1
|
Abstract
Deposits of the microtubule-associated protein Tau (MAPT) serve as a hallmark of neurodegenerative diseases known as tauopathies. Numerous studies have demonstrated that in diseases such as Alzheimer's disease (AD), Tau undergoes extensive remodeling. The attachment of post-translational modifications distributed throughout the entire sequence of the protein correlates with clinical presentation. A systematic examination of these protein alterations can shed light on their roles in both healthy and diseased states. However, the ability to access these modifications in the entire protein chain is limited as Tau can only be produced recombinantly or through semisynthesis. In this article, we describe the first chemical synthesis of the longest 2N4R isoform of Tau, consisting of 441 amino acids. The 2N4R Tau was divided into 3 major segments and a total of 11 fragments, all of which were prepared via solid-phase peptide synthesis. The successful chemical strategy has relied on the strategic use of two cysteine sites (C291 and C322) for the native chemical ligations (NCLs). This was combined with modern preparative protein chemistries, such as mercaptothreonine ligation (T205), diselenide-selenoester ligation (D358), and mutations of mercaptoamino acids into native residues via homogeneous radical desulfurization (A40, A77, A119, A157, A246, and A390). The successful completion of the synthesis has established a robust and scalable route to the native protein in multimilligram quantities and high purity. In broader terms, the presented strategy can be applied to the preparation of other shorter isoforms of Tau as well as to introduce all post-translational modifications that are characteristic of tauopathies such as AD.
Collapse
Affiliation(s)
- Wyatt C Powell
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Ruiheng Jing
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
2
|
Cardella D, Tsai YH, Luk LYP. Towards the use of an amino acid cleavable linker for solid-phase chemical synthesis of peptides and proteins. Org Biomol Chem 2023; 21:966-969. [PMID: 36628630 PMCID: PMC9890637 DOI: 10.1039/d2ob02198f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The synthesis of proteins by solid-phase chemical ligation (SPCL) suffers from the paucity of linkers that can be cleaved under mild conditions. Here, we deployed a spontaneous nickel-assisted cleavage (SNAC) tag, known to undergo spontaneous cleavage in the presence of nickel(II), as a linker for C-to-N SPCL.
Collapse
Affiliation(s)
| | - Yu-Hsuan Tsai
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhen 518132China
| | | |
Collapse
|
3
|
Lee G, Kageyama Y, Takeda S. Site-Selective Spin-Probe with a Photocleavable Macrocyclic Linker for Measuring the Dynamics of Water Surrounding a Liposomal Assembly. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gyeorye Lee
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yoshiyuki Kageyama
- Faculty of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Sadamu Takeda
- Faculty of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
4
|
Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Front Chem 2022; 10:886382. [PMID: 35646824 PMCID: PMC9133342 DOI: 10.3389/fchem.2022.886382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation into highly ordered, regularly repeated cross-β sheet structures called amyloid fibrils is closely associated to human disorders such as neurodegenerative diseases including Alzheimer's and Parkinson's diseases, or systemic diseases like type II diabetes. Yet, in some cases, such as the HET-s prion, amyloids have biological functions. High-resolution structures of amyloids fibrils from cryo-electron microscopy have very recently highlighted their ultrastructural organization and polymorphisms. However, the molecular mechanisms and the role of co-factors (posttranslational modifications, non-proteinaceous components and other proteins) acting on the fibril formation are still poorly understood. Whether amyloid fibrils play a toxic or protective role in the pathogenesis of neurodegenerative diseases remains to be elucidated. Furthermore, such aberrant protein-protein interactions challenge the search of small-molecule drugs or immunotherapy approaches targeting amyloid formation. In this review, we describe how chemical biology tools contribute to new insights on the mode of action of amyloidogenic proteins and peptides, defining their structural signature and aggregation pathways by capturing their molecular details and conformational heterogeneity. Challenging the imagination of scientists, this constantly expanding field provides crucial tools to unravel mechanistic detail of amyloid formation such as semisynthetic proteins and small-molecule sensors of conformational changes and/or aggregation. Protein engineering methods and bioorthogonal chemistry for the introduction of protein chemical modifications are additional fruitful strategies to tackle the challenge of understanding amyloid formation.
Collapse
Affiliation(s)
- Isabelle Landrieu
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Elian Dupré
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Davy Sinnaeve
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Léa El Hajjar
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| |
Collapse
|
5
|
Moon SP, Balana AT, Pratt MR. Consequences of post-translational modifications on amyloid proteins as revealed by protein semisynthesis. Curr Opin Chem Biol 2021; 64:76-89. [PMID: 34175787 DOI: 10.1016/j.cbpa.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/21/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022]
Abstract
Alterations to the global levels of certain types of post-translational modifications (PTMs) are commonly observed in neurodegenerative diseases. The net influence of these PTM changes to the progression of these diseases can be deduced from cellular and animal studies. However, at the molecular level, how one PTM influences a given protein is not uniform and cannot be easily generalized from systemic observations, thus requiring protein-specific interrogations. Given that protein aggregation is a shared pathological hallmark in neurodegeneration, it is important to understand how these PTMs affect the behavior of amyloid-forming proteins. For this purpose, protein semisynthesis techniques, largely via native chemical and expressed protein ligation, have been widely used. These approaches have thus far led to our increased understanding of the site-specific consequences of certain PTMs to amyloidogenic proteins' endogenous function, their propensity for aggregation, and the structural variations these PTMs induce toward the aggregates formed.
Collapse
Affiliation(s)
- Stuart P Moon
- Departments of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Aaron T Balana
- Departments of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matthew R Pratt
- Departments of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA; Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
6
|
Cantrelle FX, Loyens A, Trivelli X, Reimann O, Despres C, Gandhi NS, Hackenberger CPR, Landrieu I, Smet-Nocca C. Phosphorylation and O-GlcNAcylation of the PHF-1 Epitope of Tau Protein Induce Local Conformational Changes of the C-Terminus and Modulate Tau Self-Assembly Into Fibrillar Aggregates. Front Mol Neurosci 2021; 14:661368. [PMID: 34220449 PMCID: PMC8249575 DOI: 10.3389/fnmol.2021.661368] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Phosphorylation of the neuronal microtubule-associated Tau protein plays a critical role in the aggregation process leading to the formation of insoluble intraneuronal fibrils within Alzheimer's disease (AD) brains. In recent years, other posttranslational modifications (PTMs) have been highlighted in the regulation of Tau (dys)functions. Among these PTMs, the O-β-linked N-acetylglucosaminylation (O-GlcNAcylation) modulates Tau phosphorylation and aggregation. We here focus on the role of the PHF-1 phospho-epitope of Tau C-terminal domain that is hyperphosphorylated in AD (at pS396/pS404) and encompasses S400 as the major O-GlcNAc site of Tau while two additional O-GlcNAc sites were found in the extreme C-terminus at S412 and S413. Using high resolution NMR spectroscopy, we showed that the O-GlcNAc glycosylation reduces phosphorylation of PHF-1 epitope by GSK3β alone or after priming by CDK2/cyclin A. Furthermore, investigations of the impact of PTMs on local conformation performed in small peptides highlight the role of S404 phosphorylation in inducing helical propensity in the region downstream pS404 that is exacerbated by other phosphorylations of PHF-1 epitope at S396 and S400, or O-GlcNAcylation of S400. Finally, the role of phosphorylation and O-GlcNAcylation of PHF-1 epitope was probed in in-vitro fibrillization assays in which O-GlcNAcylation slows down the rate of fibrillar assembly while GSK3β phosphorylation stimulates aggregation counteracting the effect of glycosylation.
