1
|
Li J, Duan R, Traore ES, Nguyen RC, Davis I, Griffth WP, Goodwin DC, Jarzecki AA, Liu A. Indole N-Linked Hydroperoxyl Adduct of Protein-Derived Cofactor Modulating Catalase-Peroxidase Functions. Angew Chem Int Ed Engl 2024; 63:e202407018. [PMID: 39300819 DOI: 10.1002/anie.202407018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Bifunctional catalase-peroxidase (KatG) features a posttranslational methionine-tyrosine-tryptophan (MYW) crosslinked cofactor crucial for its catalase function, enabling pathogens to neutralize hydrogen peroxide during infection. We discovered the presence of indole nitrogen-linked hydroperoxyl adduct (MYW-OOH) in Mycobacterium tuberculosis KatG in the solution state under ambient conditions, suggesting its natural occurrence. By isolating predominantly MYW-OOH-containing KatG protein, we investigated the chemical stability and functional impact of MYW-OOH. We discovered that MYW-OOH inhibits catalase activity, presenting a unique temporary lock. Exposure to peroxide or increased temperature removes the hydroperoxyl adduct from the protein cofactor, converting MYW-OOH to MYW and restoring the detoxifying ability of the enzyme against hydrogen peroxide. Thus, the N-linked hydroperoxyl group is releasable. KatG with MYW-OOH represents a catalase dormant, but primed, state of the enzyme. These findings provide insight into chemical strategies targeting the bifunctional enzyme KatG in pathogens, highlighting the role of N-linked hydroperoxyl modifications in enzymatic function.
Collapse
Affiliation(s)
- Jiasong Li
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Ran Duan
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Ephrahime S Traore
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Romie C Nguyen
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Ian Davis
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Wendell P Griffth
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Douglas C Goodwin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | - Andrzej A Jarzecki
- Department of Chemistry and Biochemistry, Brooklyn College, New York, NY 11210, USA
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
2
|
Sarkar S, Tiwari RK, Samanta D, Guchhait T, Sañudo EC, Rajaraman G, Rath SP. Unusual Stabilisation of Remarkably Bent Tetra-Cationic Tetra-radical Intermolecular Fe(III) μ-Oxo Tetranuclear Complexes. Angew Chem Int Ed Engl 2024; 63:e202402344. [PMID: 38478415 DOI: 10.1002/anie.202402344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 04/24/2024]
Abstract
A hitherto unknown series of air stable, π-conjugated, remarkably bent tetra-cation tetra-radical intermolecular Fe(III) μ-oxo tetranuclear complex, isolated from the dication diradical diiron(III) porphyrin dimers, has been synthesised and spectroscopically characterised along with single crystal X-ray structure determination of two such molecules. These species facilitate long-range charge/radical delocalisation through the bridge across the entire tetranuclear unit manifesting an unusually intense NIR band. Assorted spin states of Fe(III) centres are stabilised within these unique tetranuclear frameworks: terminal six-coordinate iron centres stabilise the admixed intermediate spin states while the central five-coordinate iron centres stabilise the high-spin states. Variable temperature magnetic susceptibility measurements indicated strong antiferromagnetic coupling for the Fe(III)-O-Fe(III) unit while the exchange interactions between the Fe centres and the porphyrin π-cation radicals are weaker as supported both by magnetic data and DFT calculations. The nature of orbital overlap between the SOMOs of Fe(III) and π* orbital of the porphyrin was found to rationalise the observed exchange coupling, establishing such a complex magnetic exchange in this tetranuclear model with a significant bioinorganic relevance.
Collapse
Affiliation(s)
- Sabyasachi Sarkar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Rupesh Kumar Tiwari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Deepannita Samanta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Tapas Guchhait
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - E Carolina Sañudo
- Secció de Química Inorgànica, Department de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona, C/Martí i Franqués 1-11, 08028, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, IN2UB, Universitat de Barcelona, C/Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
3
|
Sanfui S, Roychowdhury A, Usman M, Garribba E, Gómez-García CJ, Rath SP. Metal vs Ligand Oxidation: Coexistence of Both Metal-Centered and Ligand-Centered Oxidized Species. Inorg Chem 2024; 63:5423-5431. [PMID: 38483819 DOI: 10.1021/acs.inorgchem.3c04043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
A series of two-electron-oxidized cobalt porphyrin dimers have been synthesized upon controlled oxidations using halogens. Rather unexpectedly, X-ray structures of two of these complexes contain two structurally different low-spin molecules in the same asymmetric unit of their unit cells: one is the metal-centered oxidized diamagnetic entity of the type CoIII(por), while the other one is the ligand-centered oxidized paramagnetic entity of the type CoII(por•+). Spectroscopic, magnetic, and DFT investigations confirmed the coexistence of the two very different electronic structures both in the solid and solution phases and also revealed a ferromagnetic spin coupling between Co(II) and porphyrin π-cation radicals and a weak antiferromagnetic coupling between the π-cation radicals of two macrocycles via the bridge in the paramagnetic complex.
