1
|
Mei YY, Xu CX, Sha F, Hao S, Liu S, Wu XY. Enantioselective Mannich Reaction between Cyclic N-Sulfonyl Ketimines and Isatin-Derived Ketimines. J Org Chem 2024; 89:13272-13283. [PMID: 39250642 DOI: 10.1021/acs.joc.4c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
An enantioselective Mannich reaction with cyclic N-sulfonyl ketimines as the nucleophiles was developed. In the presence of 5 mol % chiral thiourea catalyst C11, the asymmetric Mannich reaction between cyclic N-sulfonyl ketimines and isatin-derived ketimines was achieved in high yields and good-to-excellent enantioselectivities (84-99% yields with 75-99.8% ee). This methodology provided an effective route to construct chiral 3-amino-2-oxindoles containing a cyclic N-sulfonyl ketimine scaffold. The initial biological evaluation of the products in cell-based assays demonstrated that some compounds have excellent antiproliferative activity against human osteosarcoma cells.
Collapse
Affiliation(s)
- Yao-Yao Mei
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chong-Xiao Xu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Feng Sha
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shilong Hao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
2
|
Li B, Hu J, Liao M, Xiong Q, Zhang Y, Chi YR, Zhang X, Wu X. Catalyst Control over S(IV)-stereogenicity via Carbene-derived Sulfinyl Azolium Intermediates. J Am Chem Soc 2024; 146:25350-25360. [PMID: 39219070 DOI: 10.1021/jacs.4c10486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Stereoselective synthesis utilizing small-molecule catalysts, particularly N-heterocyclic carbene (NHC), has facilitated swift access to enantioenriched molecules through diverse activation modes and NHC-bound reactive intermediates. While carbonyl derivatives, imines, and "activated" alkenes have been extensively investigated, the exploration of heteroatom-centered analogues of NHC-bound intermediates has long been neglected, despite the significant potential for novel chemical transformations they offer once recognized. Herein, we disclose a carbene-catalyzed new activation mode by generating unique sulfinyl azolium intermediates from carbene nucleophilic addition to in situ-generated mixed sulfinic anhydride intermediates. Combined experimental and computational mechanistic investigations pinpoint the chiral NHC-catalyzed formation of sulfinyl azolium intermediate as the enantio-determining step. The novel "S"-based carbene reactive intermediate imparts high efficiency for the catalytic construction of sulfur-stereogenic compounds, giving rise to sulfinate esters with high yields and enantioselectivities under mild conditions. Notably, distinct from most of the NHC-catalyzed enantioselective transformations focusing on the "C" central chiral products, our study realizes a unique carbene-catalyst control over chiral "S" stereocenters via direct asymmetric S-O bond formation for the first time. Furthermore, these sulfinyl-containing products could serve as versatile synthetic platforms for enantioenriched S-stereogenic functional molecules and exhibit remarkable antibacterial activities against rice plant pathogens, which is valuable for the development of novel agrochemical agents.
Collapse
Affiliation(s)
- Benpeng Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- School of Life and Health Science, Kaili University, Kaili 556011, China
| | - Junyuan Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Minghong Liao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Qin Xiong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yaqi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Xinglong Zhang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16, Connexis, Singapore 138632, Singapore
| | - Xingxing Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
3
|
Schutz D, Gommenginger C, Moegle B, Hourtoule M, Noël-Duchesneau L, Miesch L. Transition Metal-Free Domino Hydroamination/Isomerization/Transamidation Sequence: An Entry to Trifluorinated γ-Lactams. J Org Chem 2024; 89:10644-10653. [PMID: 39012323 DOI: 10.1021/acs.joc.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
A method for the construction of trifluorinated-5-methylenepyrrolidinone is reported. This strategy combines an acid-catalyzed two-carbon homologation process between ynamides and aldehydes, providing CF3-substituted dienes followed by a metal-free domino hydroamination/isomerization/transamidation sequence, delivering trifluorinated-5-methylenepyrrolidinone stereoselectively.
Collapse
Affiliation(s)
- Dorian Schutz
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Clément Gommenginger
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Baptiste Moegle
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Maxime Hourtoule
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Ludovik Noël-Duchesneau
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Laurence Miesch
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| |
Collapse
|
4
|
Luo Z, Liao M, Li W, Zhao S, Tang K, Zheng P, Chi YR, Zhang X, Wu X. Ionic Hydrogen Bond-Assisted Catalytic Construction of Nitrogen Stereogenic Center via Formal Desymmetrization of Remote Diols. Angew Chem Int Ed Engl 2024; 63:e202404979. [PMID: 38745374 DOI: 10.1002/anie.202404979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The control of noncarbon stereogenic centers is of profound importance owing to their enormous interest in bioactive compounds and chiral catalyst or ligand design for enantioselective synthesis. Despite various elegant approaches have been achieved for construction of S-, P-, Si- and B-stereocenters over the past decades, the catalyst-controlled strategies to govern the formation of N-stereogenic compounds have garnered less attention. Here, we disclose the first organocatalytic approach for efficient access to a wide range of nitrogen-stereogenic compounds through a desymmetrization approach. Intriguingly, the pro-chiral remote diols, which are previously not well addressed with enantiocontrol, are well differentiated by potent chiral carbene-bound acyl azolium intermediates. Preliminary studies shed insights on the critical importance of the ionic hydrogen bond (IHB) formed between the dimer aggregate of diols to afford the chiral N-oxide products that feature a tetrahedral nitrogen as the sole stereogenic element with good yields and excellent enantioselectivities. Notably, the chiral N-oxide products could offer an attractive strategy for chiral ligand design and discovery of potential antibacterial agrochemicals.
