1
|
Abstract
The last two decades have seen great advancements in fundamental understanding and applications of metallic nanoparticles stabilized by mixed-ligand monolayers. Identifying and controlling the organization of multiple ligands in the nanoparticle monolayer has been studied, and its effect on particle properties has been examined. Mixed-ligand protected particles have shown advantages over monoligand protected particles in fields such as catalysis, self-assembly, imaging, and drug delivery. In this Review, the use of mixed-ligand monolayer protected nanoparticles for sensing applications will be examined. This is the first time this subject is examined as a whole. Mixed-ligand nanoparticle-based sensors are revealed to be divided into four groups, each of which will be discussed. The first group consists of ligands that work cooperatively to improve the sensors' properties. In the second group, multiple ligands are utilized for sensing multiple analytes. The third group combines ligands used for analyte recognition and signal production. In the final group, a sensitive, but unstable, functional ligand is combined with a stabilizing ligand. The Review will conclude by discussing future challenges and potential research directions for this promising subject.
Collapse
Affiliation(s)
- Offer Zeiri
- Department of Analytical Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 84190, Israel
| |
Collapse
|
2
|
Liao S, Luo Z, Metternich JB, Zenobi R, Stellacci F. Quantification of surface composition and segregation on AuAg bimetallic nanoparticles by MALDI MS. NANOSCALE 2020; 12:22639-22644. [PMID: 33151213 DOI: 10.1039/d0nr05061j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work we show that it is possible to use MALDI-TOF as a tool to quantify the atomic composition and to describe the phase segragation of the surface of ligand-coated, bimetallic AuAg nanoparticles. Our investigation shows that AuAg nanoparticles of various compositions exhibit core-shell heterogeneity with surface enrichment of Ag. A Monte-Carlo type simulation demonstrates that the surface Au and Ag atoms arrange in a random fashion.
Collapse
Affiliation(s)
- Suiyang Liao
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
3
|
Li Y, Jin R. Seeing Ligands on Nanoclusters and in Their Assemblies by X-ray Crystallography: Atomically Precise Nanochemistry and Beyond. J Am Chem Soc 2020; 142:13627-13644. [DOI: 10.1021/jacs.0c05866] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Merz SN, Hoover E, Egorov SA, DuBay KH, Green DL. Predicting the effect of chain-length mismatch on phase separation in noble metal nanoparticle monolayers with chemically mismatched ligands. SOFT MATTER 2019; 15:4498-4507. [PMID: 31094390 DOI: 10.1039/c9sm00264b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs) protected with a ligand monolayer hold promise for a wide variety of applications, from photonics and catalysis to drug delivery and biosensing. Monolayers that include a mixture of ligand types can have multiple chemical functionalities and may also self-assemble into advantageous patterns. Previous work has shown that both chemical and length mismatches among these surface ligands influence phase separation. In this work, we examine the interplay between these driving forces, first by using our previously-developed configurationally-biased Monte Carlo (CBMC) algorithm to predict, then by using our matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) technique to experimentally probe, the surface morphologies of a series of two-ligand mixtures on the surfaces of ultrasmall silver NPs. Specifically, we examine three such mixtures, each of which has the same chemical mismatch (consisting of a hydrophobic alkanethiol and a hydrophilic mercapto-alcohol), but varying degrees of chain-length mismatch. This delicate balance between chemical and length mismatches provides a challenging test for our CBMC prediction algorithm. Even so, the simulations are able to quantitatively predict the MALDI-MS results for all three ligand mixtures, while also providing atomic-scale details from the equilibrated ligand structures, such as patch sizes and co-crystallization patterns. The resulting monolayer morphologies range from randomly-mixed to Janus-like, demonstrating that chain-length modifications are an effective way to tune monolayer morphology without needing to alter chemical functionalities.