Collapse
Affiliation(s)
- Sarnali Sanfui
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Arya Roychowdhury
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Mohammad Usman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Viale San Pietro, Università di Sassari, Sassari I-07100, Italy
| | - Carlos J Gómez-García
- Departamento de Química Inorgánica, Universidad de Valencia, C/Dr. Moliner 50, Burjasot, Valencia 46100, Spain
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
4
|
Shah SJ, Pandit YA, Garribba E, Ishida M, Rath SP. Stable Dication Diradicals of Triply Fused Metallo Chlorin-Porphyrin Heterodimers: Impact of the Bridge on the Control of Spin Coupling to Reactivity. Chemistry 2023; 29:e202301963. [PMID: 37602834 DOI: 10.1002/chem.202301963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
We report an unexpected rearrangement, controlled by the nature of the bridge, leading to the formation of novel, remarkably stable triply fused dinickel(II)/dicopper(II) chlorin-porphyrin dication diradical heterodimers in excellent yields. Here, a dipyrromethene bridge gets completely fused between two porphyrin macrocycles with two new C-C and one C-N bonds. The two macrocycles exhibit extensive π-conjugation through the bridge, which results in an antiferromagnetic coupling between the two π-cation radicals. In addition, the macrocyclic distortion also favours a rare intramolecular ferromagnetic interaction between the CuII and π-cation radical spins to form a triplet state. The structural and electronic perturbation in the unconjugated dication diradical possibly enables the bridging pyrrolic nitrogen to undergo a nucleophilic attack at the nearby β-carbon of the porphyrin π-cation radical with a computed free energy barrier of >20 kcal mol-1 which was supplied in the form of reflux condition to initiate such a rearrangement process. UV-vis, EPR and ESI-MS spectroscopies were used to monitor the rearrangement process in situ in order to identify the key reactive intermediates leading to such an unusual transformation.
Collapse
Affiliation(s)
- Syed Jehanger Shah
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Younis Ahmad Pandit
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, 07100, Sassari, Italy
| | - Masatoshi Ishida
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
5
|
Pandit YA, Usman M, Sarkar A, Shah SJ, Rath SP. Control of spin coupling through a redox-active bridge in a dinickel(II) porphyrin dimer: step-wise oxidations enable isolations of a chlorin-porphyrin heterodimer and a dication diradical with a singlet ground state. Dalton Trans 2023; 52:877-891. [PMID: 36464989 DOI: 10.1039/d2dt03283j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A dinickel(II)porphyrin dimer has been used here in which the redox-active pyrrole-moiety, similar to the tryptophan residue in diheme enzymes such as MauG and bCcP, has been placed between two Ni(II)porphyrin centers connected via a flexible, but unconjugated methylene bridge. This arrangement provides a large physical separation between the two metal centers and thus displays almost no communication between them through the bridge. Upon treatment with DDQ as an oxidant, the dinickel(II) porphyrin dimer slowly gets converted into an indolizinium-fused chlorin-porphyrin heterodimer. However, oxidations of the dinickel(II) porphyrin dimer up to two oxidizing equivalents using oxidants such as AgSbF6 and FeCl3 resulted in the formation of a dication diradical complex. Interestingly, in order to stabilize such a highly oxidized dication diradical, two non-conjugated methylene spacers undergo facile 2e-/-2H+ oxidation to make the bridge fully π-conjugated for promoting through-bond communication. Through the oxidized and conjugated bridge, two porphyrin π-cation radicals display considerable communications leading to an efficient intramolecular spin coupling to form a singlet state. Interestingly, the redox-active nature of the bridge controls the electronic communication just by simple oxidation or reduction, and thereby, acts as a molecular switch for efficient magnetic relay.
Collapse
Affiliation(s)
- Younis Ahmad Pandit
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Mohammad Usman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Anindya Sarkar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Syed Jehanger Shah
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
6
|
Sanfui S, Usman M, Sarkar S, Pramanik S, Garribba E, Rath SP. Highly Oxidized Cobalt Porphyrin Dimer: Control of Spin Coupling via a Bridge. Inorg Chem 2022; 61:8419-8430. [PMID: 35613476 DOI: 10.1021/acs.inorgchem.1c03807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cobalt porphyrin dimer is constructed in which two Co(II)porphyrins are connected covalently through a redox-active diethylpyrrole moiety via a flexible but "nonconjugated" methylene bridge. Upon oxidation with even a mild oxidant such as iodine, each cobalt(II) center and porphyrin ring undergo 1e- oxidation, leading to the formation of a 4e--oxidized cobalt(III)porphyrin dication diradical complex. Other oxidants such as Cl2 and Br2 also produce similar results. To stabilize such highly oxidized dication diradicals, the "nonconjugated" methylene spacer undergoes a facile and spontaneous oxidation to form a methine group with a drastic structural change, thereby making the bridge fully π-conjugated and enabling through-bond communication. This results in a strong spin coupling between two π-cation radicals which stabilizes the singlet state. The experimental observations are also strongly supported by extensive density functional theory calculations. The present study highlights the crucial role played by the nature of the bridge in the long-range electronic communication.