Collapse
Grants
- National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas)-YQHW
- the starting grant of Guizhou University [(2022)47)]
- National Natural Science Foundation of China (21732002, 22061007, 22071036, and 22207022)
- Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules
- Department of Education, Science and Technology Department of Guizhou Province [Qiankehe-jichu-ZK[2022]zhongdian024]
- Program of Introducing Talents of Discipline to Universities of China (111 Program, D20023) at Guizhou University
- Singapore National Research Foundation under its NRF Investigatorship (NRF-NRFI2016-06) and Competitive Research Program (NRF-CRP22-2019-0002)
- Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award (RG7/20, RG70/21), MOE AcRF Tier 2 (MOE2019-T2-2-117)
- a Chair Professorship Grant, and Nanyang Technological University
- (2022)47 starting grant of Guizhou University
- 21732002 National Natural Science Foundation of China
- 22061007 National Natural Science Foundation of China
- 22071036 National Natural Science Foundation of China
- 22207022 National Natural Science Foundation of China
- Qiankehe-jichu-ZK[2022]zhongdian024 Department of Education, Science and Technology Department of Guizhou Province
- Qiankehejichu-ZK[2024]yiban030 Department of Education, Science and Technology Department of Guizhou Province
- NRF-NRFI2016-06 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- NRF-CRP22-2019-0002 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- RG7/20, RG70/21 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2
- MOE2019-T2-2-117 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2
- Chair Professorship Grant, and Nanyang Technological University
- C210812008 Agency for Science, Technology and Research (A*STAR) under its Career Development Fund
- M22K3c0091 Manufacturing, TradeConnectivity (MTC) Young Individual Research Grants.
Collapse
Affiliation(s)
- Zhongfu Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Minghong Liao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Wei Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Sha Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Kun Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Pengcheng Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xinglong Zhang
- Institute of High Performance Computing (IHPC), A*STAR, Singapore, 138632, Singapore
| | - Xingxing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
5
|
Barik S, Ranganathappa SS, Biju AT. N-heterocyclic carbene-catalyzed atroposelective synthesis of N-Aryl phthalimides and maleimides via activation of carboxylic acids. Nat Commun 2024; 15:5755. [PMID: 38982037 PMCID: PMC11233592 DOI: 10.1038/s41467-024-49799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
Traditionally, N-aryl phthalimides are synthesized by the condensation of phthalic anhydride and aniline derivatives, usually proceeding under harsh conditions. The alternative mild and organocatalytic strategies for their synthesis are underdeveloped. Herein, we demonstrate the organocatalytic atroposelective synthesis of N-aryl phthalimides via the traditional N-CC=O disconnection under mild conditions. The in-situ acid activation of phthalamic acid and subsequent N-heterocyclic carbene (NHC)-catalyzed atroposelective amidation allowed the synthesis of well-decorated N-aryl phthalimides in excellent yields and enantioselectivities. Mechanistic studies reveal the addition of NHC to the in situ generated isoimides, thus introducing a unique mode of generating acylazoliums. Interestingly, both enantiomers of the product can be accessed from the same phthalic anhydride and aniline using the same NHC pre-catalyst. Moreover, this strategy has been extended to the atroposelective synthesis of N-aryl maleimides.
Collapse
Affiliation(s)
- Soumen Barik
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | | | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
6
|
Huang Y, Peng X, Li T. Recent Advances in NHC-Catalyzed Chemoselective Activation of Carbonyl Compounds. Chem Asian J 2024; 19:e202400097. [PMID: 38451172 DOI: 10.1002/asia.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
N-Heterocyclic carbenes (NHCs) catalysts have been employed as effective tools in the development of various reactions, which have made notable contributions in developing diverse reaction modes and generating significant functionalized molecules. This review provides an overview of the recent advancements in the chemo- and regioselective activation of different aldehydes using NHCs, categorized into five parts based on the different activation modes. A brief conclusion and outlook is provided to stimulate the development of novel activation modes for accessing functional molecules.
Collapse
Affiliation(s)
- Yixian Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xiaolin Peng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Tingting Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
7
|
Mou C, Lv Y, Jin J, Chai H, Li T, Chi YR, Jin Z. NHC-Catalyzed Reaction of Carboxylic Acids Using Allene Ketones as Substrates and Activating Reagents. Org Lett 2023. [PMID: 37988556 DOI: 10.1021/acs.orglett.3c03623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
We present a new reaction between carboxylic acids and allene ketones mediated by N-heterocyclic carbene (NHC) catalysts, which exhibit, in principle, nearly perfect atom economy. In this new approach, allene ketones act as both an activating reagent and a reactant. All atoms in the substrates end up in the product without the need for coupling reagents. The present study aims to encourage further explorations of NHC catalytic reactions with alternative activation strategies and better atom economy.
