumann B, Captain B, Takenaka N. Asymmetric Catalytic Ketimine Mannich Reactions and Related Transformations. Catalysts 2021; 11:712. [PMID: 34745653 PMCID: PMC8570560 DOI: 10.3390/catal11060712] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The catalytic enantioselective ketimine Mannich and its related reactions provide direct access to chiral building blocks bearing an α-tertiary amine stereogenic center, a ubiquitous structural motif in nature. Although ketimines are often viewed as challenging electrophiles, various approaches/strategies to circumvent or overcome the adverse properties of ketimines have been developed for these transformations. This review showcases the selected examples that highlight the benefits and utilities of various ketimines and remaining challenges associated with them in the context of Mannich, allylation, and aza-Morita-Baylis-Hillman reactions as well as their variants.
Collapse
Affiliation(s)
- Changgong Xu
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Carlyn Reep
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Jamielyn Jarvis
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Brandon Naumann
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Burjor Captain
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| | - Norito Takenaka
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| |
Collapse
|
20
|
|
21
|
Tsuda T, Choi SM, Shintani R. Palladium-Catalyzed Synthesis of Dibenzosilepin Derivatives via 1,n-Palladium Migration Coupled with anti-Carbopalladation of Alkyne. J Am Chem Soc 2021; 143:1641-1650. [DOI: 10.1021/jacs.0c12453] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomohiro Tsuda
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Seung-Min Choi
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
22
|
Carceller‐Ferrer L, González del Campo A, Vila C, Blay G, Muñoz MC, Pedro JR. Organocatalytic Enantioselective Aminoalkylation of 5‐Aminopyrazole Derivatives with Cyclic Imines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Laura Carceller‐Ferrer
- A. González del Campo Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot València Spain
| | - Aleix González del Campo
- A. González del Campo Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot València Spain
| | - Carlos Vila
- A. González del Campo Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot València Spain
| | - Gonzalo Blay
- A. González del Campo Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot València Spain
| | - M. Carmen Muñoz
- Departament de Física Aplicada Universitat Politècnica de València Camino de Vera s/n 46022 València Spain
| | - José R. Pedro
- A. González del Campo Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot València Spain
| |
Collapse
|
23
|
Cai L, Pan YL, Chen L, Cheng JP, Li X. Bi(OAc) 3/chiral phosphoric acid catalyzed enantioselective allylation of seven-membered cyclic imines, dibenzo[b,f][1,4]oxazepines. Chem Commun (Camb) 2020; 56:12383-12386. [PMID: 32931535 DOI: 10.1039/d0cc05855f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient asymmetric allylation reaction of allylboronates with seven-membered cyclic imines, dibenzo[b,f][1,4]oxazepines, is described. The reaction, which is catalyzed by a Bi(OAc)3/CPA system, gives a range of chiral nitrogen-containing heterocycle structures in high yields and with good enantioselectivities. The conversion of these products to nitrogen-containing heterocycles is also demonstrated.
Collapse
Affiliation(s)
- Liu Cai
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | | | | | | | | |
Collapse
|
24
|
Chen J, Hayashi T. Asymmetric Synthesis of Alkylzincs by Rhodium‐Catalyzed Enantioselective Arylative Cyclization of 1,6‐Enynes with Arylzincs. Angew Chem Int Ed Engl 2020; 59:18510-18514. [DOI: 10.1002/anie.202008770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Jiahua Chen
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Tamio Hayashi
- Department of Chemistry National Tsing-Hua University Hsinchu 30013 Taiwan
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
25
|
Chen J, Hayashi T. Asymmetric Synthesis of Alkylzincs by Rhodium‐Catalyzed Enantioselective Arylative Cyclization of 1,6‐Enynes with Arylzincs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiahua Chen
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Tamio Hayashi
- Department of Chemistry National Tsing-Hua University Hsinchu 30013 Taiwan
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
26
|
Zhou Y, Zhao ZN, Zhang YL, Liu J, Yuan Q, Schneider U, Huang YY. Brønsted Acid-Catalyzed General Petasis Allylation and Isoprenylation of Unactivated Ketones. Chemistry 2020; 26:10259-10264. [PMID: 32432354 DOI: 10.1002/chem.202001594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/19/2020] [Indexed: 11/09/2022]