Collapse
Affiliation(s)
- François-Xavier Cantrelle
- Risk Factors and Molecular Determinants of Aging-Related Diseases, U1167, Institut Pasteur de Lille, CHU Lille, INSERM, University of Lille, Lille, France.,CNRS, ERL9002 - Integrative Structural Biology, Lille, France
| | - Anne Loyens
- Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, U1172, CHU Lille, INSERM, University of Lille, Lille, France
| | - Xavier Trivelli
- Université de Lille, CNRS, INRAE, Centrale Lille, Université d'Artois, Lille, France
| | - Oliver Reimann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clément Despres
- Risk Factors and Molecular Determinants of Aging-Related Diseases, U1167, Institut Pasteur de Lille, CHU Lille, INSERM, University of Lille, Lille, France
| | - Neha S Gandhi
- Centre for Genomics and Personalised Health, Cancer and Ageing Research Program, School of Chemistry and Physics, Faculty of Science and Engineering, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Isabelle Landrieu
- Risk Factors and Molecular Determinants of Aging-Related Diseases, U1167, Institut Pasteur de Lille, CHU Lille, INSERM, University of Lille, Lille, France.,CNRS, ERL9002 - Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- Risk Factors and Molecular Determinants of Aging-Related Diseases, U1167, Institut Pasteur de Lille, CHU Lille, INSERM, University of Lille, Lille, France.,CNRS, ERL9002 - Integrative Structural Biology, Lille, France
| |
Collapse
|
7
|
Zitterbart R, Berger N, Reimann O, Noble GT, Lüdtke S, Sarma D, Seitz O. Traceless parallel peptide purification by a first-in-class reductively cleavable linker system featuring a safety-release. Chem Sci 2021; 12:2389-2396. [PMID: 34164003 PMCID: PMC8179278 DOI: 10.1039/d0sc06285e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022] Open
Abstract
Hundreds of peptides can be synthesized by automated parallel synthesizers in a single run. In contrast, the most widely used peptide purification method - high-pressure liquid chromatography (HPLC) - only allows one-by-one processing of each sample. The chromatographic purification of many peptides, therefore, remains a time-consuming and costly effort. Catch-and-release methods can be processed in parallel and potentially provide a remedy. However, no such system has yet provided a true alternative to HPLC. Herein we present the development of a side-reaction free, reductively cleavable linker. The linker is added to the target peptide as the last building block during peptide synthesis. After acidic cleavage from synthetic resin, the linker-tagged full-length peptide is caught onto an aldehyde-modified solid support by rapid oxime ligation, allowing removal of all impurities lacking the linker by washing. Reducing the aryl azide to an aniline sensitizes the linker for cleavage. However, scission does not occur at non-acidic pH enabling wash out of reducing agent. Final acidic treatment safely liberates the peptide by an acid-catalysed 1,6-elimination. We showcase this first-in-class reductively cleavable linker system in the parallel purification of a personalized neoantigen cocktail, containing 20 peptides for cancer immunotherapy within six hours.
Collapse
Affiliation(s)
| | - Nadja Berger
- Belyntic GmbH Richard-Willstätter-Str. 11 12489 Berlin Germany
| | - Oliver Reimann
- Belyntic GmbH Richard-Willstätter-Str. 11 12489 Berlin Germany
| | - Gavin T Noble
- Bachem (UK) Ltd. Delph Court, Sullivans Way, St. Helens Merseyside WA9 5GL UK
| | - Stephan Lüdtke
- Belyntic GmbH Richard-Willstätter-Str. 11 12489 Berlin Germany
| | - Dominik Sarma
- Belyntic GmbH Richard-Willstätter-Str. 11 12489 Berlin Germany
| | - Oliver Seitz
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
8
|
Tan Y, Wu H, Wei T, Li X. Chemical Protein Synthesis: Advances, Challenges, and Outlooks. J Am Chem Soc 2020; 142:20288-20298. [PMID: 33211477 DOI: 10.1021/jacs.0c09664] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Contemporary chemical protein synthesis has been dramatically advanced over the past few decades, which has enabled chemists to reach the landscape of synthetic biomacromolecules. Chemical synthesis can produce synthetic proteins with precisely controlled structures which are difficult or impossible to obtain via gene expression systems. Herein, we summarize the key enabling ligation technologies, major strategic developments, and some selected representative applications of synthetic proteins and provide an outlook for future development.
Collapse
Affiliation(s)
- Yi Tan
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China SAR
| | - Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China SAR
| | - Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China SAR
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China SAR
| |
Collapse
|
9
|
Vamisetti GB, Satish G, Sulkshane P, Mann G, Glickman MH, Brik A. On-Demand Detachment of Succinimides on Cysteine to Facilitate (Semi)Synthesis of Challenging Proteins. J Am Chem Soc 2020; 142:19558-19569. [PMID: 33136379 PMCID: PMC7705887 DOI: 10.1021/jacs.0c07663] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The
maleimide group is a widely used reagent for bioconjugation
of peptides, proteins, and oligonucleotides employing Michael addition
and Diels–Alder cycloaddition reactions. However, the utility
of this functionality in chemical synthesis of peptides and proteins
remains unexplored. We report, for the first time that PdII complexes can mediate the efficient removal of various succinimide
derivatives in aqueous conditions. Succinimide removal by PdII was applied for the synthesis of two ubiquitin activity-based probes
(Ub-ABPs) employing solid phase chemical ligation (SPCL). SPCL was
achieved through a sequential three segment ligation on a polymer
support via a maleimide anchor. The obtained probes successfully formed
the expected covalent complexes with deubiquitinating enzymes (DUBs)
USP2 and USP7, highlighting the use of our new method for efficient
preparation of unique synthetic proteins. Importantly, we demonstrate
the advantages of our newly developed method for the protection and
deprotection of native cysteine with a succinimide group in a peptide
fragment derived from thioredoxin-1 (Trx-1) obtained via intein based
expression to enable ligation/desulfurization and subsequent disulfide
bond formation in a one-pot process.