Collapse
Affiliation(s)
- Chengli Mou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang 550025, China
| | - Ya Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Huifang Chai
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang 550025, China
| | - Tingting Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
8
|
Xie L, Zhao C, Wang Z, Chen Z, Zhao Y, Liu X, Xu X, Liu W, Li X, Wu L. Synthesis of Polycyclic Imidazolidinones via Cascade [3 + 2]-Annulation of β-Oxo-acrylamides with Cyclic N-Sulfonyl Imines. J Org Chem 2023; 88:15805-15816. [PMID: 37906181 DOI: 10.1021/acs.joc.3c01878] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An Et3N-catalyzed cascade [3 + 2]-annulation of β-oxo-acrylamides with cyclic N-sulfonyl ketimines or sulfamate-derived imines is developed under mild reaction conditions, which provides a concise and efficient route to access valuable sultam- or sulfamidate-fused imidazolidinone derivatives in good to excellent yields (80-95% yields) with excellent diastereoselectivities (>20:1 drs). The current protocol features atom economy, a transition-metal-free process, and broad functional group tolerance. Moreover, the asymmetric variant of the [3 + 2]-cycloaddition reaction was achieved in the presence of diphenylethanediamine or quinine-based bifunctional squaramide organocatalysts C-1 and C-11, giving the corresponding chiral polycyclic imidazolidinones in 68-90% yields with 25-94% ees and >20:1 drs in all cases.
Collapse
Affiliation(s)
- Lei Xie
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, Shandong, P. R. China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng 252000, Shandong, P. R. China
| | - Chenyi Zhao
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, Shandong, P. R. China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng 252000, Shandong, P. R. China
| | - Zhaoxue Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, Shandong, P. R. China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng 252000, Shandong, P. R. China
| | - Zirui Chen
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, Shandong, P. R. China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng 252000, Shandong, P. R. China
| | - Yingying Zhao
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, Shandong, P. R. China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng 252000, Shandong, P. R. China
| | - Xinghan Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, Shandong, P. R. China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng 252000, Shandong, P. R. China
| | - Xiangdong Xu
- Liaocheng Inspection and Testing Center, Liaocheng 252000, Shandong, P. R. China
| | - Wanxing Liu
- The Non-Public Enterprise Service Center of Liaocheng, Liaocheng 252000, Shandong, P. R. China
| | - Xiaojing Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, Shandong, P. R. China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng 252000, Shandong, P. R. China
| | - Lingang Wu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, Shandong, P. R. China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng 252000, Shandong, P. R. China
| |
Collapse
|
9
|
Dong Z, Jiang C, Zhao C. A Review on Generation and Reactivity of the N-Heterocyclic Carbene-Bound Alkynyl Acyl Azolium Intermediates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227990. [PMID: 36432089 PMCID: PMC9696695 DOI: 10.3390/molecules27227990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
N-heterocyclic carbene (NHC) has been widely used as an organocatalyst for both umpolung and non-umpolung chemistry. Previous works mainly focus on species including Breslow intermediate, azolium enolate intermediate, homoenolate intermediate, alkenyl acyl azolium intermediate, etc. Notably, the NHC-bound alkynyl acyl azolium has emerged as an effective intermediate to access functionalized cyclic molecular skeleton until very recently. In this review, we summarized the generation and reactivity of the NHC-bound alkynyl acyl azolium intermediates, which covers the efforts and advances in the synthesis of achiral and axially chiral cyclic scaffolds via the NHC-bound alkynyl acyl azolium intermediates. In particular, the mechanism related to this intermediate is discussed in detail.
Collapse
|
10
|
Zhang CL, Wang HY, Huang Y, Wang XH, Ye S. N-Heterocyclic Carbene Catalyzed Three-Component Reaction for the Synthesis of Multi-substituted Benzenes. Org Lett 2022; 24:7747-7751. [DOI: 10.1021/acs.orglett.2c03061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Hai-Ying Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Han Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Li G, Zhang Y, Zeng H, Feng X, Su Z, Lin L. Water enables diastereodivergency in bispidine-based chiral amine-catalyzed asymmetric Mannich reaction of cyclic N-sulfonyl ketimines with ketones. Chem Sci 2022; 13:4313-4320. [PMID: 35509468 PMCID: PMC9006921 DOI: 10.1039/d2sc00446a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/20/2022] [Indexed: 01/23/2023] Open
Abstract
Tuning diastereoselectivity is a great challenge in asymmetric catalysis for the inherent stereochemical bias of the substrates. Here, we report a diastereodivergent asymmetric Mannich reaction of cyclic N-sulfonyl ketimines with ketones catalyzed by a bispidine-based chiral amine catalyst, in which additional water switches the diastereoselectivity efficiently. Both chiral anti- and syn-benzosultams with potential anti-HIV-1 activity are obtained in excellent yields and good to excellent ee values. Control experiments and density functional theory (DFT) calculations were applied to study the diastereodivergent mechanism, which reveal that the diastereodivergent catalysis should be state-determined, and the water reverses the energies of states to realize the diastereodivergency. The findings are quite new and might inspire more diastereodivergent asymmetric synthesis. A diastereodivergent asymmetric Mannich reaction of cyclic N-sulfonyl ketimines with ketones is realized by employing bispidine-based chiral amine as catalyst and additional water switching the diastereoselectivity.![]()
Collapse
Affiliation(s)
- Gonglin Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Yan Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Hongkun Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| |
Collapse
|
12
|
Song Y, Wang J, Deng S, Liu G, Cheng T. Quinidine-catalyzed enantioselective domino Michael addition/cyclization process: Synthesis of chiral 1,4-dihydro-pyridine containing benzosultams. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Xu ZH, Jia SK, Chang ZR, Hua YZ, Wang MC, Mei GJ. Facile access to saccharin‐fused 1,4‐dihydropyridines via [3 + 3] annulation reactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi-Hua Xu
- Zhengzhou University College of Chemistry CHINA
| | - Shi-Kun Jia
- Zhengzhou University College of Chemistry CHINA
| | | | | | | | - Guang-Jian Mei
- Zhengzhou University Chemistry Zhengzhou 450001 450001 Zhengzhou CHINA
| |
Collapse
|
14
|
Chen Y, Shi B, Yin H, Liu Y, Yu C, Zhang K, Li T, Yao C. Stereoselective synthesis of chiral sultam-fused dihydropyridinones via photopromoted NHC catalyzed [4 + 2] annulation. Org Chem Front 2022. [DOI: 10.1039/d2qo00908k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photopromoted NHC catalyzed asymmetric [4+2] annulation of saccharine-derived azadienes and α-diazoketones was developed, affording the corresponding sultam-fused dihydropyridinones efficiently (up to 80% yield, 99% ee and >20 : 1 d.r.).
