1
|
Miao Q, Zurlo E, de Bruin D, Wondergem JAJ, Timmer M, Blok A, Heinrich D, Overhand M, Huber M, Ubbink M. A Two-Armed Probe for In-Cell DEER Measurements on Proteins*. Chemistry 2020; 26:17128-17133. [PMID: 33200852 PMCID: PMC7839491 DOI: 10.1002/chem.202002743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/27/2020] [Indexed: 12/21/2022]
Abstract
The application of double electron‐electron resonance (DEER) with site‐directed spin labeling (SDSL) to measure distances in proteins and protein complexes in living cells puts rigorous restraints on the spin‐label. The linkage and paramagnetic centers need to resist the reducing conditions of the cell. Rigid attachment of the probe to the protein improves precision of the measured distances. Here, three two‐armed GdIII complexes, GdIII‐CLaNP13a/b/c were synthesized. Rather than the disulfide linkage of most other CLaNP molecules, a thioether linkage was used to avoid reductive dissociation of the linker. The doubly GdIII labeled N55C/V57C/K147C/T151C variants of T4Lysozyme were measured by 95 GHz DEER. The constructs were measured in vitro, in cell lysate and in Dictyostelium discoideum cells. Measured distances were 4.5 nm, consistent with results from paramagnetic NMR. A narrow distance distribution and typical modulation depth, also in cell, indicate complete and durable labeling and probe rigidity due to the dual attachment sites.
Collapse
Affiliation(s)
- Qing Miao
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Enrico Zurlo
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO box 9504, 2300, RA, Leiden, The Netherlands
| | - Donny de Bruin
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO box 9504, 2300, RA, Leiden, The Netherlands
| | - Joeri A J Wondergem
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO box 9504, 2300, RA, Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Anneloes Blok
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Doris Heinrich
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO box 9504, 2300, RA, Leiden, The Netherlands.,Fraunhofer Institute for Silicate Research ISC, 97082, Würzburg, Germany
| | - Mark Overhand
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO box 9504, 2300, RA, Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| |
Collapse
|
2
|
Wang Y, An L, Yang Y, Yao L. Generating Five Independent Molecular Alignments for Simultaneous Protein Structure and Dynamics Determination Using Nuclear Magnetic Resonance Spectroscopy. Anal Chem 2020; 92:15263-15269. [PMID: 33166130 DOI: 10.1021/acs.analchem.0c02882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Residual dipolar couplings (RDCs) are commonly used in NMR for protein structure and dynamics studies, but it is challenging to generate five independent RDC data sets (required for simultaneous structure and dynamics determination) for most protein molecules in the magnetic field. In this work, a reporter protein with a lanthanide tag is introduced to create five independent alignments. This reporter protein is then attached to target proteins where five independent sets of RDCs are also obtained for the target proteins. The fitting of RDCs provides important information about the structure and dynamics of the target proteins. The method is simple and effective and, in principle, can be used to generate complete sets of RDCs for different protein molecules.
Collapse
Affiliation(s)
| | - Liaoyuan An
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | |
Collapse
|
3
|
Di Mauro GM, Hardin NZ, Ramamoorthy A. Lipid-nanodiscs formed by paramagnetic metal chelated polymer for fast NMR data acquisition. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183332. [PMID: 32360741 PMCID: PMC7340147 DOI: 10.1016/j.bbamem.2020.183332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Lipid-nanodiscs have been shown to be an exciting innovation as a membrane-mimicking system for studies on membrane proteins by a variety of biophysical techniques, including NMR spectroscopy. Although NMR spectroscopy is unique in enabling the atomic-resolution investigation of dynamic structures of membrane-associated molecules, it, unfortunately, suffers from intrinsically low sensitivity. The long data acquisition often used to enhance the sensitivity is not desirable for sensitive membrane proteins. Instead, paramagnetic relaxation enhancement (PRE) has been used to reduce NMR data acquisition time or to reduce the amount of sample required to acquire an NMR spectra. However, the PRE approach involves the introduction of external paramagnetic probes in the system, which can induce undesired changes in the sample and on the observed NMR spectra. For example, the addition of paramagnetic ions, as frequently used, can denature the protein via direct interaction and also through sample heating. In this study, we show how the introduction of paramagnetic tags on the outer belt of polymer-nanodiscs can be used to speed-up data acquisition by significantly reducing the spin-lattice relaxation (T1) times with minimum-to-no alteration of the spectral quality. Our results also demonstrate the feasibility of using different types of paramagnetic ions (Eu3+, Gd3+, Dy3+, Er3+, Yb3+) for NMR studies on lipid-nanodiscs. Experimental results characterizing the formation of lipid-nanodiscs by the metal-chelated polymer, and their increased tolerance toward metal ions are also reported.