Abstract
Brønsted acid-catalyzed general Petasis allylation and isoprenylation of unactivated ketones were developed by using o-hydroxyaniline and the corresponding pinacolyl boronic esters. This robust methodology provided access to a broad variety of quaternary homoallylic amines and dienyl amines in high yields, proved to be applicable to a gram-scale synthesis, and allowed the synthesis of a potentially bioactive quaternary homoallylic aminodiol.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhen-Ni Zhao
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yu-Long Zhang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jun Liu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Quan Yuan
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Uwe Schneider
- EaStCHEM School of Chemistry, The University of Edinburgh, The King's Buildings, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Yi-Yong Huang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
27
|
Li WS, Kuo TS, Hsieh MC, Tsai MK, Wu PY, Wu HL. Enantioselective Rhodium-Catalyzed Allylation of Aliphatic Imines: Synthesis of Chiral C-Aliphatic Homoallylic Amines. Org Lett 2020; 22:5675-5679. [PMID: 32628021 DOI: 10.1021/acs.orglett.0c02069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reported herein is a method for the efficient syntheses of optically active 1-alkyl homoallylic amines in yields up to 95%, 13.5:1 dr, and 98% ee under mild, aqueous reaction conditions, via the Rh-catalyzed asymmetric allylation of aliphatic aldimines. This method provides a streamlined synthetic platform for the preparation of indolizidine and piperidine alkaloids, thus demonstrating its usefulness.
Collapse
Affiliation(s)
- Wei-Sian Li
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ting-Shen Kuo
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Meng-Chi Hsieh
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ming-Kang Tsai
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ping-Yu Wu
- Oleader Technologies, Co., Ltd., 1F., No. 8, Aly. 29, Ln. 335, Chenggong Road, Hukou Township, Hsinchu 30345, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| |
Collapse
|
28
|
Groves A, Sun J, Parke HRI, Callingham M, Argent SP, Taylor LJ, Lam HW. Catalytic enantioselective arylative cyclizations of alkynyl 1,3-diketones by 1,4-rhodium(i) migration. Chem Sci 2020; 11:2759-2764. [PMID: 34084335 PMCID: PMC8157494 DOI: 10.1039/c9sc06309a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The enantioselective synthesis of densely functionalized polycarbocycles by the rhodium(i)-catalyzed reaction of arylboronic acids with 1,3-diketones is described. The key step in these desymmetrizing domino addition–cyclization reactions is an alkenyl-to-aryl 1,4-Rh(i) migration, which enables arylboronic acids to function effectively as 1,2-dimetalloarene surrogates. The enantioselective synthesis of densely functionalized polycarbocycles by the rhodium(i)-catalyzed reaction of arylboronic acids with alkynyl 1,3-diketones is described. The key step in these reactions is an alkenyl-to-aryl 1,4-Rh(i) migration..![]()
Collapse
Affiliation(s)
- Alistair Groves
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road Nottingham NG7 2TU UK .,School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Jinwei Sun
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road Nottingham NG7 2TU UK .,School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK.,Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology Nanjing Jiangsu 210044 China
| | - Hal R I Parke
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road Nottingham NG7 2TU UK .,School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Michael Callingham
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road Nottingham NG7 2TU UK .,School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Stephen P Argent
- School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Laurence J Taylor
- School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road Nottingham NG7 2TU UK .,School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| |
Collapse
|
29
|
Sun YT, Zhu DX, Rao X, Xu MH. The enantioselective construction of trifluoromethylated quaternary stereocenters via the Rh-catalyzed asymmetric dehydrated arylation of unprotected hemiaminals. Org Chem Front 2020. [DOI: 10.1039/c9qo01203f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An effective Rh/chiral diene catalyst system for the highly enantioselective synthesis of chiral benzosultams bearing trifluoromethylated quaternary carbon stereocenters has been developed.