Collapse
Affiliation(s)
- Yangxu Chen
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Bai Shi
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Huiping Yin
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Yinping Liu
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Chenxia Yu
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Tuanjie Li
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| | - Changsheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China
| |
Collapse
|
15
|
Maiti R, Yan J, Yang X, Mondal B, Xu J, Chai H, Jin Z, Chi YR. Carbene‐Catalyzed Enantioselective Hydrophosphination of α‐Bromoenals to Prepare Phosphine‐Containing Chiral Molecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rakesh Maiti
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Jia‐Lei Yan
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Xing Yang
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Bivas Mondal
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Huifang Chai
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University Huaxi District Guiyang 550025 China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University Huaxi District Guiyang 550025 China
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
16
|
Maiti R, Yan JL, Yang X, Mondal B, Xu J, Chai H, Jin Z, Chi YR. Carbene-Catalyzed Enantioselective Hydrophosphination of α-Bromoenals to Prepare Phosphine-Containing Chiral Molecules. Angew Chem Int Ed Engl 2021; 60:26616-26621. [PMID: 34599547 DOI: 10.1002/anie.202112860] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/07/2022]
Abstract
Disclosed herein is the first carbene-organocatalyzed asymmetric addition of phosphine nucleophiles to the in situ generated α,β-unsaturated acyl azolium intermediates. Our reaction enantioselectively constructs carbon-phosphine bonds and prepares chiral phosphines with high optical purities. The phosphine products are suitable for transforming to chiral ligands or catalysts with applications in asymmetric catalysis. The diarylalkyl or trialkyl phosphine products from our catalytic reactions, air-sensitive and reactive in nature, can be trapped (and stored) in their sulfur-oxidized form for operational simplicities.
Collapse
Affiliation(s)
- Rakesh Maiti
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jia-Lei Yan
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xing Yang
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bivas Mondal
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Huifang Chai
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China.,Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
17
|
Guin S, Majee D, Samanta S. Unmasking the reverse reactivity of cyclic N-sulfonyl ketimines: multifaceted applications in organic synthesis. Chem Commun (Camb) 2021; 57:9010-9028. [PMID: 34498642 DOI: 10.1039/d1cc03439a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The chemistry related to the exploration of cyclic N-sulfonyl ketimines and their derivatives has attracted significant attention in the last few decades because of their intriguing structures and properties. They serve broadly as reactive synthons in various reactions to create a diverse set of synthetically and biologically attractive molecules. Furthermore, these moieties, which possess multiple heteroatoms (N, O and S), display or can enhance many biological activities. In the case of synthetic reactions, chemists mainly focus on the chemical manipulation of the highly reactive prochiral CN bond of N-sulfonyl ketimines. Besides their traditional role as electrophiles, N-sulfonyl ketimines possess α-Csp3-H protons, and thus behave as potential carbonucleophiles, where they can undergo several C-X (X = C, N and O) bond-forming reactions with different types of electrophiles under various conditions to form a wide range of fascinating asymmetric and non-asymmetric versions of fused heterocycles, carbocycles, spiro-fused skeletons, pyridines, pyrroles, etc. Herein, we highlight the recent examples from our research work and others covering the scope of cyclic N-sulfonyl ketimines as useful carbonucleophiles. In addition, the detailed mechanistic studies of the above-mentioned reactions are also presented.
Collapse
Affiliation(s)
- Soumitra Guin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| | - Debashis Majee
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| | - Sampak Samanta
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| |
Collapse
|
18
|
N-heterocyclic carbene-catalyzed intramolecular aza-Michael addition of alkyl amines to α,β-unsaturated carboxylic acid: Synthesis of pyrrolidines and piperidines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Ghosh A, Biju AT. Revealing the Similarities of α,β-Unsaturated Iminiums and Acylazoliums in Organocatalysis. Angew Chem Int Ed Engl 2021; 60:13712-13724. [PMID: 33205860 DOI: 10.1002/anie.202012581] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 01/05/2023]
Abstract
The secondary amine-catalyzed reactions proceeding via α,β-unsaturated iminiums and the N-heterocyclic carbene (NHC)-catalyzed transformations taking place via α,β-unsaturated acylazoliums are the two widely used electrophilic intermediates in organocatalysis. Over the last two decades, these two intermediates are extensively utilized for the enantioselective construction of valuable molecules. Both intermediates are generated by the covalent binding of catalysts to the substrates leading to LUMO activation of α,β-unsaturated carbonyls. A variety of soft nucleophiles are known to add to the α,β-unsaturated iminiums and acylazoliums in a conjugate fashion, and in many cases, striking similarity in reactivity has been observed. Having said this, there are few cases where these intermediates exhibit difference in reactivity. This Minireview is aimed at highlighting the resemblances in reactivity between α,β-unsaturated iminiums and acylazoliums thereby shedding light on the unnoticed parallels of the two intermediates in organocatalysis.