Collapse
Affiliation(s)
- Ganga B Vamisetti
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Gandhesiri Satish
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Prasad Sulkshane
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Guy Mann
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Michael H Glickman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| |
Collapse
|
10
|
Strategies and open questions in solid-phase protein chemical synthesis. Curr Opin Chem Biol 2020; 58:1-9. [DOI: 10.1016/j.cbpa.2020.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022]
|
11
|
Yin H, Zheng M, Chen H, Wang S, Zhou Q, Zhang Q, Wang P. Stereoselective and Divergent Construction of β-Thiolated/Selenolated Amino Acids via Photoredox-Catalyzed Asymmetric Giese Reaction. J Am Chem Soc 2020; 142:14201-14209. [DOI: 10.1021/jacs.0c04994] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hongli Yin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Mengjie Zheng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Huan Chen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Qingqing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Qiang Zhang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| |
Collapse
|
12
|
Jin S, Brea RJ, Rudd AK, Moon SP, Pratt MR, Devaraj NK. Traceless native chemical ligation of lipid-modified peptide surfactants by mixed micelle formation. Nat Commun 2020; 11:2793. [PMID: 32493905 PMCID: PMC7270136 DOI: 10.1038/s41467-020-16595-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/07/2020] [Indexed: 12/04/2022] Open
Abstract
Biology utilizes multiple strategies, including sequestration in lipid vesicles, to raise the rate and specificity of chemical reactions through increases in effective molarity of reactants. We show that micelle-assisted reaction can facilitate native chemical ligations (NCLs) between a peptide-thioester – in which the thioester leaving group contains a lipid-like alkyl chain – and a Cys-peptide modified by a lipid-like moiety. Hydrophobic lipid modification of each peptide segment promotes the formation of mixed micelles, bringing the reacting peptides into close proximity and increasing the reaction rate. The approach enables the rapid synthesis of polypeptides using low concentrations of reactants without the need for thiol catalysts. After NCL, the lipid moiety is removed to yield an unmodified ligation product. This micelle-based methodology facilitates the generation of natural peptides, like Magainin 2, and the derivatization of the protein Ubiquitin. Formation of mixed micelles from lipid-modified reactants shows promise for accelerating chemical reactions in a traceless manner. Sequestration of reactants in lipid vesicles is a strategy prevalent in biological systems to raise the rate and specificity of chemical reactions. Here, the authors show that micelle-assisted reactions facilitate native chemical ligation between a peptide-thioester and a Cys-peptide modified by a lipid-like moiety.
Collapse
Affiliation(s)
- Shuaijiang Jin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Andrew K Rudd
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Stuart P Moon
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
13
|
Munari F, Barracchia CG, Franchin C, Parolini F, Capaldi S, Romeo A, Bubacco L, Assfalg M, Arrigoni G, D'Onofrio M. Semisynthetic and Enzyme‐Mediated Conjugate Preparations Illuminate the Ubiquitination‐Dependent Aggregation of Tau Protein. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Francesca Munari
- Department of BiotechnologyUniversity of Verona Strada Le Grazie 15 37134 Verona Italy
| | - Carlo G. Barracchia
- Department of BiotechnologyUniversity of Verona Strada Le Grazie 15 37134 Verona Italy
| | - Cinzia Franchin
- Department of Biomedical SciencesUniversity of Padova Padova Italy
- Proteomics CenterUniversity of Padova and Azienda Ospedaliera di Padova Padova Italy
| | - Francesca Parolini
- Department of BiotechnologyUniversity of Verona Strada Le Grazie 15 37134 Verona Italy
| | - Stefano Capaldi
- Department of BiotechnologyUniversity of Verona Strada Le Grazie 15 37134 Verona Italy
| | - Alessandro Romeo
- Department of Computer ScienceUniversity of Verona Strada Le Grazie 15 37134 Verona Italy
| | - Luigi Bubacco
- Department of BiologyUniversity of Padova Padova Italy
| | - Michael Assfalg
- Department of BiotechnologyUniversity of Verona Strada Le Grazie 15 37134 Verona Italy
| | - Giorgio Arrigoni
- Department of Biomedical SciencesUniversity of Padova Padova Italy
- Proteomics CenterUniversity of Padova and Azienda Ospedaliera di Padova Padova Italy
| | - Mariapina D'Onofrio
- Department of BiotechnologyUniversity of Verona Strada Le Grazie 15 37134 Verona Italy
| |
Collapse
|
14
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
15
|
Haj‐Yahya M, Gopinath P, Rajasekhar K, Mirbaha H, Diamond MI, Lashuel HA. Site-Specific Hyperphosphorylation Inhibits, Rather than Promotes, Tau Fibrillization, Seeding Capacity, and Its Microtubule Binding. Angew Chem Int Ed Engl 2020; 59:4059-4067. [PMID: 31863676 PMCID: PMC7065254 DOI: 10.1002/anie.201913001] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/11/2019] [Indexed: 12/14/2022]
Abstract
The consistent observation of phosphorylated tau in the pathology of Alzheimer's disease has contributed to the emergence of a model where hyperphosphorylation triggers both tau disassociation from microtubules and its subsequent aggregation. Herein, we applied a total chemical synthetic approach to site-specifically phosphorylate the microtubule binding repeat domain of tau (K18) at single (pS356) or multiple (pS356/pS262 and pS356/pS262/pS258) residues. We show that hyperphosphorylation of K18 inhibits 1) its aggregation in vitro, 2) its seeding activity in cells, 3) its binding to microtubules, and 4) its ability to promote microtubule polymerization. The inhibition increased with increasing the number of phosphorylated sites, with phosphorylation at S262 having the strongest effect. Our results argue against the hyperphosphorylation hypothesis and underscore the importance of revisiting the role of site-specific hyperphosphorylation in regulating tau functions in health and disease.