Collapse
Affiliation(s)
- Giacomo M Di Mauro
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nathaniel Z Hardin
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biophysics and Chemistry Department, The University of Michigan, Ann Arbor, MI 48109-1055, USA; Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA; Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
4
|
Munari F, D'Onofrio M, Assfalg M. Solution NMR insights into dynamic supramolecular assemblies of disordered amyloidogenic proteins. Arch Biochem Biophys 2020; 683:108304. [PMID: 32097611 DOI: 10.1016/j.abb.2020.108304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/29/2022]
Abstract
The extraordinary flexibility and structural heterogeneity of intrinsically disordered proteins (IDP) make them functionally versatile molecules. We have now begun to better understand their fundamental role in biology, however many aspects of their behaviour remain difficult to grasp experimentally. This is especially true for the intermolecular interactions which lead to the formation of transient or highly dynamic supramolecular self-assemblies, such as oligomers, aggregation intermediates and biomolecular condensates. Both the emerging functions and pathogenicity of these structures have stimulated great efforts to develop methodologies capable of providing useful insights. Significant progress in solution NMR spectroscopy has made this technique one of the most powerful to describe structural and dynamic features of IDPs within such assemblies at atomic resolution. Here, we review the most recent works that have illuminated key aspects of IDP assemblies and contributed significant advancements towards our understanding of the complex conformational landscape of prototypical disease-associated proteins. We also include a primer on some of the fundamental and innovative NMR methods being used in the discussed studies.
Collapse
Affiliation(s)
- Francesca Munari
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
5
|
Joss D, Häussinger D. Design and applications of lanthanide chelating tags for pseudocontact shift NMR spectroscopy with biomacromolecules. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:284-312. [PMID: 31779884 DOI: 10.1016/j.pnmrs.2019.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 05/14/2023]
Abstract
In this review, lanthanide chelating tags and their applications to pseudocontact shift NMR spectroscopy as well as analysis of residual dipolar couplings are covered. A complete overview is presented of DOTA-derived and non-DOTA-derived lanthanide chelating tags, critical points in the design of lanthanide chelating tags as appropriate linker moieties, their stability under reductive conditions, e.g., for in-cell applications, the magnitude of the anisotropy transferred from the lanthanide chelating tag to the biomacromolecule under investigation and structural properties, as well as conformational bias of the lanthanide chelating tags are discussed. Furthermore, all DOTA-derived lanthanide chelating tags used for PCS NMR spectroscopy published to date are displayed in tabular form, including their anisotropy parameters, with all employed lanthanide ions, CB-Ln distances and tagging reaction conditions, i.e., the stoichiometry of lanthanide chelating tags, pH, buffer composition, temperature and reaction time. Additionally, applications of lanthanide chelating tags for pseudocontact shifts and residual dipolar couplings that have been reported for proteins, protein-protein and protein-ligand complexes, carbohydrates, carbohydrate-protein complexes, nucleic acids and nucleic acid-protein complexes are presented and critically reviewed. The vast and impressive range of applications of lanthanide chelating tags to structural investigations of biomacromolecules in solution clearly illustrates the significance of this particular field of research. The extension of the repertoire of lanthanide chelating tags from proteins to nucleic acids holds great promise for the determination of valuable structural parameters and further developments in characterizing intermolecular interactions.