Collapse
Affiliation(s)
- Arghya Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
20
|
Ghosh A, Biju AT. Revealing the Similarities of α,β‐Unsaturated Iminiums and Acylazoliums in Organocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Arghya Ghosh
- Department of Organic Chemistry Indian Institute of Science Bangalore 560012 India
| | - Akkattu T. Biju
- Department of Organic Chemistry Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
21
|
Ai Y, Li D, Li G, Li H, He X, Fu X, Wang Y, Zhan G, Han B. Asymmetric Synthesis of Spirocyclopentane Oxindoles
via
[2+3] Annulation with 2‐(2‐Oxoindolin‐3‐yl)malononitriles as 1,2‐Carbon Bisnucleophiles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yue‐Yan Ai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
- Ministry of Education Key Laboratory of Standardization of Chinese Medicine Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Dong‐Ai Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Guo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - He‐Ping Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Xiang‐Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Xue‐Ju Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Yu‐Ting Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
- Ministry of Education Key Laboratory of Standardization of Chinese Medicine Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
- Ministry of Education Key Laboratory of Standardization of Chinese Medicine Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| |
Collapse
|
22
|
Prakash M, Lodhi R, Samanta S. Substrate-Controlled Domino Reaction of N-Sulfonyl Ketimines with 2-Aroyl-1-chlorocyclopropanecarboxylates: Access to Cyclopenta[c]chromenes and Benzo[f]cyclopenta[d][1,2]thiazepine Dioxides. J Org Chem 2021; 86:6721-6733. [DOI: 10.1021/acs.joc.1c00459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Meher Prakash
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Rajni Lodhi
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Sampak Samanta
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
23
|
Zhang M, Wang Y, Li SJ, Wang X, Shi Q, Li X, Qu LB, Wei D, Lan Y. Multiple Functional Organocatalyst-Promoted Inert C–C Activation: Mechanism and Origin of Selectivities. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05511] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Min Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yang Wang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shi-Jun Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinghua Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qianqian Shi
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xue Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Donghui Wei
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yu Lan
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
24
|
Kondoh A, Terada M. Brønsted Base-Catalyzed Formal Reductive [3+2] Annulation of 4,4,4-Trifluorocrotonate and α-Iminoketones. Chemistry 2021; 27:585-588. [PMID: 32869872 DOI: 10.1002/chem.202002943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/27/2020] [Indexed: 02/01/2023]
Abstract
A formal reductive [3+2] annulation of 4,4,4-trifluorocrotonate and α-iminoketones was developed under Brønsted base catalysis. A single phosphazene base efficiently catalyzes the one-pot tandem reaction involving two mechanistically different elementary processes, namely the chemoselective reduction of an imine moiety of α-iminoketones with thiols as the reductant and the subsequent intermolecular Michael addition of an enolate of α-aminoketones concomitant with lactam formation. This operationally simple method provides β-trifluoromethyl-substituted γ-lactams with a tetrasubstituted carbon as a single diastereomer.
Collapse
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
25
|
Di H, Liu Y, Ma Y, Yang X, Jin H, Zhang L. Recent Advances in Organocatalytic Asymmetric Synthesis of 3,4-Dihydropyran-2-ones and 3,4-Dihydropyridin-2-ones. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Maiti R, Xu J, Yan JL, Mondal B, Yang X, Chai H, Hao L, Jin Z, Chi YR. Carbene-catalyzed selective addition of isothioureas to enals for access to sulphur-containing 5,6-dihyropyrimidin-4-ones. Org Chem Front 2021. [DOI: 10.1039/d0qo01380c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A carbene-catalyzed highly regioselective and enantioselective 1,4-addition reaction between isothioureas and enals has been achieved under oxidative conditions.
Collapse
Affiliation(s)
- Rakesh Maiti
- Division of Chemistry & Biological Chemistry
- School of Physical & Mathematical Science
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Jun Xu
- Division of Chemistry & Biological Chemistry
- School of Physical & Mathematical Science
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Jia-Lei Yan
- Division of Chemistry & Biological Chemistry
- School of Physical & Mathematical Science
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Bivas Mondal
- Division of Chemistry & Biological Chemistry
- School of Physical & Mathematical Science
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Xing Yang
- Division of Chemistry & Biological Chemistry
- School of Physical & Mathematical Science
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Huifang Chai
- Guizhou University of Traditional Chinese Medicine
- Guiyang 550025
- China
| | - Lin Hao
- Division of Chemistry & Biological Chemistry
- School of Physical & Mathematical Science
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Zhichao Jin
- Key Laboratory of Green Pesticide and Agriculture Bioengineering
- Ministry of Education
- Guizhou University
- Guiyang 550025
- China
| | - Yonggui Robin Chi
- Division of Chemistry & Biological Chemistry
- School of Physical & Mathematical Science
- Nanyang Technological University
- Singapore 637371
- Singapore
| |
Collapse
|
27
|
Zhang Y, Zhang Y, Guo J, Han J, Zhou X, Fu Z. Asymmetric synthesis of γ-lactams under low-loading N-heterocyclic carbene catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo00743b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Low-loading N-heterocyclic carbene-catalyzed oxidative formal [3 + 2] annulation of enals with N-Ts diethyl aminomalonate has been successfully developed.