Collapse
Affiliation(s)
- Mahmood Haj‐Yahya
- Laboratory of Molecular and Chemical Biology of NeurodegenerationBrain Mind InstituteFaculty of Life SciencesEcole Polytechnique Fédérale de Lausanne1015LausanneSwitzerland
| | - Pushparathinam Gopinath
- Laboratory of Molecular and Chemical Biology of NeurodegenerationBrain Mind InstituteFaculty of Life SciencesEcole Polytechnique Fédérale de Lausanne1015LausanneSwitzerland
- Current Address: Department of ChemistrySRM Institute of Science and TechnologyChennaiTamilNaduIndia
| | - Kolla Rajasekhar
- Laboratory of Molecular and Chemical Biology of NeurodegenerationBrain Mind InstituteFaculty of Life SciencesEcole Polytechnique Fédérale de Lausanne1015LausanneSwitzerland
| | - Hilda Mirbaha
- Center for Alzheimer's and Neurodegenerative DiseasesPeter O'Donnell Jr. Brain InstituteUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Marc I. Diamond
- Center for Alzheimer's and Neurodegenerative DiseasesPeter O'Donnell Jr. Brain InstituteUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of NeurodegenerationBrain Mind InstituteFaculty of Life SciencesEcole Polytechnique Fédérale de Lausanne1015LausanneSwitzerland
| |
Collapse
|
16
|
Munari F, Barracchia CG, Franchin C, Parolini F, Capaldi S, Romeo A, Bubacco L, Assfalg M, Arrigoni G, D'Onofrio M. Semisynthetic and Enzyme‐Mediated Conjugate Preparations Illuminate the Ubiquitination‐Dependent Aggregation of Tau Protein. Angew Chem Int Ed Engl 2020; 59:6607-6611. [DOI: 10.1002/anie.201916756] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Francesca Munari
- Department of BiotechnologyUniversity of Verona Strada Le Grazie 15 37134 Verona Italy
| | - Carlo G. Barracchia
- Department of BiotechnologyUniversity of Verona Strada Le Grazie 15 37134 Verona Italy
| | - Cinzia Franchin
- Department of Biomedical SciencesUniversity of Padova Padova Italy
- Proteomics CenterUniversity of Padova and Azienda Ospedaliera di Padova Padova Italy
| | - Francesca Parolini
- Department of BiotechnologyUniversity of Verona Strada Le Grazie 15 37134 Verona Italy
| | - Stefano Capaldi
- Department of BiotechnologyUniversity of Verona Strada Le Grazie 15 37134 Verona Italy
| | - Alessandro Romeo
- Department of Computer ScienceUniversity of Verona Strada Le Grazie 15 37134 Verona Italy
| | - Luigi Bubacco
- Department of BiologyUniversity of Padova Padova Italy
| | - Michael Assfalg
- Department of BiotechnologyUniversity of Verona Strada Le Grazie 15 37134 Verona Italy
| | - Giorgio Arrigoni
- Department of Biomedical SciencesUniversity of Padova Padova Italy
- Proteomics CenterUniversity of Padova and Azienda Ospedaliera di Padova Padova Italy
| | - Mariapina D'Onofrio
- Department of BiotechnologyUniversity of Verona Strada Le Grazie 15 37134 Verona Italy
| |
Collapse
|
17
|
Ramesh M, Gopinath P, Govindaraju T. Role of Post-translational Modifications in Alzheimer's Disease. Chembiochem 2020; 21:1052-1079. [PMID: 31863723 DOI: 10.1002/cbic.201900573] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/19/2019] [Indexed: 12/22/2022]
Abstract
The global burden of Alzheimer's disease (AD) is growing. Valiant efforts to develop clinical candidates for treatment have continuously met with failure. Currently available palliative treatments are temporary and there is a constant need to search for reliable disease pathways, biomarkers and drug targets for developing diagnostic and therapeutic tools to address the unmet medical needs of AD. Challenges in drug-discovery efforts raise further questions about the strategies of current conventional diagnosis; drug design; and understanding of disease pathways, biomarkers and targets. In this context, post-translational modifications (PTMs) regulate protein trafficking, function and degradation, and their in-depth study plays a significant role in the identification of novel biomarkers and drug targets. Aberrant PTMs of disease-relevant proteins could trigger pathological pathways, leading to disease progression. Advancements in proteomics enable the generation of patterns or signatures of such modifications, and thus, provide a versatile platform to develop biomarkers based on PTMs. In addition, understanding and targeting the aberrant PTMs of various proteins provide viable avenues for addressing AD drug-discovery challenges. This review highlights numerous PTMs of proteins relevant to AD and provides an overview of their adverse effects on the protein structure, function and aggregation propensity that contribute to the disease pathology. A critical discussion offers suggestions of methods to develop PTM signatures and interfere with aberrant PTMs to develop viable diagnostic and therapeutic interventions in AD.
Collapse
Affiliation(s)
- Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Pushparathinam Gopinath
- Department of Chemistry, SRM-Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamilnadu, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064, Karnataka, India
| |
Collapse
|
18
|
Haj‐Yahya M, Gopinath P, Rajasekhar K, Mirbaha H, Diamond MI, Lashuel HA. Site‐Specific Hyperphosphorylation Inhibits, Rather than Promotes, Tau Fibrillization, Seeding Capacity, and Its Microtubule Binding. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mahmood Haj‐Yahya
- Laboratory of Molecular and Chemical Biology of Neurodegeneration Brain Mind Institute Faculty of Life Sciences Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Pushparathinam Gopinath
- Laboratory of Molecular and Chemical Biology of Neurodegeneration Brain Mind Institute Faculty of Life Sciences Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
- Current Address: Department of Chemistry SRM Institute of Science and Technology Chennai TamilNadu India
| | - Kolla Rajasekhar
- Laboratory of Molecular and Chemical Biology of Neurodegeneration Brain Mind Institute Faculty of Life Sciences Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Hilda Mirbaha
- Center for Alzheimer's and Neurodegenerative Diseases Peter O'Donnell Jr. Brain Institute University of Texas Southwestern Medical Center Dallas TX 75390 USA
| | - Marc I. Diamond
- Center for Alzheimer's and Neurodegenerative Diseases Peter O'Donnell Jr. Brain Institute University of Texas Southwestern Medical Center Dallas TX 75390 USA
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration Brain Mind Institute Faculty of Life Sciences Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| |
Collapse
|
19
|
Liu X, Liu J, Wu Z, Chen L, Wang S, Wang P. Photo-cleavable purification/protection handle assisted synthesis of giant modified proteins with tandem repeats. Chem Sci 2019; 10:8694-8700. [PMID: 31803444 PMCID: PMC6849634 DOI: 10.1039/c9sc03693h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022] Open
Abstract
Proteins with tandem repeats have essential physical or biological roles in cells and have been widely investigated as biomaterials or vaccines. Chemically derived proteins with tandem repeats would be beneficial for research, owing to their accurate structures, possibly with precise modifications, produced by chemical synthesis. Traditional protein synthesis often leads to severe handling loss due to multiple ligations and HPLC purifications. To improve the protein synthesis efficiency, we developed a purification/protection handle consisting of a His6 tag and a photo-labile linker. This handle has great potential to facilitate purification with immobilized metal affinity chromatography techniques and also provides orthogonal protection for N-terminal Cys. The synthesis of the model proteins Muc1 and antifreeze glycoprotein mimics shows that the handle decreases the requirement for HPLC and enables both convergent and sequential assembly of peptide segments.