Collapse
Affiliation(s)
- Daniel Joss
- University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
| | | |
Collapse
|
6
|
Ponce-Salvatierra A, Astha, Merdas K, Nithin C, Ghosh P, Mukherjee S, Bujnicki JM. Computational modeling of RNA 3D structure based on experimental data. Biosci Rep 2019; 39:BSR20180430. [PMID: 30670629 PMCID: PMC6367127 DOI: 10.1042/bsr20180430] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 01/02/2023] Open
Abstract
RNA molecules are master regulators of cells. They are involved in a variety of molecular processes: they transmit genetic information, sense cellular signals and communicate responses, and even catalyze chemical reactions. As in the case of proteins, RNA function is dictated by its structure and by its ability to adopt different conformations, which in turn is encoded in the sequence. Experimental determination of high-resolution RNA structures is both laborious and difficult, and therefore the majority of known RNAs remain structurally uncharacterized. To address this problem, predictive computational methods were developed based on the accumulated knowledge of RNA structures determined so far, the physical basis of the RNA folding, and taking into account evolutionary considerations, such as conservation of functionally important motifs. However, all theoretical methods suffer from various limitations, and they are generally unable to accurately predict structures for RNA sequences longer than 100-nt residues unless aided by additional experimental data. In this article, we review experimental methods that can generate data usable by computational methods, as well as computational approaches for RNA structure prediction that can utilize data from experimental analyses. We outline methods and data types that can be potentially useful for RNA 3D structure modeling but are not commonly used by the existing software, suggesting directions for future development.
Collapse
Affiliation(s)
- Almudena Ponce-Salvatierra
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Astha
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Katarzyna Merdas
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Chandran Nithin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Pritha Ghosh
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, Poznan PL-61-614, Poland
| |
Collapse
|
7
|
Bortot A, Zanzoni S, D'Onofrio M, Assfalg M. Specific Interaction Sites Determine Differential Adsorption of Protein Structural Isomers on Nanoparticle Surfaces. Chemistry 2018; 24:5911-5919. [PMID: 29446497 DOI: 10.1002/chem.201705994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 11/08/2022]
Abstract
In biological systems, nanoparticles (NPs) elicit bioactivity upon interaction with proteins. As a result of post-translational modification, proteins occur in a variety of alternative covalent forms, including structural isomers, which present unique molecular surfaces. We aimed at a detailed description of the recognition of protein isomeric species by NP surfaces. The transient adsorption of isomeric ubiquitin (Ub) dimers by NPs was investigated by solution NMR spectroscopy. Lys63- and Lys48-linked Ub2 were adsorbed by large anionic NPs with different affinities, whereas the binding strength was similar in the cases of smaller particles. After the incorporation of paramagnetic tags into NPs, the observed site-resolved paramagnetic footprints provided a high-resolution map of the different protein surfaces binding to NPs. The approach described could be extended to further protein isoforms and more specialized NP systems to allow better control of the interactions between NPs and protein targets.
Collapse
Affiliation(s)
- Andrea Bortot
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| | - Serena Zanzoni
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| |
Collapse
|
8
|
Munari F, Bortot A, Zanzoni S, D'Onofrio M, Fushman D, Assfalg M. Identification of primary and secondary UBA footprints on the surface of ubiquitin in cell-mimicking crowded solution. FEBS Lett 2017; 591:979-990. [PMID: 28267209 DOI: 10.1002/1873-3468.12615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 01/09/2023]
Abstract
Despite significant advancements in our understanding of ubiquitin-mediated signaling, the influence of the intracellular environment on the formation of transient ubiquitin-partner complexes remains poorly explored. In our work, we introduce macromolecular crowding as a first level of complexity toward the imitation of a cellular environment in the study of such interactions. Using NMR spectroscopy, we find that the stereospecific complex of ubiquitin and the ubiquitin-associated domain (UBA) is minimally perturbed by the crowding agent Ficoll. However, in addition to the primary canonical recognition patch on ubiquitin, secondary patches are identified, indicating that in cell-mimicking crowded solution, UBA contacts ubiquitin at multiple sites.