Collapse
Affiliation(s)
- Steven N Merz
- Department of Chemical Engineering, University of Virginia, Thornton Hall, P.O. Box 400259, Charlottesville, VA 22904, USA.
| | | | | | | | | |
Collapse
|
5
|
Merz SN, Farrell ZJ, Pearring J, Hoover E, Kester M, Egorov SA, Green DL, DuBay KH. Computational and Experimental Investigation of Janus-like Monolayers on Ultrasmall Noble Metal Nanoparticles. ACS NANO 2018; 12:11031-11040. [PMID: 30347139 DOI: 10.1021/acsnano.8b05188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Detection of monolayer morphology on nanoparticles smaller than 10 nm has proven difficult with traditional visualization techniques. Here matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is used in conjunction with atomistic simulations to detect the formation of Janus-like monolayers on noble metal nanoparticles. Silver metal nanoparticles were synthesized with a monolayer consisting of dodecanethiol (DDT) and mercaptoethanol (ME) at varying ratios. The nanoparticles were then analyzed using MALDI-MS, which gives information on the local ordering of ligands on the surface. The MALDI-MS analysis showed large deviations from random ordering, suggesting phase separation of the DDT/ME monolayers. Atomistic Monte Carlo (MC) calculations were then used to simulate the nanoscale morphology of the DDT/ME monolayers. In order to quantitatively compare the computational and experimental results, we developed a method for determining an expected MALDI-MS spectrum from the atomistic simulation. Experiments and simulations show quantitative agreement, and both indicate that the DDT/ME ligands undergo phase separation, resulting in Janus-like nanoparticle monolayers with large, patchy domains.
Collapse
Affiliation(s)
- Steven N Merz
- Department of Chemical Engineering , University of Virginia , 102 Engineers Way , Charlottesville , Virginia 22904 , United States
| | - Zachary J Farrell
- Department of Chemical Engineering , University of Virginia , 102 Engineers Way , Charlottesville , Virginia 22904 , United States
| | - Joseph Pearring
- Department of Chemical Engineering , University of Virginia , 102 Engineers Way , Charlottesville , Virginia 22904 , United States
| | - Elise Hoover
- Department of Biomedical Engineering , University of Virginia , Thornton Hall , P.O. Box 400259, Charlottesville , Virginia 22904 , United States
| | - Mark Kester
- School of Medicine , University of Virginia , 1215 Lee Street , Charlottesville , Virginia 22908 , United States
| | - Sergei A Egorov
- Department of Chemistry , University of Virginia , McCormick Road , PO Box 400319, Charlottesville , Virginia 22904 , United States
- Leibniz Institute for Polymer Research Dresden , Hohe Strasse 6 , D-01069 Dresden , Germany
| | - David L Green
- Department of Chemical Engineering , University of Virginia , 102 Engineers Way , Charlottesville , Virginia 22904 , United States
| | - Kateri H DuBay
- Department of Chemistry , University of Virginia , McCormick Road , PO Box 400319, Charlottesville , Virginia 22904 , United States
| |
Collapse
|
6
|
Mass spectrometry and Monte Carlo method mapping of nanoparticle ligand shell morphology. Nat Commun 2018; 9:4478. [PMID: 30367040 PMCID: PMC6203843 DOI: 10.1038/s41467-018-06939-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/02/2018] [Indexed: 01/26/2023] Open
Abstract
Janus, patchy, stripe-like, or random arrangements of molecules within the ligand shell of nanoparticles affect many properties. Among all existing ligand shell morphology characterization methods, the one based on mass spectroscopy is arguably the simplest. Its greatest limitation is that the results are qualitative. Here, we use a tailor-made Monte Carlo type program that fits the whole MALDI spectrum and generates a 3D model of the ligand shell. Quantitative description of the ligand shell in terms of nearest neighbor distribution and characteristic length scale can be readily extracted by the model, and are compared with the results of other characterization methods. A parameter related to the intermolecular interaction is extracted when this method is combined with NMR. This approach could become the routine method to characterize the ligand shell morphology of many nanoparticles and we provide an open access program to facilitate its use. Determining the arrangement of ligands on a nanoparticle is challenging, given the limitations of existing characterization tools. Here, the authors describe an accessible method for resolving ligand shell morphology that uses simple MALDI-TOF mass spectrometry measurements in conjunction with an open-access Monte Carlo fitting program.