Collapse
Affiliation(s)
- Xueyi Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China .
| | - Jiazhi Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China .
| | - Zhichao Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources , Ministry of Education , College of Fisheries and Life Science , Shanghai Ocean University , Shanghai 201306 , China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources , Ministry of Education , College of Fisheries and Life Science , Shanghai Ocean University , Shanghai 201306 , China
| | - Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China .
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China .
| |
Collapse
|
20
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
21
|
Ellmer D, Brehs M, Haj‐Yahya M, Lashuel HA, Becker CFW. Single Posttranslational Modifications in the Central Repeat Domains of Tau4 Impact its Aggregation and Tubulin Binding. Angew Chem Int Ed Engl 2019; 58:1616-1620. [PMID: 30549369 PMCID: PMC6391969 DOI: 10.1002/anie.201805238] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/29/2018] [Indexed: 12/22/2022]
Abstract
A variety of methods have been employed to study the impact of posttranslational modifications on Tau protein function. Here, a semisynthesis strategy is described that enables selective modification within the central repeat domain of Tau4 (residues 291-321), comprising a major interaction motive with tubulin as well as one of the key hexapeptides involved in Tau aggregation. This strategy has led to the preparation of four semisynthetic Tau variants with phosphoserine residues in different positions and one with a so far largely ignored carboxymethyllysine modification that results from a non-enzymatic posttranslational modification (nPTM). The latter modification inhibits tubulin polymerization but exhibits an aggregation behavior very similar to unmodified Tau. In contrast, phosphorylated Tau variants exhibit similar binding to tubulin as unmodified Tau4 but show lower tendencies to aggregate.
Collapse
Affiliation(s)
- Doris Ellmer
- University of ViennaFaculty of ChemistryInstitute of Biological ChemistryWähringer Str. 381090ViennaAustria
| | - Manuel Brehs
- University of ViennaFaculty of ChemistryInstitute of Biological ChemistryWähringer Str. 381090ViennaAustria
| | - Mahmood Haj‐Yahya
- École Polytechnique Fédérale de Lausanne (EPFL), Brain Mind InstituteLaboratory of Molecular and Chemical Biology of Neurodegeneration1015LausanneSwitzerland
| | - Hilal A. Lashuel
- École Polytechnique Fédérale de Lausanne (EPFL), Brain Mind InstituteLaboratory of Molecular and Chemical Biology of Neurodegeneration1015LausanneSwitzerland
| | - Christian F. W. Becker
- University of ViennaFaculty of ChemistryInstitute of Biological ChemistryWähringer Str. 381090ViennaAustria
| |
Collapse
|
22
|
Ellmer D, Brehs M, Haj‐Yahya M, Lashuel HA, Becker CFW. Single Posttranslational Modifications in the Central Repeat Domains of Tau4 Impact its Aggregation and Tubulin Binding. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201805238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Doris Ellmer
- University of ViennaFaculty of ChemistryInstitute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| | - Manuel Brehs
- University of ViennaFaculty of ChemistryInstitute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| | - Mahmood Haj‐Yahya
- École Polytechnique Fédérale de Lausanne (EPFL), Brain Mind InstituteLaboratory of Molecular and Chemical Biology of Neurodegeneration 1015 Lausanne Switzerland
| | - Hilal A. Lashuel
- École Polytechnique Fédérale de Lausanne (EPFL), Brain Mind InstituteLaboratory of Molecular and Chemical Biology of Neurodegeneration 1015 Lausanne Switzerland
| | - Christian F. W. Becker
- University of ViennaFaculty of ChemistryInstitute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| |
Collapse
|
23
|
Whedon SD, Parker MK, Tyson EL, Ritterhoff T, Shelton PMM, Chatterjee C. A clickable glutamine (CliQ) derivative for the traceless reversible modification of peptides and proteins. Chem Commun (Camb) 2019; 55:2043-2045. [DOI: 10.1039/c8cc09404g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cu(i)-mediated click reaction of proteins with affinity tags enables their selective isolation from complex mixtures.
Collapse
|
24
|
van Ameijde J, Crespo R, Janson R, Juraszek J, Siregar B, Verveen H, Sprengers I, Nahar T, Hoozemans JJ, Steinbacher S, Willems R, Delbroek L, Borgers M, Dockx K, Van Kolen K, Mercken M, Pascual G, Koudstaal W, Apetri A. Enhancement of therapeutic potential of a naturally occurring human antibody targeting a phosphorylated Ser 422 containing epitope on pathological tau. Acta Neuropathol Commun 2018; 6:59. [PMID: 30001207 PMCID: PMC6042391 DOI: 10.1186/s40478-018-0562-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/28/2018] [Indexed: 11/24/2022] Open
Abstract
Aggregation of tau protein and spreading of tau aggregates are pivotal pathological processes in a range of neurological disorders. Accumulating evidence suggests that immunotherapy targeting tau may be a viable therapeutic strategy. We have previously described the isolation of antibody CBTAU-22.1 from the memory B-cell repertoire of healthy human donors. CBTAU-22.1 was shown to specifically bind a disease-associated phosphorylated epitope in the C-terminus of tau (Ser422) and to be able to inhibit the spreading of pathological tau aggregates from P301S spinal cord lysates in vitro, albeit with limited potency. Using a combination of rational design and random mutagenesis we have derived a variant antibody with improved affinity while maintaining the specificity of the parental antibody. This affinity improved antibody showed greatly enhanced potency in a cell-based immunodepletion assay using paired helical filaments (PHFs) derived from human Alzheimer’s disease (AD) brain tissue. Moreover, the affinity improved antibody limits the in vitro aggregation propensity of full length tau species specifically phosphorylated at position 422 produced by employing a native chemical ligation approach. Together, these results indicate that in addition to being able to inhibit the spreading of pathological tau aggregates, the matured antibody can potentially also interfere with the nucleation of tau which is believed to be the first step of the pathogenic process. Finally, the functionality in a P301L transgenic mice co-injection model highlights the therapeutic potential of human antibody dmCBTAU-22.1.