Collapse
Affiliation(s)
- Yu-Tuo Sun
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- and School of Pharmacy
- University of Chinese Academy of Sciences
| | - Dong-Xing Zhu
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- and School of Pharmacy
- University of Chinese Academy of Sciences
| | - Xiaofeng Rao
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518055
- China
| | - Ming-Hua Xu
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- and School of Pharmacy
- University of Chinese Academy of Sciences
| |
Collapse
|
30
|
Chen MW, Mao X, Ji Y, Yuan J, Deng Z, Peng Y. Synthesis of chiral quaternary fluorinated cyclic sulfamidates via palladium-catalyzed arylation with arylboronic acids. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Yu YN, Qi WY, Wu CY, Xu MH. Rhodium-Catalyzed Enantioselective Addition of Arylboroxines to Isatin-Derived N-Boc Ketimines Using Chiral Phosphite–Olefin Ligands: Asymmetric Synthesis of 3-Aryl-3-amino-2-oxindoles. Org Lett 2019; 21:7493-7497. [DOI: 10.1021/acs.orglett.9b02787] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yue-Na Yu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen 518055, China
| | - Wei-Yi Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Chun-Yan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ming-Hua Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen 518055, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
32
|
Cooze C, Dada R, Lundgren RJ. Direct Formic Acid Mediated
Z
‐Selective Reductive Coupling of Dienes and Aldehydes. Angew Chem Int Ed Engl 2019; 58:12246-12251. [DOI: 10.1002/anie.201905540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/12/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Christopher Cooze
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Raphael Dada
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Rylan J. Lundgren
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
33
|
Kim J, Shin M, Cho SH. Copper-Catalyzed Diastereoselective and Enantioselective Addition of 1,1-Diborylalkanes to Cyclic Ketimines and α-Imino Esters. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02931] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jeongho Kim
- Department of Chemistry, POSTECH, 37673, Pohang, Korea
| | | | | |
Collapse
|
34
|
Affiliation(s)
- Abdur Rahim
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China, 96 Jinzhai Road Hefei Anhui 230026 China
| | - Jia Feng
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China, 96 Jinzhai Road Hefei Anhui 230026 China
| | - Zhenhua Gu
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China, 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
35
|
Cooze C, Dada R, Lundgren RJ. Direct Formic Acid Mediated
Z
‐Selective Reductive Coupling of Dienes and Aldehydes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Christopher Cooze
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Raphael Dada
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Rylan J. Lundgren
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
36
|
Liu N, Yao J, Yin L, Lu T, Tian Z, Dou X. Rhodium-Catalyzed Expeditious Synthesis of Indenes from Propargyl Alcohols and Organoboronic Acids by Selective 1,4-Rhodium Migration over β-Oxygen Elimination. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Na Liu
- Department of Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jian Yao
- Department of Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Long Yin
- Department of Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Tao Lu
- Department of Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaowei Dou
- Department of Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
37
|
Wang J, Zhang Q, Zhou B, Yang C, Li X, Cheng JP. Bi(III)-Catalyzed Enantioselective Allylation Reactions of Ketimines. iScience 2019; 16:511-523. [PMID: 31229898 PMCID: PMC6593186 DOI: 10.1016/j.isci.2019.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022] Open
Abstract
Chiral homoallylic amines not only are found in pharmaceutically relevant compounds but also serve as versatile building blocks for chemical synthesis. However, catalytic allylation of ketimines with allylboronates, an attractive approach to synthesize chiral homoallylic amine scaffolds remain scarce. Herein, we develop a highly enantioselective allylation of isatin-derived ketimines with boron allylation reagents catalyzed by a Bi(OAc)3-chiral phosphoric acid catalyst system. The reactions are remarkably efficient and mild, most of which were completed in less than an hour at room temperature with only 1/2 mol% (Bi(OAc)3/CPA) catalyst loading. A wide range of chiral 3-allyl 3-aminooxindoles were obtained in excellent yields and enantioselectivities. The synthetic utility was demonstrated by efficient formal synthesis of (+)-AG-041R and (−)-psychotriasine. Preliminary mechanism was studied by control experiments and theoretical calculations. Asymmetric allylation of ketimines Bi(OAc)3-chiral phosphoric acid catalyst Downstream synthetic transformations
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qingxia Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Biying Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chen Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jin-Pei Cheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Kim J, Hwang C, Kim Y, Cho SH. Improved Synthesis of β-Aminoboronate Esters via Copper-Catalyzed Diastereo- and Enantioselective Addition of 1,1-Diborylalkanes to Acyclic Arylaldimines. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeongho Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chiwon Hwang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youngmin Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