Collapse
Affiliation(s)
- Sarnali Sanfui
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Mohammad Usman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sabyasachi Sarkar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Subhadip Pramanik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Eugenio Garribba
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, Viale San Pietro, Sassari I-07100, Italy
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
7
|
Singh AK, Usman M, Sarkar S, Sciortino G, Kumar D, Garribba E, Rath SP. Ferromagnetic Coupling in Oxidovanadium(IV)-Porphyrin Radical Dimers. Inorg Chem 2021; 60:16492-16506. [PMID: 34664950 DOI: 10.1021/acs.inorgchem.1c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three different oxidovanadium(IV) porphyrin dimers with anti, cis, and trans arrangements of the two rings have been synthesized by changing the bridge between the porphyrin macrocycles. This provides a unique opportunity to investigate the role of the bridge and spatial arrangement between the two VIVO centers for their electronic communication and magnetic coupling. They were characterized by the combined application of XRD analysis, UV-vis and electron paramagnetic resonance (EPR) spectroscopy, cyclic voltammetry, magnetic susceptibility, and DFT calculations. One- and two-electron oxidations produce mono- and dication diradical species, respectively, which display an unusual ferromagnetic interaction between the unpaired spins of vanadium(IV) and porphyrin π-cation radical, in contrast to other metalloporphyrin dimers. The oxidized species show a dissimilar behavior between cis and trans isomers. The ferromagnetic coupling occurs between the porphyrin π-cation radical and the unpaired electron of the VIVO ion on the dxy orbital, orthogonal to the porphyrin-based molecular orbitals a1u and a2u.
Collapse
Affiliation(s)
- Akhil Kumar Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Mohammad Usman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sabyasachi Sarkar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Giuseppe Sciortino
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.,Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
| | - Devesh Kumar
- Department of Physics, School for Physical and Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
8
|
Kumar A, Usman M, Samanta D, Rath SP. Through Bridge Spin Coupling in Homo- and Heterobimetallic Porphyrin Dimers upon Stepwise Oxidations: A Spectroscopic and Theoretical Investigation. Chemistry 2021; 27:11428-11441. [PMID: 34061401 DOI: 10.1002/chem.202101384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 12/16/2022]
Abstract
We have described copper(II)-iron(III) and copper(II)-manganese(III) heterobimetallic porphyrin dimers and compared them with the corresponding homobimetallic analogs. UV-visible spectra are very distinct in the heterometallic species while electrochemical studies demonstrate that these species, as compared to the homobimetallic analog, are much easier to oxidize. Combined Mössbauer, EPR, NMR, magnetic and UV-visible spectroscopic studies show that upon 2e-oxidation of the heterobimetallic complexes only ring-centered oxidation occurs. The energy differences between HOMO and LUMO are linearly dependent with the low-energy NIR band obtained for the 2e-oxidized complexes. Also, strong electronic communication between two porphyrin rings through the bridge facilitates coupling between various unpaired spins present while the coupling model depends on the nature of metal ions used. While unpaired spins of Fe(III) and the porphyrin π-cation radical are strongly antiferromagnetically coupled, such coupling is rather weak between Mn(III) and a porphyrin π-cation radical. Moreover, the coupling between two π-cation radicals are much stronger in the 2e-oxidized complexes of dimanganese(III) and copper(II)-manganese(III) porphyrin dimers as compared to their diiron(III) and copper(II)-iron(III) analogs. Furthermore, coupling between the unpaired spins of a π-cation radical and copper(II) is much stronger in the 2e-oxidized complex of copper(II)-iron(III) porphyrin dimer as compared to its copper(II)-manganese(III) analog. The Mulliken spin density distributions in 2e-oxidized homo- and heterobimetallic complexes show symmetric and asymmetric spread between the two macrocycles, respectively. In both the 2e-oxidized heterobimetallic complexes, the Cu(II) porphyrin center acts as a charge donor while Fe(III)/Mn(III) porphyrin center act as a charge acceptor. The experimental observations are also strongly supported by DFT calculations.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Mohammad Usman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Deepannita Samanta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
9
|
Rizzolo K, Weitz AC, Cohen SE, Drennan CL, Hendrich MP, Elliott SJ. A Stable Ferryl Porphyrin at the Active Site of Y463M BthA. J Am Chem Soc 2020; 142:11978-11982. [PMID: 32564595 DOI: 10.1021/jacs.0c04023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BthA is a diheme enzyme that is a member of the bacterial cytochrome c peroxidase superfamily, capable of generating a highly unusual Fe(IV)Fe(IV)═O oxidation state, known to be responsible for long-range oxidative chemistry in the enzyme MauG. Here, we show that installing a canonical Met ligand in lieu of the Tyr found at the heme of MauG associated with electron transfer, results in a construct that yields an unusually stable Fe(IV)═O porphyrin at the peroxidatic heme. This state is spontaneously formed at ambient conditions using either molecular O2 or H2O2. The resulting data illustrate how a ferryl iron, with unforeseen stability, may be achieved in biology.