Collapse
|
25
|
Kim KL, Sung G, Sim J, Murray J, Li M, Lee A, Shrinidhi A, Park KM, Kim K. Supramolecular latching system based on ultrastable synthetic binding pairs as versatile tools for protein imaging. Nat Commun 2018; 9:1712. [PMID: 29703887 PMCID: PMC5923385 DOI: 10.1038/s41467-018-04161-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/02/2018] [Indexed: 01/08/2023] Open
Abstract
Here we report ultrastable synthetic binding pairs between cucurbit[7]uril (CB[7]) and adamantyl- (AdA) or ferrocenyl-ammonium (FcA) as a supramolecular latching system for protein imaging, overcoming the limitations of protein-based binding pairs. Cyanine 3-conjugated CB[7] (Cy3-CB[7]) can visualize AdA- or FcA-labeled proteins to provide clear fluorescence images for accurate and precise analysis of proteins. Furthermore, controllability of the system is demonstrated by treating with a stronger competitor guest. At low temperature, this allows us to selectively detach Cy3-CB[7] from guest-labeled proteins on the cell surface, while leaving Cy3-CB[7] latched to the cytosolic proteins for spatially conditional visualization of target proteins. This work represents a non-protein-based bioimaging tool which has inherent advantages over the widely used protein-based techniques, thereby demonstrating the great potential of this synthetic system.
Collapse
Affiliation(s)
- Kyung Lock Kim
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Gihyun Sung
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jaehwan Sim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - James Murray
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Meng Li
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Ara Lee
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Annadka Shrinidhi
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Kyeng Min Park
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea. .,Department of Nanomaterials and Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea. .,Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea. .,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea. .,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
26
|
Haj-Yahya M, Lashuel HA. Protein Semisynthesis Provides Access to Tau Disease-Associated Post-translational Modifications (PTMs) and Paves the Way to Deciphering the Tau PTM Code in Health and Diseased States. J Am Chem Soc 2018; 140:6611-6621. [DOI: 10.1021/jacs.8b02668] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mahmood Haj-Yahya
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Chen H, Xiao Y, Yuan N, Weng J, Gao P, Breindel L, Shekhtman A, Zhang Q. Coupling of sterically demanding peptides by β-thiolactone-mediated native chemical ligation. Chem Sci 2018; 9:1982-1988. [PMID: 29675245 PMCID: PMC5892351 DOI: 10.1039/c7sc04744d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022] Open
Abstract
The ligation of sterically demanding peptidyl sites such as those involving Val-Val and Val-Pro linkages has proven to be extremely challenging with conventional NCL methods that rely on exogenous thiol additives. Herein, we report an efficient β-thiolactone-mediated additive-free NCL protocol that enables the establishment of these connections in good yield. The rapid NCL was followed by in situ desulfurization. Reaction rates between β-thiolactones and conventional thioesters towards NCL were also investigated, and direct aminolysis was ruled out as a possible pathway. Finally, the potent cytotoxic cyclic-peptide axinastatin 1 has been prepared using the developed methodology.
Collapse
Affiliation(s)
- Huan Chen
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , NY 12222 , USA .
| | - Yunxian Xiao
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , NY 12222 , USA .
| | - Ning Yuan
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China
| | - Jiaping Weng
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , NY 12222 , USA .
| | - Pengcheng Gao
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , NY 12222 , USA .
| | - Leonard Breindel
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , NY 12222 , USA
| | - Alexander Shekhtman
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , NY 12222 , USA
| | - Qiang Zhang
- Department of Chemistry , University at Albany , State University of New York , 1400 Washington Avenue , Albany , NY 12222 , USA .
| |
Collapse
|
28
|
Bourré G, Cantrelle FX, Kamah A, Chambraud B, Landrieu I, Smet-Nocca C. Direct Crosstalk Between O-GlcNAcylation and Phosphorylation of Tau Protein Investigated by NMR Spectroscopy. Front Endocrinol (Lausanne) 2018; 9:595. [PMID: 30386294 PMCID: PMC6198643 DOI: 10.3389/fendo.2018.00595] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022] Open
Abstract
The formation of intraneuronal fibrillar inclusions of tau protein is associated with several neurodegenerative diseases referred to as tauopathies including Alzheimer's disease (AD). A common feature of these pathologies is hyperphosphorylation of tau, the main component of fibrillar assemblies such as Paired Helical Filaments (PHFs). O-β-linked N-acetylglucosaminylation (O-GlcNAcylation) is another important posttranslational modification involved in regulation of tau pathophysiology. Among the benefits of O-GlcNAcylation, modulation of tau phosphorylation levels and inhibition of tau aggregation properties have been described while decreased O-GlcNAcylation could be involved in the raise of tau phosphorylation associated with AD. However, the molecular mechanisms at the basis of these observations remain to be defined. In this study, we identify by NMR spectroscopy O-GlcNAc sites in the longest isoform of tau and investigate the direct role of O-GlcNAcylation on tau phosphorylation and conversely, the role of phosphorylation on tau O-GlcNAcylation. We show here by a systematic examination of the quantitative modification patterns by NMR spectroscopy that O-GlcNAcylation does not modify phosphorylation of tau by the kinase activity of ERK2 or a rat brain extract while phosphorylation slightly increases tau O-GlcNAcylation by OGT. Our data suggest that indirect mechanisms act in the reciprocal regulation of tau phosphorylation and O-GlcNAcylation in vivo involving regulation of the enzymes responsible of phosphate and O-GlcNAc dynamics.
Collapse
Affiliation(s)
- Gwendoline Bourré
- Univ. Lille, CNRS UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | | | - Amina Kamah
- Univ. Lille, CNRS UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | | | - Isabelle Landrieu
- Univ. Lille, CNRS UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Caroline Smet-Nocca
- Univ. Lille, CNRS UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- *Correspondence: Caroline Smet-Nocca
| |
Collapse
|
29
|
Zitterbart R, Krumrey M, Seitz O. Immobilization methods for the rapid total chemical synthesis of proteins on microtiter plates. J Pept Sci 2017; 23:539-548. [DOI: 10.1002/psc.3006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 12/11/2022]
Affiliation(s)
| | - Michael Krumrey
- Department of Chemistry; Humboldt University Berlin; Berlin Germany
| | - Oliver Seitz
- Department of Chemistry; Humboldt University Berlin; Berlin Germany
| |
Collapse
|
30
|
Abstract
Expressed protein ligation (EPL) is a valuable tool to study site-specific functionalities on proteins such as posttranslational modifications. The purification of such ligation products from EPL mixtures can be cumbersome due to a small size difference between the expressed protein portion and the desired ligated protein. Therefore, affinity tags are often required, which remain on the protein after purification. Herein, we present an efficient protocol to install a photocleavable biotin building block on synthetic C-terminal tau[390-441] and describe its use for purification of full-length semi-synthetic tau[1-441].