Collapse
Affiliation(s)
| | - Andrea Bortot
- Department of Biotechnology, University of Verona, Italy
| | - Serena Zanzoni
- Department of Biotechnology, University of Verona, Italy
| | | | - David Fushman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
9
|
Nitsche C, Otting G. Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 98-99:20-49. [PMID: 28283085 DOI: 10.1016/j.pnmrs.2016.11.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 05/14/2023]
Affiliation(s)
- Christoph Nitsche
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia.
| | - Gottfried Otting
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia. http://www.rsc.anu.edu.au/~go/index.html
| |
Collapse
|
10
|
Ma FH, Wang X, Chen JL, Wen X, Sun H, Su XC. Deciphering the Multisite Interactions of a Protein and Its Ligand at Atomic Resolution by Using Sensitive Paramagnetic Effects. Chemistry 2017; 23:926-934. [DOI: 10.1002/chem.201604393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Fei-He Ma
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Xiao Wang
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Han Sun
- Department of Structural Biology; Leibniz-Institut für Molekulare Pharmakologie (FMP); Robert-Roessle-Str. 10 13125 Berlin Germany
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| |
Collapse
|
11
|
Marchetti R, Perez S, Arda A, Imberty A, Jimenez‐Barbero J, Silipo A, Molinaro A. "Rules of Engagement" of Protein-Glycoconjugate Interactions: A Molecular View Achievable by using NMR Spectroscopy and Molecular Modeling. ChemistryOpen 2016; 5:274-96. [PMID: 27547635 PMCID: PMC4981046 DOI: 10.1002/open.201600024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 12/20/2022] Open
Abstract
Understanding the dynamics of protein-ligand interactions, which lie at the heart of host-pathogen recognition, represents a crucial step to clarify the molecular determinants implicated in binding events, as well as to optimize the design of new molecules with therapeutic aims. Over the last decade, advances in complementary biophysical and spectroscopic methods permitted us to deeply dissect the fine structural details of biologically relevant molecular recognition processes with high resolution. This Review focuses on the development and use of modern nuclear magnetic resonance (NMR) techniques to dissect binding events. These spectroscopic methods, complementing X-ray crystallography and molecular modeling methodologies, will be taken into account as indispensable tools to provide a complete picture of protein-glycoconjugate binding mechanisms related to biomedicine applications against infectious diseases.
Collapse
Affiliation(s)
- Roberta Marchetti
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| | - Serge Perez
- Department Molecular Pharmacochemistry UMR 5063CNRS and University of GrenobleAlpes, BP 5338041 Grenoble cedex 9France
| | - Ana Arda
- Bizkaia Technological ParkCIC bioGUNEBuilding 801A-148160Derio-BizkaiaSpain
| | - Anne Imberty
- Centre de Recherche sur les CNRSand University of Grenoble Macromolécules Végétales, UPR 5301Alpes, BP 5338041Grenoble cedex 9France
| | | | - Alba Silipo
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| | - Antonio Molinaro
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| |
Collapse
|
12
|
Lee MD, Dennis ML, Swarbrick JD, Graham B. Enantiomeric two-armed lanthanide-binding tags for complementary effects in paramagnetic NMR spectroscopy. Chem Commun (Camb) 2016; 52:7954-7. [DOI: 10.1039/c6cc02325h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A new pair of two-armed lanthanide-binding tags provide distinct sets of structural restraints when attached to the same site of a protein.