Collapse
Affiliation(s)
- Kimberly Rizzolo
- Boston University, Department of Chemistry, Boston, Massachusetts 02215, United States
| | - Andrew C Weitz
- Boston University, Department of Chemistry, Boston, Massachusetts 02215, United States.,Carnegie Mellon University, Department of Chemistry, Pittsburgh, Pennsylvania 15213, United States
| | - Steven E Cohen
- Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts 02139, United States
| | - Catherine L Drennan
- Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts 02139, United States.,Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts 02139, United States.,Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, United States
| | - Michael P Hendrich
- Carnegie Mellon University, Department of Chemistry, Pittsburgh, Pennsylvania 15213, United States
| | - Sean J Elliott
- Boston University, Department of Chemistry, Boston, Massachusetts 02215, United States
| |
Collapse
|
10
|
Kumar A, Sanfui S, Sciortino G, Maréchal J, Garribba E, Rath SP. Stepwise Oxidations in a Cofacial Copper(II) Porphyrin Dimer: Through‐Space Spin‐Coupling and Interplay between Metal and Radical Spins. Chemistry 2020; 26:7869-7880. [DOI: 10.1002/chem.202000348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Amit Kumar
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Sarnali Sanfui
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Giuseppe Sciortino
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
- Departament de QuímicaUniversitat Autònoma de Barcelona 08193 Cerdanyola del Vallés Barcelona Spain
| | - Jean‐Didier Maréchal
- Departament de QuímicaUniversitat Autònoma de Barcelona 08193 Cerdanyola del Vallés Barcelona Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
| | - Sankar Prasad Rath
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
11
|
Kenney GE, Dassama LMK, Manesis AC, Ross MO, Chen S, Hoffman BM, Rosenzweig AC. MbnH is a diheme MauG-like protein associated with microbial copper homeostasis. J Biol Chem 2019; 294:16141-16151. [PMID: 31511324 PMCID: PMC6827288 DOI: 10.1074/jbc.ra119.010202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/06/2019] [Indexed: 01/09/2023] Open
Abstract
Methanobactins (Mbns) are ribosomally-produced, post-translationally modified peptidic copper-binding natural products produced under conditions of copper limitation. Genes encoding Mbn biosynthetic and transport proteins have been identified in a wide variety of bacteria, indicating a broader role for Mbns in bacterial metal homeostasis. Many of the genes in the Mbn operons have been assigned functions, but two genes usually present, mbnP and mbnH, encode uncharacterized proteins predicted to reside in the periplasm. MbnH belongs to the bacterial diheme cytochrome c peroxidase (bCcP)/MauG protein family, and MbnP contains no domains of known function. Here, we performed a detailed bioinformatic analysis of both proteins and have biochemically characterized MbnH from Methylosinus (Ms.) trichosporium OB3b. We note that the mbnH and mbnP genes typically co-occur and are located proximal to genes associated with microbial copper homeostasis. Our bioinformatics analysis also revealed that the bCcP/MauG family is significantly more diverse than originally appreciated, and that MbnH is most closely related to the MauG subfamily. A 2.6 Å resolution structure of Ms. trichosporium OB3b MbnH combined with spectroscopic data and peroxidase activity assays provided evidence that MbnH indeed more closely resembles MauG than bCcPs, although its redox properties are significantly different from those of MauG. The overall similarity of MbnH to MauG suggests that MbnH could post-translationally modify a macromolecule, such as internalized CuMbn or its uncharacterized partner protein, MbnP. Our results indicate that MbnH is a MauG-like diheme protein that is likely involved in microbial copper homeostasis and represents a new family within the bCcP/MauG superfamily.