Collapse
Affiliation(s)
- Oliver Reimann
- Leibniz-Institute for Molecular Pharmacology (FMP), Robert-Roessle-Strasse 10, 13125, Berlin, Germany.
- Freie Universitaet Berlin, Institute for Chemistry und Biochemistry, Takustrasse 3, 14195, Berlin, Germany.
| | - Caroline Smet-Nocca
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
- Research Federation FraBio 3688, Villeneuve d'Ascq, France
| | - Christian P R Hackenberger
- Leibniz-Institute for Molecular Pharmacology (FMP), Robert-Roessle-Strasse 10, 13125, Berlin, Germany
- Department of Chemistry, Humboldt Universitaet zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
31
|
Bondalapati S, Jbara M, Brik A. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins. Nat Chem 2016; 8:407-18. [DOI: 10.1038/nchem.2476] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 02/04/2016] [Indexed: 12/18/2022]
|
32
|
Huang Y, Chen C, Gao S, Wang Y, Xiao H, Wang F, Tian C, Li Y. Synthesis of
l
‐ and
d
‐Ubiquitin by One‐Pot Ligation and Metal‐Free Desulfurization. Chemistry 2016; 22:7623-8. [DOI: 10.1002/chem.201600101] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Yi‐Chao Huang
- School of Medical Engineering Hefei University of Technology Hefei 230009 P. R. China
- State Key Laboratory of Medicinal Chemical Biology NanKai University 94 Weijin Road Tianjin 300071 P. R. China
- Department of Chemistry School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Chen‐Chen Chen
- High Magnetic Field Laboratory Chinese Academy of Sciences Hefei 230026 P. R. China
| | - Shuai Gao
- Department of Chemistry School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Ye‐Hai Wang
- School of Medical Engineering Hefei University of Technology Hefei 230009 P. R. China
- State Key Laboratory of Medicinal Chemical Biology NanKai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Hua Xiao
- School of Medical Engineering Hefei University of Technology Hefei 230009 P. R. China
- State Key Laboratory of Medicinal Chemical Biology NanKai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Feng Wang
- Department of Chemistry School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Chang‐Lin Tian
- High Magnetic Field Laboratory Chinese Academy of Sciences Hefei 230026 P. R. China
| | - Yi‐Ming Li
- School of Medical Engineering Hefei University of Technology Hefei 230009 P. R. China
- State Key Laboratory of Medicinal Chemical Biology NanKai University 94 Weijin Road Tianjin 300071 P. R. China
| |
Collapse
|
33
|
Schwagerus S, Reimann O, Despres C, Smet-Nocca C, Hackenberger CPR. Semi-synthesis of a tag-freeO-GlcNAcylated tau protein by sequential chemoselective ligation. J Pept Sci 2016; 22:327-33. [DOI: 10.1002/psc.2870] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Sergej Schwagerus
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Campus Berlin-Buch Robert-Roessle-Str. 10 13125 Berlin Germany
- Department Chemie; Humboldt Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Oliver Reimann
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Campus Berlin-Buch Robert-Roessle-Str. 10 13125 Berlin Germany
- Freie Universität Berlin; Institut für Chemie und Biochemie; Takustrasse 3 14195 Berlin Germany
| | - Clement Despres
- UMR 8576 - UGSF; Univ. Lille, CNRS; Unité de Glycobiologie Structurale et Fonctionnelle F-59000 Lille France
- CNRS; UMR 8576 F-59000 Lille France
| | - Caroline Smet-Nocca
- UMR 8576 - UGSF; Univ. Lille, CNRS; Unité de Glycobiologie Structurale et Fonctionnelle F-59000 Lille France
- CNRS; UMR 8576 F-59000 Lille France
| | - Christian P. R. Hackenberger
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Campus Berlin-Buch Robert-Roessle-Str. 10 13125 Berlin Germany
- Department Chemie; Humboldt Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
34
|
Chingin K, Cai Y, Liang J, Chen H. Simultaneous Preconcentration and Desalting of Organic Solutes in Aqueous Solutions by Bubble Bursting. Anal Chem 2016; 88:5033-6. [DOI: 10.1021/acs.analchem.6b00582] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Konstantin Chingin
- Jiangxi
Key Laboratory for
Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P.R. China
| | - Yunfeng Cai
- Jiangxi
Key Laboratory for
Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P.R. China
| | - Juchao Liang
- Jiangxi
Key Laboratory for
Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P.R. China
| | - Huanwen Chen
- Jiangxi
Key Laboratory for
Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P.R. China
| |
Collapse
|
35
|
A photo-cleavable biotin affinity tag for the facile release of a photo-crosslinked carbohydrate-binding protein. Bioorg Med Chem 2016; 24:1216-24. [DOI: 10.1016/j.bmc.2016.01.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/28/2022]
|
36
|
Weller CE, Chatterjee C. All about that Amide Bond: The Sixth Chemical Protein Synthesis (CPS) Meeting. Chembiochem 2015; 16:2531-6. [PMID: 26457983 PMCID: PMC4749268 DOI: 10.1002/cbic.201500473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 11/11/2022]
Abstract
Endless potential: The sixth Chemical Protein Synthesis Meeting, held recently in St. Augustine, Florida, showed the potential of peptide and protein chemistry when applied toward understanding and controlling complex biological processes. This report highlights the diverse and cutting-edge protein chemistry presented at the meeting.
Collapse
Affiliation(s)
- Caroline E Weller
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA.
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA.
| |
Collapse
|
37
|
Roberts AG, Johnston EV, Shieh JH, Sondey JP, Hendrickson RC, Moore MAS, Danishefsky SJ. Fully Synthetic Granulocyte Colony-Stimulating Factor Enabled by Isonitrile-Mediated Coupling of Large, Side-Chain-Unprotected Peptides. J Am Chem Soc 2015; 137:13167-75. [PMID: 26401918 PMCID: PMC4617663 DOI: 10.1021/jacs.5b08754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human granulocyte colony-stimulating factor (G-CSF) is an endogenous glycoprotein involved in hematopoiesis. Natively glycosylated and nonglycosylated recombinant forms, lenograstim and filgrastim, respectively, are used clinically to manage neutropenia in patients undergoing chemotherapeutic treatment. Despite their comparable therapeutic potential, the purpose of O-linked glycosylation at Thr133 remains a subject of controversy. In light of this, we have developed a synthetic platform to prepare G-CSF aglycone with the goal of enabling access to native and designed glycoforms with site-selectivity and glycan homogeneity. To address the synthesis of a relatively large, aggregation-prone sequence, we advanced an isonitrile-mediated ligation method. The chemoselective activation and coupling of C-terminal peptidyl Gly thioacids with the N-terminus of an unprotected peptide provide ligated peptides directly in a manner complementary to that with conventional native chemical ligation-desulfurization strategies. Herein, we describe the details and application of this method as it enabled the convergent total synthesis of G-CSF aglycone.