Collapse
Affiliation(s)
- Yuxia Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Ye Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Jingcheng Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Jinna Han
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiangui Zhou
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
28
|
Zhang Y, Huang X, Guo J, Wei C, Gong M, Fu Z. Carbene-Catalyzed Enantioselective Synthesis of γ-Keto-β-silyl Esters and Amides. Org Lett 2020; 22:9545-9550. [PMID: 33300797 DOI: 10.1021/acs.orglett.0c03589] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A variety of γ-keto-β-silyl esters and amides, most with extremely high enantioselectivities, were efficiently prepared via a carbene-catalyzed formal [4 + 2] annulation followed by ring opening with nucleophiles. The resulting compounds from this one-pot strategy can be easily converted into enantioenriched β,σ-dihydroxyl esters.
Collapse
Affiliation(s)
- Yuxia Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xuan Huang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingcheng Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Chenlong Wei
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Minghua Gong
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
29
|
Zhang S, Bacheley L, Young CM, Stark DG, O'Riordan T, Slawin AMZ, Smith AD. Isothiourea‐Catalyzed Functionalization of Pyrrolyl‐ and Indolylacetic Acid: Enantioselective Synthesis of Dihydropyridinones and One‐pot Synthesis of Pyridinones. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shuyue Zhang
- EastCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland Scotland KY16 9ST UK
| | - Lucas Bacheley
- EastCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland Scotland KY16 9ST UK
| | - Claire M. Young
- EastCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland Scotland KY16 9ST UK
| | - Daniel G. Stark
- EastCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland Scotland KY16 9ST UK
| | - Timothy O'Riordan
- Syngenta Jealott's Hill International Research Centre Bracknell Berkshire RG42 6EY UK
| | - Alexandra M. Z. Slawin
- EastCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland Scotland KY16 9ST UK
| | - Andrew D. Smith
- EastCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland Scotland KY16 9ST UK
| |
Collapse
|
30
|
Hydrocarboxylation of alkynes utilizing CO2 as C1 synthon: A facile and environmentally benign access to α,β-unsaturated carboxylic acids. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101220] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Li Y, Liu J, Chen X, Zhou Y, Xiao Y, Chen F. Asymmetric Alkynylation of Cyclic
N
‐Sulfonyl Imines using Synergistic Chiral Phosphoric Acid/Copper Catalysis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ya‐Ling Li
- Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Jin‐Xin Liu
- Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Xiao‐Pan Chen
- Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Yuan Zhou
- Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - You‐Cai Xiao
- Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Fen‐Er Chen
- Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 People's Republic of China
- Engineering Center of Catalysis and Synthesis for Chiral MoleculesDepartment of ChemistryFudan University Shanghai 200433 People's Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 People's Republic of China
| |
Collapse
|
32
|
Chen X, Wang H, Jin Z, Chi YR. N
‐Heterocyclic
Carbene Organocatalysis: Activation Modes and Typical Reactive Intermediates. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000107] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xingkuan Chen
- Department of Chemistry, Jinan University Guangzhou Guangdong 510632 China
| | - Hongling Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District Guiyang Guizhou 550025 China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District Guiyang Guizhou 550025 China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District Guiyang Guizhou 550025 China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
33
|
Shrestha R, Khanal HD, Yang W, Kim SH, Shim J, Lee YR. Metal‐Free
N
‐Annulation of 3‐Formylchromones with α‐Amino Ketones for the Construction of Diverse
N
‐Functionalized Pyrroles. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rajeev Shrestha
- School of Chemical EngineeringYeungnam University Gyeongsan 38541 (Republic of Korea
| | - Hari Datta Khanal
- School of Chemical EngineeringYeungnam University Gyeongsan 38541 (Republic of Korea
| | - Won‐Guen Yang
- Analysis Research DivisionDaegu CenterKorea Basic Science Institute Daegu 41566 (Republic of Korea
| | - Sung Hong Kim
- Analysis Research DivisionDaegu CenterKorea Basic Science Institute Daegu 41566 (Republic of Korea
| | - Jae‐Jin Shim
- School of Chemical EngineeringYeungnam University Gyeongsan 38541 (Republic of Korea
| | - Yong Rok Lee
- School of Chemical EngineeringYeungnam University Gyeongsan 38541 (Republic of Korea
| |
Collapse
|
34
|
Li D, Wang S, Ge S, Dong S, Feng X. Asymmetric Synthesis of Axially Chiral Anilides via Organocatalytic Atroposelective N-Acylation. Org Lett 2020; 22:5331-5336. [DOI: 10.1021/acs.orglett.0c01581] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Dawei Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Sijing Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shulin Ge
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
35
|
He S, Gu H, He YP, Yang X. Asymmetric Aza-Diels–Alder Reactions of in Situ Generated β,β-Disubstituted α,β-Unsaturated N–H Ketimines Catalyzed by Chiral Phosphoric Acids. Org Lett 2020; 22:5633-5639. [DOI: 10.1021/acs.orglett.0c01994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shunlong He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China
| | - Huanchao Gu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu-Peng He
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
36
|
Chen L, Zhang L, Yan G, Huang D. Recent Advances of Cinnamic Acids in Organic Synthesis. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000217] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lihua Chen
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Ling Zhang
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Guobing Yan
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Dayun Huang
- Department of ChemistryLishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| |
Collapse
|
37
|
Xu K, Ye J, Liu H, Shen J, Liu D, Zhang W. Pd‐Catalyzed Asymmetric Allylic Substitution Annulation Using Enolizable Ketimines as Nucleophiles: An Alternative Approach to Chiral Tetrahydroindoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kai Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Jianxun Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Hao Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Jiefeng Shen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative MoleculesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| |
Collapse
|
38
|
Mou C, Zhou L, Song R, Chai H, Hao L, Chi YR. Carbene-Catalyzed Reaction of Indolyl Methylenemalononitriles and Enals for Access to Complex Tetrahydrocarbazoles. Org Lett 2020; 22:2542-2547. [DOI: 10.1021/acs.orglett.0c00418] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Chengli Mou
- Guizhou University of Traditional Chinese Medicine, Guizhou, Huaxi District, Guiyang 550025, China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Runjiang Song
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Huifang Chai
- Guizhou University of Traditional Chinese Medicine, Guizhou, Huaxi District, Guiyang 550025, China
| | - Lin Hao
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yonggui Robin Chi
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
39
|
Chen XY, Gao ZH, Ye S. Bifunctional N-Heterocyclic Carbenes Derived from l-Pyroglutamic Acid and Their Applications in Enantioselective Organocatalysis. Acc Chem Res 2020; 53:690-702. [PMID: 32142245 DOI: 10.1021/acs.accounts.9b00635] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed.This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut-Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed.In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon-carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group.