Collapse
Affiliation(s)
- Grace E. Kenney
- Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Laura M. K. Dassama
- Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Anastasia C. Manesis
- Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Matthew O. Ross
- Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Siyu Chen
- Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Brian M. Hoffman
- Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Amy C. Rosenzweig
- Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois 60208, To whom correspondence should be addressed. Tel.:
847-467-5301; Fax:
847-467-6489; E-mail:
| |
Collapse
|
12
|
|
13
|
Kumar A, Banerjee S, Sarkar S, Rath SP. Stepwise oxidations of a nickel(ii)–iron(iii) heterobimetallic porphyrin dimer: structure, spectroscopic and theoretical investigation. Dalton Trans 2019; 48:10089-10103. [DOI: 10.1039/c9dt01776c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel nickel(ii)–iron(iii) heterobimetallic ethene-bridged porphyrin dimer has been synthesized which upon two-electron oxidation produces a nickel(ii)–iron(iii) dication diradical complex where radicals undergo extensive conjugation through the bridge for all possible interactions.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sayantani Banerjee
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sabyasachi Sarkar
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sankar Prasad Rath
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
14
|
Davis I, Koto T, Liu A. Radical Trapping Study of the Relaxation of bis-Fe(IV) MauG. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2018; 5:46-55. [PMID: 29479564 PMCID: PMC5822730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The di-heme enzyme, MauG, utilizes a high-valent, charge-resonance stabilized bis-Fe(IV) state to perform protein radical-based catalytic chemistry. Though the bis-Fe(IV) species is able to oxidize remote tryptophan residues on its substrate protein, it does not rapidly oxidize its own residues in the absence of substrate. The slow return of bis-Fe(IV) MauG to its resting di-ferric state occurs via up to two intermediates, one of which has been previously proposed by Ma et al. (Biochem J 2016; 473:1769) to be a methionine-based radical in a recent study. In this work, we pursue intermediates involved in the return of high-valent MauG to its resting state in the absence of the substrate by EPR spectroscopy and radical trapping. The bis-Fe(IV) MauG is shown by EPR, HPLC, UV-Vis, and high-resolution mass spectrometry to oxidize the trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) to a radical species directly. Nitrosobenzene was also employed as a trapping agent and was shown to form an adduct with high-valent MauG species. The effects of DMPO and nitrosobenzene on the kinetics of the return to di-ferric MauG were both investigated. This work eliminates the possibility that a MauG-based methionine radical species accumulates during the self-reduction of bis-Fe(IV) MauG.
Collapse
Affiliation(s)
- Ian Davis
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Teruaki Koto
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
15
|
Ascorbate protects the diheme enzyme, MauG, against self-inflicted oxidative damage by an unusual antioxidant mechanism. Biochem J 2017. [DOI: 10.1042/bcj20170349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ascorbate protects MauG from self-inactivation that occurs during the autoreduction of the reactive bis-FeIV state of its diheme cofactor. The mechanism of protection does not involve direct reaction with reactive oxygen species in solution. Instead, it binds to MauG and mitigates oxidative damage that occurs via internal transfer of electrons from amino acid residues within the protein to the high-valent hemes. The presence of ascorbate does not inhibit the natural catalytic reaction of MauG, which catalyzes oxidative post-translational modifications of a substrate protein that binds to the surface of MauG and is oxidized by the high-valent hemes via long-range electron transfer. Ascorbate was also shown to prolong the activity of a P107V MauG variant that is more prone to inactivation. A previously unknown ascorbate peroxidase activity of MauG was characterized with a kcat of 0.24 s−1 and a Km of 2.2 µM for ascorbate. A putative binding site for ascorbate was inferred from inspection of the crystal structure of MauG and comparison with the structure of soybean ascorbate peroxidase with bound ascorbate. The ascorbate bound to MauG was shown to accelerate the rates of both electron transfers to the hemes and proton transfers to hemes which occur during the multistep autoreduction to the diferric state which is accompanied by oxidative damage. A structural basis for these effects is inferred from the putative ascorbate-binding site. This could be a previously unrecognized mechanism by which ascorbate mitigates oxidative damage to heme-dependent enzymes and redox proteins in nature.
Collapse
|
16
|
Guchhait T, Sarkar S, Pandit YA, Rath SP. Probing Bis‐FeIVMauG: Isolation of Highly Reactive Radical Intermediates. Chemistry 2017; 23:10270-10275. [DOI: 10.1002/chem.201702321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Tapas Guchhait
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Sabyasachi Sarkar
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Younis Ahmad Pandit
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Sankar Prasad Rath
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
17
|
Dornevil K, Davis I, Fielding AJ, Terrell JR, Ma L, Liu A. Cross-linking of dicyclotyrosine by the cytochrome P450 enzyme CYP121 from Mycobacterium tuberculosis proceeds through a catalytic shunt pathway. J Biol Chem 2017; 292:13645-13657. [PMID: 28667013 DOI: 10.1074/jbc.m117.794099] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/29/2017] [Indexed: 12/12/2022] Open
Abstract
CYP121, the cytochrome P450 enzyme in Mycobacterium tuberculosis that catalyzes a single intramolecular C-C cross-linking reaction in the biosynthesis of mycocyclosin, is crucial for the viability of this pathogen. This C-C coupling reaction represents an expansion of the activities carried out by P450 enzymes distinct from oxygen insertion. Although the traditional mechanism for P450 enzymes has been well studied, it is unclear whether CYP121 follows the general P450 mechanism or uses a different catalytic strategy for generating an iron-bound oxidant. To gain mechanistic insight into the CYP121-catalyzed reaction, we tested the peroxide shunt pathway by using rapid kinetic techniques to monitor the enzyme activity with its substrate dicyclotyrosine (cYY) and observed the formation of the cross-linked product mycocyclosin by LC-MS. In stopped-flow experiments, we observed that cYY binding to CYP121 proceeds in a two-step process, and EPR spectroscopy indicates that the binding induces active site reorganization and uniformity. Using rapid freeze-quenching EPR, we observed the formation of a high-spin intermediate upon the addition of peracetic acid to the enzyme-substrate complex. This intermediate exhibits a high-spin (S = 5/2) signal with g values of 2.00, 5.77, and 6.87. Likewise, iodosylbenzene could also produce mycocyclosin, implicating compound I as the initial oxidizing species. Moreover, we also demonstrated that CYP121 performs a standard peroxidase type of reaction by observing substrate-based radicals. On the basis of these results, we propose plausible free radical-based mechanisms for the C-C bond coupling reaction.