Collapse
|
7
|
Luo Z, Marson D, Ong QK, Loiudice A, Kohlbrecher J, Radulescu A, Krause-Heuer A, Darwish T, Balog S, Buonsanti R, Svergun DI, Posocco P, Stellacci F. Quantitative 3D determination of self-assembled structures on nanoparticles using small angle neutron scattering. Nat Commun 2018; 9:1343. [PMID: 29632331 PMCID: PMC5890256 DOI: 10.1038/s41467-018-03699-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/02/2018] [Indexed: 11/16/2022] Open
Abstract
The ligand shell (LS) determines a number of nanoparticles’ properties. Nanoparticles’ cores can be accurately characterized; yet the structure of the LS, when composed of mixture of molecules, can be described only qualitatively (e.g., patchy, Janus, and random). Here we show that quantitative description of the LS’ morphology of monodisperse nanoparticles can be obtained using small-angle neutron scattering (SANS), measured at multiple contrasts, achieved by either ligand or solvent deuteration. Three-dimensional models of the nanoparticles’ core and LS are generated using an ab initio reconstruction method. Characteristic length scales extracted from the models are compared with simulations. We also characterize the evolution of the LS upon thermal annealing, and investigate the LS morphology of mixed-ligand copper and silver nanoparticles as well as gold nanoparticles coated with ternary mixtures. Our results suggest that SANS combined with multiphase modeling is a versatile approach for the characterization of nanoparticles’ LS. The ligand shell of a nanoparticle remains difficult to resolve, as the available characterization methods provide only qualitative information. Here, the authors introduce an approach based on small-angle neutron scattering that can quantitatively reveal the organization of ligands in mixed-monolayer nanoparticles.
Collapse
Affiliation(s)
- Zhi Luo
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Domenico Marson
- Department of Engineering and Architecture and INSTM Trieste Unit, University of Trieste, 34127, Trieste, Italy
| | - Quy K Ong
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Anna Loiudice
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul-Scherrer Institute, 5232, Villigen, Switzerland
| | - Aurel Radulescu
- Jülich Center for Neutron Science, JCNS at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, 85747, Garching, Germany
| | - Anwen Krause-Heuer
- The National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW, 2232, Australia
| | - Tamim Darwish
- The National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW, 2232, Australia
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, 1700, Fribourg, Switzerland
| | - Raffaella Buonsanti
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, 22603, Hamburg, Germany
| | - Paola Posocco
- Department of Engineering and Architecture and INSTM Trieste Unit, University of Trieste, 34127, Trieste, Italy
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
8
|
Luo Z, Hou J, Menin L, Ong QK, Stellacci F. Evolution of the Ligand Shell Morphology during Ligand Exchange Reactions on Gold Nanoparticles. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi Luo
- Institute of Materials; École Polytechnique Fédérale de Lausanne (EPFL); Station 12 1015 Lausanne Switzerland
| | - Jing Hou
- Institute of Materials; École Polytechnique Fédérale de Lausanne (EPFL); Station 12 1015 Lausanne Switzerland
| | - Laure Menin
- Institute of Chemical Sciences and Engineering; École Polytechnique Fédérale de Lausanne (EPFL); Station 6 1015 Lausanne Switzerland
| | - Quy Khac Ong
- Institute of Materials; École Polytechnique Fédérale de Lausanne (EPFL); Station 12 1015 Lausanne Switzerland
| | - Francesco Stellacci
- Institute of Materials; École Polytechnique Fédérale de Lausanne (EPFL); Station 12 1015 Lausanne Switzerland
| |
Collapse
|
9
|
Luo Z, Hou J, Menin L, Ong QK, Stellacci F. Evolution of the Ligand Shell Morphology during Ligand Exchange Reactions on Gold Nanoparticles. Angew Chem Int Ed Engl 2017; 56:13521-13525. [DOI: 10.1002/anie.201708190] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Zhi Luo
- Institute of Materials; École Polytechnique Fédérale de Lausanne (EPFL); Station 12 1015 Lausanne Switzerland
| | - Jing Hou