Collapse
Affiliation(s)
- Xiang-Yu Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- School of Chemical Sciences, University of the Chinese Academy of Sciences, 100049 Beijing, China
| | - Zhong-Hua Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- School of Chemical Sciences, University of the Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
40
|
Arupula SK, Qureshi AA, Swamy KCK. Lewis Base-Switched [3 + 3] and [4 + 2] Annulation Reactions of δ-Acetoxy Allenoates with Cyclic N-Sulfonyl Imines: Divergent Synthesis of Functionalized α-Pyridyl Acetates and Teraryl Scaffolds. J Org Chem 2020; 85:4130-4144. [DOI: 10.1021/acs.joc.9b03281] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sanjeeva K. Arupula
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Asif Ali Qureshi
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - K. C. Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| |
Collapse
|
41
|
Xie Y, Li L, Sun S, Wu Z, Lang M, Jiang D, Wang J. Enantioselective NHC-Catalyzed [3+3] Annulation of α-Bromoenals with 2-Aminobenzimidazoles. Org Lett 2020; 22:391-394. [PMID: 31913042 DOI: 10.1021/acs.orglett.9b04054] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A chiral carbene-catalyzed [3+3] annulation of α-bromoenals with 2-aminobenzimidazoles providing pyrimido[1,2-a]benzimidazoles has been described. This protocol features a broad scope and good functional group tolerance. Biological studies indicated that the formed pyrimido[1,2-a]benzimidazole exhibited moderate cytotoxic activity against tumor cells.
Collapse
Affiliation(s)
- Yangxi Xie
- School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , China
| | - Luoyuan Li
- School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , China
| | - Shaofa Sun
- College of Chemistry and Biological Sciences , Hubei University of Science and Technology , Hubei 437100 , China
| | - Zijun Wu
- School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , China
| | - Ming Lang
- School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , China
| | - Di Jiang
- School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , China
| | - Jian Wang
- College of Chemistry and Biological Sciences , Hubei University of Science and Technology , Hubei 437100 , China.,School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
42
|
Wang C, Li Z, Zhang J, Hui XP. Asymmetric N-alkylation of indoles with isatins catalyzed by N-heterocyclic carbene: efficient synthesis of functionalized cyclic N,O-aminal indole derivatives. Org Chem Front 2020. [DOI: 10.1039/d0qo00237b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enantioselective N-alkylation of indole-2-formaldehydes with isatins catalyzed by NHCs is described for efficient synthesis of functionalized cyclic N,O-aminal indole derivatives.
Collapse
Affiliation(s)
- Chengyuan Wang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Zhuopeng Li
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Jiong Zhang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xin-Ping Hui
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
43
|
Yuan K, Dong F, Yin X, Li SS, Wang L, Xu L. The dual alkylation of the C(sp3)–H bond of cyclic α-methyl-N-sulfonyl imines via the sequential condensation/hydride transfer/cyclization process. Org Chem Front 2020. [DOI: 10.1039/d0qo00972e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The dual alkylation of the C(sp3)–H bond of the cyclic α-methyl-N-sulfonyl imine has been achieved through the piperidine-promoted cascade condensation/[1,5]-hydride transfer/cyclization from cyclic α-methyl-N-sulfonyl imine and o-aminobenzaldehyde in trifluoroethanol.
Collapse
Affiliation(s)
- Kejin Yuan
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Fengying Dong
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xiangcong Yin
- Hematology Diagnosis Laboratory
- The Affiliated Hospital of Qingdao University
- Qingdao
- P. R. China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Chemistry and Molecular Engineering
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Chemistry and Molecular Engineering
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| |
Collapse
|
44
|
Jiang W, Zhou J, Ma AJ, Li D, Ma YY, Zhao DG, Hou SH, Lin JB, Zhang SY. A dienamine-mediated deconjugative addition/cyclization cascade of γ,γ-disubstituted enals with carboxylic acid-activated enones: a rapid access to highly functionalized γ-lactones. Org Chem Front 2020. [DOI: 10.1039/c9qo01367a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An aminocatalytic deconjugative addition/cyclization cascade of γ,γ-disubstituted enals with carboxylic acid-activated enones was realized, giving rise to highly functionalized γ-lactones with excellent enantioselectivities.