Collapse
Affiliation(s)
- Michael D. Lee
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Matthew L. Dennis
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
- CSIRO Biosciences Program
| | - James D. Swarbrick
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| |
Collapse
|
13
|
Brath U, Swamy SI, Veiga AX, Tung CC, Van Petegem F, Erdélyi M. Paramagnetic Ligand Tagging To Identify Protein Binding Sites. J Am Chem Soc 2015; 137:11391-8. [PMID: 26289584 PMCID: PMC4583072 DOI: 10.1021/jacs.5b06220] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Transient
biomolecular interactions are the cornerstones of the
cellular machinery. The identification of the binding sites for low
affinity molecular encounters is essential for the development of
high affinity pharmaceuticals from weakly binding leads but is hindered
by the lack of robust methodologies for characterization of weakly
binding complexes. We introduce a paramagnetic ligand tagging approach
that enables localization of low affinity protein–ligand binding
clefts by detection and analysis of intermolecular protein NMR pseudocontact
shifts, which are invoked by the covalent attachment of a paramagnetic
lanthanoid chelating tag to the ligand of interest. The methodology
is corroborated by identification of the low millimolar volatile anesthetic
interaction site of the calcium sensor protein calmodulin. It presents
an efficient route to binding site localization for low affinity complexes
and is applicable to rapid screening of protein–ligand systems
with varying binding affinity.
Collapse
Affiliation(s)
- Ulrika Brath
- Department of Chemistry and Molecular Biology and the Swedish NMR Centre, University of Gothenburg , SE-412 96 Gothenburg, Sweden
| | - Shashikala I Swamy
- Department of Chemistry and Molecular Biology and the Swedish NMR Centre, University of Gothenburg , SE-412 96 Gothenburg, Sweden
| | - Alberte X Veiga
- Department of Chemistry and Molecular Biology and the Swedish NMR Centre, University of Gothenburg , SE-412 96 Gothenburg, Sweden
| | - Ching-Chieh Tung
- Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, BC V6T 1Z3, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, BC V6T 1Z3, Canada
| | - Máté Erdélyi
- Department of Chemistry and Molecular Biology and the Swedish NMR Centre, University of Gothenburg , SE-412 96 Gothenburg, Sweden
| |
Collapse
|
14
|
Hass MAS, Liu WM, Agafonov RV, Otten R, Phung LA, Schilder JT, Kern D, Ubbink M. A minor conformation of a lanthanide tag on adenylate kinase characterized by paramagnetic relaxation dispersion NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2015; 61:123-136. [PMID: 25563704 DOI: 10.1007/s10858-014-9894-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
NMR relaxation dispersion techniques provide a powerful method to study protein dynamics by characterizing lowly populated conformations that are in dynamic exchange with the major state. Paramagnetic NMR is a versatile tool for investigating the structures and dynamics of proteins. These two techniques were combined here to measure accurate and precise pseudocontact shifts of a lowly populated conformation. This method delivers valuable long-range structural restraints for higher energy conformations of macromolecules in solution. Another advantage of combining pseudocontact shifts with relaxation dispersion is the increase in the amplitude of dispersion profiles. Lowly populated states are often involved in functional processes, such as enzyme catalysis, signaling, and protein/protein interactions. The presented results also unveil a critical problem with the lanthanide tag used to generate paramagnetic relaxation dispersion effects in proteins, namely that the motions of the tag can interfere severely with the observation of protein dynamics. The two-point attached CLaNP-5 lanthanide tag was linked to adenylate kinase. From the paramagnetic relaxation dispersion only motion of the tag is observed. The data can be described accurately by a two-state model in which the protein-attached tag undergoes a 23° tilting motion on a timescale of milliseconds. The work demonstrates the large potential of paramagnetic relaxation dispersion and the challenge to improve current tags to minimize relaxation dispersion from tag movements.
Collapse
Affiliation(s)
- Mathias A S Hass
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|