Collapse
Affiliation(s)
- Kednerlin Dornevil
- From the Department of Chemistry, University of Texas, San Antonio, Texas 78249 and.,the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Ian Davis
- From the Department of Chemistry, University of Texas, San Antonio, Texas 78249 and.,the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Andrew J Fielding
- From the Department of Chemistry, University of Texas, San Antonio, Texas 78249 and
| | - James R Terrell
- the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Li Ma
- From the Department of Chemistry, University of Texas, San Antonio, Texas 78249 and
| | - Aimin Liu
- From the Department of Chemistry, University of Texas, San Antonio, Texas 78249 and
| |
Collapse
|
18
|
Feng M, Ma Z, Crudup BF, Davidson VL. Properties of the high-spin heme of MauG are altered by binding of preMADH at the protein surface 40 Å away. FEBS Lett 2017; 591:1566-1572. [PMID: 28485817 DOI: 10.1002/1873-3468.12666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 11/09/2022]
Abstract
The diheme enzyme MauG catalyzes oxidative post-translational modifications of a protein substrate, precursor protein of methylamine dehydrogenase (preMADH), that binds to the surface of MauG. The high-spin heme iron of MauG is located 40 Å from preMADH. The ferric heme is an equilibrium of five- and six-coordinate states. PreMADH binding increases the proportion of five-coordinate heme three-fold. On reaction of MauG with H2 O2 both hemes become FeIV . In the absence of preMADH the hemes autoreduce to ferric in a multistep process involving multiple electron and proton transfers. Binding of preMADH in the absence of catalysis alters the mechanism of autoreduction of the ferryl heme. Thus, substrate binding alters the environment in the distal heme pocket of the high-spin heme over very long distance.
Collapse
Affiliation(s)
| | - Zhongxin Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | | | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
19
|
Heterolytic OO bond cleavage: Functional role of Glu113 during bis-Fe(IV) formation in MauG. J Inorg Biochem 2016; 167:60-67. [PMID: 27907864 DOI: 10.1016/j.jinorgbio.2016.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/23/2016] [Accepted: 11/08/2016] [Indexed: 01/16/2023]
Abstract
The diheme enzyme MauG utilizes H2O2 to perform oxidative posttranslational modification on a protein substrate. A bis-Fe(IV) species of MauG was previously identified as a key intermediate in this reaction. Heterolytic cleavage of the OO bond of H2O2 drives the formation of the bis-Fe(IV) intermediate. In this work, we tested a hypothesis that a glutamate residue, Glu113 in the distal pocket of the pentacoordinate heme of MauG, facilitates heterolytic OO bond cleavage, thereby leading to bis-Fe(IV) formation. This hypothesis was proposed based on sequence alignment and structural comparison with other H2O2-utilizing hemoenzymes, especially those from the diheme enzyme superfamily that MauG belongs to. Electron paramagnetic resonance (EPR) characterization of the reaction between MauG and H2O2 revealed that mutation of Glu113 inhibited heterolytic OO bond cleavage, in agreement with our hypothesis. This result was further confirmed by the HPLC study in which an analog of H2O2, cumene hydroperoxide, was used to probe the pattern of OO bond cleavage. Together, our data suggest that Glu113 functions as an acid-base catalyst to assist heterolytic OO bond cleavage during the early stage of the catalytic reaction. This work advances our mechanistic understanding of the H2O2-activation process during bis-Fe(IV) formation in MauG.