Collapse
Affiliation(s)
- Wei Jiang
- School of Biotechnology and Health Sciences
- International Healthcare Innovation Institute
- Wuyi University
- Jiangmen 529020
- China
| | - Jia Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences
- International Healthcare Innovation Institute
- Wuyi University
- Jiangmen 529020
- China
| | - Dongli Li
- School of Biotechnology and Health Sciences
- International Healthcare Innovation Institute
- Wuyi University
- Jiangmen 529020
- China
| | - Yan-Yan Ma
- School of Biotechnology and Health Sciences
- International Healthcare Innovation Institute
- Wuyi University
- Jiangmen 529020
- China
| | - Deng-Gao Zhao
- School of Biotechnology and Health Sciences
- International Healthcare Innovation Institute
- Wuyi University
- Jiangmen 529020
- China
| | - Si-Hua Hou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Jun-Bing Lin
- Shaanxi Key Laboratory of Chemical Reaction Engineering
- College of Chemistry and Chemical Engineering
- Yan'an University
- Yan'an 716000
- China
| | - Shu-Yu Zhang
- School of Biotechnology and Health Sciences
- International Healthcare Innovation Institute
- Wuyi University
- Jiangmen 529020
- China
| |
Collapse
|
45
|
Li T, Wang J, Xu J, Jin J, Chi YR, Jin Z. Enantio- and Diastereoselective Synthesis of Chromeno[4,3-b]pyrrole Derivatives Bearing Tetrasubstituted Chirality Centers through Carbene Catalyzed Cascade Reactions. Org Lett 2019; 22:326-330. [DOI: 10.1021/acs.orglett.9b04371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tingting Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jilan Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jun Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang 550025, China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jiamiao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
46
|
Sun S, Lang M, Wang J. N‐Heterocyclic Carbene‐Catalyzed
β
‐Indolylation of
α
‐Bromoenals with Indoles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Shaofa Sun
- College of Chemistry and Biological SciencesHubei University of Science and Technology Hubei 437100 People's Republic of China
| | - Ming Lang
- School of Pharmaceutical SciencesTsinghua University Beijing 100084 People's Republic of China
| | - Jian Wang
- School of Pharmaceutical SciencesTsinghua University Beijing 100084 People's Republic of China
| |
Collapse
|
47
|
Ghosh A, Barik S, Biju AT. NHC-Catalyzed [3 + 3] Annulation of Thioamides and Modified Enals for the Enantioselective Synthesis of Functionalized Thiazinones. Org Lett 2019; 21:8598-8602. [PMID: 31618035 DOI: 10.1021/acs.orglett.9b03188] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-Heterocyclic carbene (NHC)-catalyzed [3 + 3] annulation of thioamides with modified enals allowing the enantioselective synthesis of functionalized 1,3-thiazin-4-ones is reported. The NHC generated from the chiral triazolium salt was optimal and the reaction is initiated by the thia-Michael addition to catalytically generated α,β-unsaturated acylazolium intermediates derived from 2-bromoenals, followed by intramolecular cyclization. This operationally simple procedure offers a straightforward and rapid access to target compounds in moderate to good yields and enantiomeric ratio values.
Collapse
Affiliation(s)
- Arghya Ghosh
- Department of Organic Chemistry , Indian Institute of Science , Bangalore - 560012 , India
| | - Soumen Barik
- Department of Organic Chemistry , Indian Institute of Science , Bangalore - 560012 , India
| | - Akkattu T Biju
- Department of Organic Chemistry , Indian Institute of Science , Bangalore - 560012 , India
| |
Collapse
|
48
|
Luo T, Xu H, Liu Y. Aqueous Synthesis of 3,4‐Dihydropyridinones from Acryloyl Chloride and Enaminones by Domino Amidation and Intramolecular Michael Addition. ChemistrySelect 2019. [DOI: 10.1002/slct.201902898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tian Luo
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| | - Haishun Xu
- State Key Laboratory of Subtropical SilvicultureDepartment of Traditional Chinese MedicineZhejiang A&F University Hangzhou 311300 P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
49
|
Hu Z, Zhu Y, Fu Z, Huang W. Asymmetric Synthesis of Enantioenriched 6-Hydroxyl Butyrolactams Promoted by N-Heterocyclic Carbene. J Org Chem 2019; 84:10328-10337. [PMID: 31328524 DOI: 10.1021/acs.joc.9b01490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, an efficient route to synthesize 6-hydroxyl butyrolactams has been successfully developed via an N-heterocyclic carbene-catalyzed formal [3 + 2] annulation of bromoenals with α-amino ketones, followed by reduction. Remarkably, enantioenriched epi-neoclausenamide, which is one of the clausenamide derivatives, could be efficiently prepared by this strategy.
Collapse
Affiliation(s)
- Zhouli Hu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China
| | - Ying Zhu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China.,Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , China
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China.,Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , China
| |
Collapse
|
50
|
Anwar M, Yang S, Xu W, Liu J, Perveen S, Kong X, Zehra ST, Fang X. Carbene-catalyzed asymmetric Friedel–Crafts alkylation-annulation sequence and rapid synthesis of indole-fused polycyclic alkaloids. Commun Chem 2019. [DOI: 10.1038/s42004-019-0188-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|