39
|
Qiu Z, Li Y, Zhang Z, Teng D. Spiro indane-based phosphine–oxazoline ligands for palladium-catalyzed asymmetric arylation of cyclic N-sulfonyl imines. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00329-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
40
|
Bai D, Xia J, Song F, Li X, Liu B, Liu L, Zheng G, Yang X, Sun J, Li X. Rhodium(iii)-catalyzed diverse [4 + 1] annulation of arenes with 1,3-enynes via sp 3/sp 2 C-H activation and 1,4-rhodium migration. Chem Sci 2019; 10:3987-3993. [PMID: 31015939 PMCID: PMC6457175 DOI: 10.1039/c9sc00545e] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 01/24/2023] Open
Abstract
Nitrogen-rich heterocyclic compounds have a profound impact on human health. Despite the numerous synthetic methods, diversified, step-economic, and general synthesis of heterocycles remains limited. C-H bond functionalization catalyzed by rhodium(iii) cyclopentadienyls has proven to be a powerful strategy in the synthesis of diversified heterocycles. Herein we describe rhodium(iii)-catalyzed sp2 and sp3 C-H activation-oxidative annulations between aromatic substrates and 1,3-enynes, where alkenyl-to-allyl 1,4-rhodium(iii) migration enabled the generation of electrophilic rhodium(iii) π-allyls via remote C-H functionalization. Subsequent nucleophilic trapping of these species by various sp2-hybridized N-nucleophiles delivered three classes (external salts, inner salts, and neutral azacycles) of five-membered azacycles bearing a tetrasubstituted saturated carbon center, as a result of [4 + 1] annulation with the alkyne being a one-carbon synthon. All the reactions proceeded under relatively mild conditions with broad substrate scope, high efficiency, and excellent regioselectivity. The synthetic applications of this protocol have also been demonstrated, and experimental studies have been performed to support the proposed mechanism.
Collapse
Affiliation(s)
- Dachang Bai
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
| | - Jintao Xia
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China .
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Fangfang Song
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
| | - Xueyan Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
| | - Bingxian Liu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
| | - Lihong Liu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
| | - Guangfan Zheng
- School of Chemistry and Chemical Engineering , Shaanxi Normal University (SNNU) , Xi'an 710062 , China .
| | - Xifa Yang
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China .
| | - Jiaqiong Sun
- School of Chemistry and Chemical Engineering , Shaanxi Normal University (SNNU) , Xi'an 710062 , China .
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China .
- School of Chemistry and Chemical Engineering , Shaanxi Normal University (SNNU) , Xi'an 710062 , China .
| |
Collapse
|
41
|
Miwa T, Shintani R. Rhodium-Catalyzed Synthesis of Silicon-Bridged 1,2-Dialkenylbenzenes via 1,4-Rhodium Migration. Org Lett 2019; 21:1627-1631. [DOI: 10.1021/acs.orglett.9b00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takuya Miwa
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
42
|
Sun J, Bai D, Wang P, Wang K, Zheng G, Li X. Chemodivergent Oxidative Annulation of Benzamides and Enynes via 1,4-Rhodium Migration. Org Lett 2019; 21:1789-1793. [DOI: 10.1021/acs.orglett.9b00363] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jiaqiong Sun
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Dachang Bai
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Peiyuan Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Kuan Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Guangfan Zheng
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
43
|
Zhang SS, Hu TJ, Li MY, Song YK, Yang XD, Feng CG, Lin GQ. Asymmetric Alkenylation of Enones and Imines Enabled by A Highly Efficient Aryl to Vinyl 1,4-Rhodium Migration. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shu-Sheng Zhang
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Tian-Jiao Hu
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Meng-Yao Li
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Yi-Kang Song
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Xiao-Di Yang
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Chen-Guo Feng
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Guo-Qiang Lin
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
44
|
Zhang SS, Hu TJ, Li MY, Song YK, Yang XD, Feng CG, Lin GQ. Asymmetric Alkenylation of Enones and Imines Enabled by A Highly Efficient Aryl to Vinyl 1,4-Rhodium Migration. Angew Chem Int Ed Engl 2019; 58:3387-3391. [PMID: 30644152 DOI: 10.1002/anie.201813585] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Shu-Sheng Zhang
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Tian-Jiao Hu
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Meng-Yao Li
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Yi-Kang Song
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Xiao-Di Yang
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Chen-Guo Feng
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Guo-Qiang Lin
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
45
|
O’Brien L, Karad SN, Lewis W, Lam HW. Rhodium-catalyzed arylative cyclization of alkynyl malonates by 1,4-rhodium(i) migration. Chem Commun (Camb) 2019; 55:11366-11369. [DOI: 10.1039/c9cc05205d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The synthesis of functionalized 1-tetralones by the rhodium(i)-catalyzed reaction of alkynyl malonates with arylboronic acids is described.