Collapse
|
20
|
Shu X, Su J, Du K, You Y, Gao S, Wen G, Tan X, Lin Y. Rational Design of Dual Active Sites in a Single Protein Scaffold: A Case Study of Heme Protein in Myoglobin. ChemistryOpen 2016; 5:192-196. [PMID: 27933225 PMCID: PMC5125789 DOI: 10.1002/open.201500224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Indexed: 01/03/2023] Open
Abstract
Rational protein design has been proven to be a powerful tool for creating functional artificial proteins. Although many artificial metalloproteins with a single active site have been successfully created, those with dual active sites in a single protein scaffold are still relatively rare. In this study, we rationally designed dual active sites in a single heme protein scaffold, myoglobin (Mb), by retaining the native heme site and creating a copper-binding site remotely through a single mutation of Arg118 to His or Met. Isothermal titration calorimetry (ITC) and electron paramagnetic resonance (EPR) studies confirmed that a copper-binding site of [3-His] or [2-His-1-Met] motif was successfully created in the single mutant of R118H Mb and R118M Mb, respectively. UV/Vis kinetic spectroscopy and EPR studies further revealed that both the heme site and the designed copper site exhibited nitrite reductase activity. This study presents a new example for rational protein design with multiple active sites in a single protein scaffold, which also lays the groundwork for further investigation of the structure and function relationship of heme/non-heme proteins.
Collapse
Affiliation(s)
- Xiao‐Gang Shu
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001P. R. China
| | - Ji‐Hu Su
- Department of Modern PhysicsUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Ke‐Jie Du
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001P. R. China
| | - Yong You
- Laboratory of Protein Structure and FunctionUniversity of South ChinaHengyang421001P. R. China
| | - Shu‐Qin Gao
- Laboratory of Protein Structure and FunctionUniversity of South ChinaHengyang421001P. R. China
| | - Ge‐Bo Wen
- Laboratory of Protein Structure and FunctionUniversity of South ChinaHengyang421001P. R. China
| | - Xiangshi Tan
- Department of ChemistryShanghai Key Lab of Chemical Biology for Protein Research& Institute of Biomedical ScienceFudan UniversityShanghai200433P. R. China
| | - Ying‐Wu Lin
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001P. R. China
- Laboratory of Protein Structure and FunctionUniversity of South ChinaHengyang421001P. R. China
| |
Collapse
|
21
|
Mechanism of protein oxidative damage that is coupled to long-range electron transfer to high-valent haems. Biochem J 2016; 473:1769-75. [PMID: 27076451 DOI: 10.1042/bcj20160047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/12/2016] [Indexed: 11/17/2022]
Abstract
In the absence of its substrate, the auto-reduction of the high-valent bis-Fe(IV) state of the dihaem enzyme MauG is coupled to oxidative damage of a methionine residue. Transient kinetic and solvent isotope effect studies reveal that this process occurs via two sequential long-range electron transfer (ET) reactions from methionine to the haems. The first ET is coupled to proton transfer (PT) to the haems from solvent via an ordered water network. The second ET is coupled to PT at the methionine site and occurs during the oxidation of the methionine to a sulfoxide. This process proceeds via Compound I- and Compound II-like haem intermediates. It is proposed that the methionine radical is stabilized by a two-centre three-electron (2c3e) bond. This provides insight into how oxidative damage to proteins may occur without direct contact with a reactive oxygen species, and how that damage can be propagated through the protein.
Collapse
|
22
|
Dey S, Sil D, Pandit YA, Rath SP. Effect of Two Interacting Rings in Metalloporphyrin Dimers upon Stepwise Oxidations. Inorg Chem 2016; 55:3229-38. [DOI: 10.1021/acs.inorgchem.5b02065] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soumyajit Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Debangsu Sil
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Younis Ahmad Pandit
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| |
Collapse
|
23
|
Dow BA, Davidson VL. Converting the bis-FeIV state of the diheme enzyme MauG to Compound I decreases the reorganization energy for electron transfer. Biochem J 2016; 473:67-72. [PMID: 26494530 PMCID: PMC4860820 DOI: 10.1042/bj20150998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/22/2015] [Indexed: 11/17/2022]
Abstract
The electron transfer (ET) properties of two types of high-valent hemes were studied within the same protein matrix; the bis-Fe(IV) state of MauG and the Compound I state of Y294H MauG. The latter is formed as a consequence of mutation of the tyrosine which forms the distal axial ligand of the six-coordinate heme that allows it to stabilize Fe(IV) in the absence of an external ligand. The rates of the ET reaction of each high-valent species with the type I copper protein, amicyanin, were determined at different temperatures and analysed by ET theory. The reaction with bis-Fe(IV) wild-type (WT) MauG exhibited a reorganization energy (λ) that was 0.39 eV greater than that for the reaction of Compound I Y295H MauG. It is concluded that the delocalization of charge over the two hemes in the bis-Fe(IV) state is responsible for the larger λ, relative to the Compound I state in which the Fe(V) equivalent is isolated on one heme. Although the increase in λ decreases the rate of ET, the delocalization of charge decreases the ET distance to its natural substrate protein, thus increasing the ET rate. This describes how proteins can balance different ET properties of complex redox cofactors to optimize each system for its particular ET or catalytic reaction.