Collapse
Affiliation(s)
- Andrew G. Roberts
- Laboratory for Bio-Organic Chemistry, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Eric V. Johnston
- Laboratory for Bio-Organic Chemistry, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Jae-Hung Shieh
- Cell Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Joseph P. Sondey
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Ronald C. Hendrickson
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Malcolm A. S. Moore
- Cell Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Samuel J. Danishefsky
- Laboratory for Bio-Organic Chemistry, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Cell Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
38
|
Seenaiah M, Jbara M, Mali SM, Brik A. Convergent Versus Sequential Protein Synthesis: The Case of Ubiquitinated and Glycosylated H2B. Angew Chem Int Ed Engl 2015; 54:12374-8. [DOI: 10.1002/anie.201503309] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/13/2015] [Indexed: 11/11/2022]
|
39
|
Seenaiah M, Jbara M, Mali SM, Brik A. Convergent Versus Sequential Protein Synthesis: The Case of Ubiquitinated and Glycosylated H2B. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503309] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Galibert M, Piller V, Piller F, Aucagne V, Delmas AF. Combining triazole ligation and enzymatic glycosylation on solid phase simplifies the synthesis of very long glycoprotein analogues. Chem Sci 2015; 6:3617-3623. [PMID: 30155000 PMCID: PMC6085731 DOI: 10.1039/c5sc00773a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/12/2015] [Indexed: 01/01/2023] Open
Abstract
The solid-phase chemical assembly of a protein through iterative chemoselective ligation of unprotected peptide segments can be followed with chemical and/or enzymatic transformations of the resulting immobilized protein, the latter steps thus benefitting from the advantages provided by the solid support. We demonstrate here the usefulness of this strategy for the chemo-enzymatic synthesis of glycoprotein analogues. A linker was specifically designed for application to the synthesis of O-glycoproteins: this new linker is readily cleaved under mild aqueous conditions compatible with very sensitive glycosidic bonds, but is remarkably stable under a wide range of chemical and biochemical conditions. It was utilized for solid-supported N-to-C peptidomimetic triazole ligation followed by enzymatic glycosylation, ultimately leading to a very large MUC1-derived glycoprotein containing 160 amino acid residues, 24 α-GalNAc moieties linked to Ser and Thr, and 3 triazoles as peptide bond mimetics.
Collapse
Affiliation(s)
- Mathieu Galibert
- Centre de Biophysique Moléculaire , CNRS UPR 4301 , Rue Charles Sadron , 45071 Orléans Cedex 2 , France .
| | - Véronique Piller
- Centre de Biophysique Moléculaire , CNRS UPR 4301 , Rue Charles Sadron , 45071 Orléans Cedex 2 , France .
| | - Friedrich Piller
- Centre de Biophysique Moléculaire , CNRS UPR 4301 , Rue Charles Sadron , 45071 Orléans Cedex 2 , France .
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire , CNRS UPR 4301 , Rue Charles Sadron , 45071 Orléans Cedex 2 , France .
| | - Agnès F Delmas
- Centre de Biophysique Moléculaire , CNRS UPR 4301 , Rue Charles Sadron , 45071 Orléans Cedex 2 , France .
| |
Collapse
|
41
|
Reimann O, Glanz M, Hackenberger CP. Native chemical ligation between asparagine and valine: Application and limitations for the synthesis of tri-phosphorylated C-terminal tau. Bioorg Med Chem 2015; 23:2890-4. [DOI: 10.1016/j.bmc.2015.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 12/29/2022]
|
42
|
Bondalapati S, Mansour W, Nakasone MA, Maity SK, Glickman MH, Brik A. Chemical synthesis of phosphorylated ubiquitin and diubiquitin exposes positional sensitivities of e1-e2 enzymes and deubiquitinases. Chemistry 2015; 21:7360-4. [PMID: 25829361 DOI: 10.1002/chem.201500540] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 12/22/2022]
Abstract
Modification of ubiquitin by phosphorylation extends the signaling possibilities of this dynamic signal, as it could affect the activity of ligases and the processing of ubiquitin chains by deubiquitinases. The first chemical synthesis of phosphorylated ubiquitin and of Lys63-linked diubiquitin at the proximal, distal or both ubiquitins is reported. This enabled the examination of how such a modification alters E1-E2 activities of the ubiquitination machinery. It is found that E1 charging was not affected, while the assembly of phosphorylated ubiquitin chains was differentially inhibited with E2 enzymes tested. Moreover, this study shows that phosphorylation interferes with the recognition of linkage specific antibodies and the activities of several deubiquitinases. Notably, phosphorylation in the proximal or distal ubiquitin unit has differential effects on specific deubiquitinases. These results support a unique role of phosphorylation in the dynamics of the ubiquitin signal.
Collapse
Affiliation(s)
- Somasekhar Bondalapati
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653 Beer-Sheva 8410501 (Israel); Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, 3200008 Haifa (Israel)
| | | | | | | | | | | |
Collapse
|
43
|
Ma YY, Tan HQ, Wang YH, Hao XL, Feng XJ, Zang HY, Li YG. Polyoxometalate-based metal–organic coordination networks for heterogeneous catalytic desulfurization. CrystEngComm 2015. [DOI: 10.1039/c5ce01533b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single crystals and nanocrystals of polyoxometalate-based metal-organic coordination networks for heterogeneous catalytic desulfurization.
Collapse
Affiliation(s)
- Yuan-Yuan Ma
- Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of Chemistry
- Northeast Normal University
- Changchun, PR China
| | - Hua-Qiao Tan
- Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of Chemistry
- Northeast Normal University
- Changchun, PR China
| | - Yong-Hui Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of Chemistry
- Northeast Normal University
- Changchun, PR China
| | - Xiu-Li Hao
- Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of Chemistry
- Northeast Normal University
- Changchun, PR China
- School of Chemical and Biological Engineering
- Taiyuan University of Science and Technology
| | - Xiao-Jia Feng
- Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of Chemistry
- Northeast Normal University
- Changchun, PR China
- College of Science
- Shenyang Agricultural University
| | - Hong-Ying Zang
- Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of Chemistry
- Northeast Normal University
- Changchun, PR China
| | - Yang-Guang Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of Chemistry
- Northeast Normal University
- Changchun, PR China
| |
Collapse
|