Collapse
Affiliation(s)
- Luke O’Brien
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry
- University of Nottingham
- Jubilee Campus
- Nottingham
- UK
| | - Somnath Narayan Karad
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry
- University of Nottingham
- Jubilee Campus
- Nottingham
- UK
| | - William Lewis
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry
- University of Nottingham
- Jubilee Campus
- Nottingham
- UK
| |
Collapse
|
46
|
Arupula SK, Gudimella SK, Guin S, Mobin SM, Samanta S. Chemoselective cyclization of N-sulfonyl ketimines with ethenesulfonyl fluorides: access to trans-cyclopropanes and fused-dihydropyrroles. Org Biomol Chem 2019; 17:3451-3461. [DOI: 10.1039/c9ob00433e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stereo- and chemoselective ring closing reaction of N-sulfonyl ketimines with ethene sulfonyl fluorides promoted by DBU is reported. This selective C–C vs. C–N bond cyclization process delivers to trans-cyclopropanes (dr up to ≤99 : 1) and fused-dihydropyrroles.
Collapse
Affiliation(s)
| | | | - Soumitra Guin
- Discipline of Chemistry
- Indian Institute of Technology Indore
- 453552, Indore
- India
| | - Shaikh M. Mobin
- Discipline of Chemistry
- Indian Institute of Technology Indore
- 453552, Indore
- India
| | - Sampak Samanta
- Discipline of Chemistry
- Indian Institute of Technology Indore
- 453552, Indore
- India
| |
Collapse
|
47
|
Li M, Wang J, Meng F. Cu-Catalyzed Enantioselective Reductive Coupling of 1,3-Dienes and Aldimines. Org Lett 2018; 20:7288-7292. [DOI: 10.1021/acs.orglett.8b03216] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mingfeng Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jiping Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
48
|
Ming J, Shi Q, Hayashi T. Addition of arylstannanes to alkynes giving ortho-alkenylarylstannanes catalysed cooperatively by a rhodium complex and zinc chloride. Chem Sci 2018; 9:7700-7704. [PMID: 30393531 PMCID: PMC6182567 DOI: 10.1039/c8sc02459f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/10/2018] [Indexed: 12/02/2022] Open
Abstract
The reaction of arylstannanes ArSnR3 with unfunctionalised alkynes was found to proceed in the presence of a rhodium catalyst and a catalytic amount of zinc chloride to give ortho-alkenylarylstannanes with high selectivity in high yields. The catalytic cycle is very unique, consisting of three transmetalation steps, from Sn to Rh, Rh to Zn, and Zn to Sn, in addition to arylrhodation of alkyne followed by 1,4-migration of Rh from 2-arylalkenyl carbon to ortho-alkenylaryl carbon.
Collapse
Affiliation(s)
- Jialin Ming
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore .
| | - Qi Shi
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore .
| | - Tamio Hayashi
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore .
| |
Collapse
|
49
|
Li Y, Zhou K, Wen Z, Cao S, Shen X, Lei M, Gong L. Copper(II)-Catalyzed Asymmetric Photoredox Reactions: Enantioselective Alkylation of Imines Driven by Visible Light. J Am Chem Soc 2018; 140:15850-15858. [DOI: 10.1021/jacs.8b09251] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yanjun Li
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Kexu Zhou
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhaorui Wen
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shi Cao
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiang Shen
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Meng Lei
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
50
|
Ming J, Hayashi T. Rhodium-Catalyzed Arylzincation of Alkynes: Ligand Control of 1,4-Migration Selectivity. Org Lett 2018; 20:6188-6192. [DOI: 10.1021/acs.orglett.8b02668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jialin Ming
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Tamio Hayashi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|