Collapse
Affiliation(s)
- Brian A Dow
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, U.S.A
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, U.S.A.
| |
Collapse
|
24
|
Dey S, Sil D, Rath SP. A Highly Oxidized Cobalt Porphyrin Dimer: Spin Coupling and Stabilization of the Four-Electron Oxidation Product. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509430] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Soumyajit Dey
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| | - Debangsu Sil
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| | - Sankar Prasad Rath
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| |
Collapse
|
25
|
Dey S, Sil D, Rath SP. A Highly Oxidized Cobalt Porphyrin Dimer: Spin Coupling and Stabilization of the Four-Electron Oxidation Product. Angew Chem Int Ed Engl 2015; 55:996-1000. [DOI: 10.1002/anie.201509430] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Soumyajit Dey
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| | - Debangsu Sil
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| | - Sankar Prasad Rath
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur- 208016 India
| |
Collapse
|
26
|
Sil D, Dey S, Kumar A, Bhowmik S, Rath SP. Oxidation triggers extensive conjugation and unusual stabilization of two di-heme dication diradical intermediates: role of bridging group for electronic communication. Chem Sci 2015; 7:1212-1223. [PMID: 29910877 PMCID: PMC5975787 DOI: 10.1039/c5sc03120f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/26/2015] [Indexed: 11/21/2022] Open
Abstract
Synthetic analogs of diheme enzyme MauG have been reported. Unlike the bis-Fe(iv) state in MauG, the 2e-oxidation stabilizes two ferric hemes, each coupled with a porphyrin π-cation radical.
MauG is a diheme enzyme that utilizes two covalently bound c-type hemes to catalyse the biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone. The two hemes are physically separated by 14.5 Å and a hole-hopping mechanism is proposed in which a tryptophan residue located between the hemes undergoes reversible oxidation and reduction to increase the effective electronic coupling element and enhance the rate of reversible electron transfer between the hemes in bis-Fe(iv) MauG. The present work describes the structure and spectroscopic investigation of 2e-oxidations of the synthetic diheme analogs in which two heme centers are covalently connected through a conjugated ethylene bridge that leads to the stabilization of two unusual trans conformations (U and P′ forms) with different and distinct spectroscopic and geometric features. Unlike in MauG, where the two oxidizing equivalents are distributed within the diheme system giving rise to the bis-Fe(iv) redox state, the synthetic analog stabilizes two ferric hemes, each coupled with a porphyrin cation radical, a scenario resembling the binuclear dication diradical complex. Interestingly, charge resonance-transition phenomena are observed here both in 1e and 2e-oxidised species from the same system, which are also clearly distinguishable by their relative position and intensity. Detailed UV-vis-NIR, X-ray, Mössbauer, EPR and 1H NMR spectroscopic investigations as well as variable temperature magnetic studies have unraveled strong electronic communications between two porphyrin π-cation radicals through the bridging ethylene group. The extensive π-conjugation also allows antiferromagnetic coupling between iron(iii) centers and porphyrin radical spins of both rings. DFT calculations revealed extended π-conjugation and H-bonding interaction as the major factors in controlling the stability of the conformers.
Collapse
Affiliation(s)
- Debangsu Sil
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur-208016 , India . ;
| | - Soumyajit Dey
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur-208016 , India . ;
| | - Amit Kumar
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur-208016 , India . ;
| | - Susovan Bhowmik
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur-208016 , India . ;
| | - Sankar Prasad Rath
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur-208016 , India . ;
| |
Collapse
|
27
|
Roles of multiple-proton transfer pathways and proton-coupled electron transfer in the reactivity of the bis-FeIV state of MauG. Proc Natl Acad Sci U S A 2015; 112:10896-901. [PMID: 26283395 DOI: 10.1073/pnas.1510986112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The high-valent state of the diheme enzyme MauG exhibits charge-resonance (CR) stabilization in which the major species is a bis-Fe(IV) state with one heme present as Fe(IV)=O and the other as Fe(IV) with axial heme ligands provided by His and Tyr side chains. In the absence of its substrate, the high-valent state is relatively stable and returns to the diferric state over several minutes. It is shown that this process occurs in two phases. The first phase is redistribution of the resonance species that support the CR. The second phase is the loss of CR and reduction to the diferric state. Thermodynamic analysis revealed that the rates of the two phases exhibited different temperature dependencies and activation energies of 8.9 and 19.6 kcal/mol. The two phases exhibited kinetic solvent isotope effects of 2.5 and 2.3. Proton inventory plots of each reaction phase exhibited extreme curvature that could not be fit to models for one- or multiple-proton transfers in the transition state. Each did fit well to a model for two alternative pathways for proton transfer, each involving multiple protons. In each case the experimentally determined fractionation factors were consistent with one of the pathways involving tunneling. The percent of the reaction that involved the tunneling pathway differed for the two reaction phases. Using the crystal structure of MauG it was possible to propose proton-transfer pathways consistent with the experimental data using water molecules and amino acid side chains in the distal pocket of the high-spin heme.
Collapse
|