- Institute of Materials; École Polytechnique Fédérale de Lausanne (EPFL); Station 12 1015 Lausanne Switzerland
| | - Laure Menin
- Institute of Chemical Sciences and Engineering; École Polytechnique Fédérale de Lausanne (EPFL); Station 6 1015 Lausanne Switzerland
| | - Quy Khac Ong
- Institute of Materials; École Polytechnique Fédérale de Lausanne (EPFL); Station 12 1015 Lausanne Switzerland
| | - Francesco Stellacci
- Institute of Materials; École Polytechnique Fédérale de Lausanne (EPFL); Station 12 1015 Lausanne Switzerland
| |
Collapse
|
10
|
Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:749-771. [PMID: 28865004 PMCID: PMC5693983 DOI: 10.1007/s00249-017-1250-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/20/2017] [Accepted: 08/22/2017] [Indexed: 10/27/2022]
Abstract
Molecular self-assembly is a topic attracting intense scientific interest. Various strategies have been developed for construction of molecular aggregates with rationally designed properties, geometries, and dimensions that promise to provide solutions to both theoretical and practical problems in areas such as drug delivery, medical diagnostics, and biosensors, to name but a few. In this respect, gold nanoparticles covered with self-assembled monolayers presenting nanoscale surface patterns-typically patched, striped or Janus-like domains-represent an emerging field. These systems are particularly intriguing for use in bio-nanotechnology applications, as presence of such monolayers with three-dimensional (3D) morphology provides nanoparticles with surface-dependent properties that, in turn, affect their biological behavior. Comprehensive understanding of the physicochemical interactions occurring at the interface between these versatile nanomaterials and biological systems is therefore crucial to fully exploit their potential. This review aims to explore the current state of development of such patterned, self-assembled monolayer-protected gold nanoparticles, through step-by-step analysis of their conceptual design, synthetic procedures, predicted and determined surface characteristics, interactions with and performance in biological environments, and experimental and computational methods currently employed for their investigation.
Collapse
|
11
|
Ong Q, Luo Z, Stellacci F. Characterization of Ligand Shell for Mixed-Ligand Coated Gold Nanoparticles. Acc Chem Res 2017; 50:1911-1919. [PMID: 28771322 DOI: 10.1021/acs.accounts.7b00165] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Gold nanoparticles owe a large number of their properties to their ligand shell. Indeed, many researchers routinely use mixtures of ligand molecules for their nanoparticles to impart complex property sets. It has been shown that the morphology of ligand shells (e.g., Janus, random, stripelike) leads to specific properties. Examples include wettability, solubility, protein nonspecific adsorption, cell penetration, catalysis, and cation-capturing abilities. Yet, it remains a great challenge to evaluate such morphologies in even the most fundamental terms such as dimension and shape. In this Account, we review recent progress in characterization techniques applicable to gold nanoparticles with ligand shells composed of mixed ligands. We divide the characterization into three major categories, namely, microscopy, spectroscopy, and simulation. In microscopy, we review progresses in scanning tunneling microscopy (STM), atomic force microscopy (AFM), and scanning/transmission electron microscopy. In spectroscopy, we mainly highlight recent achievements in nuclear magnetic resonance (NMR), mass spectrometry (MS), small angle neutron scattering (SANS), electron spin resonance (EPR), and adsorption based spectroscopies. In simulation, we point out the latest results in understanding thermodynamic stability of ligand shell morphology and emphasize the role of computer simulation for helping interpretation of experimental data. We conclude with a perspective of future development.
Collapse
Affiliation(s)
- Quy Ong
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne-1015, Switzerland
| | - Zhi Luo
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne-1015, Switzerland
| | - Francesco Stellacci
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne-1015, Switzerland
| |
Collapse
|
12
|
Zhang S, Kim S, Tsukruk VV. Ligand-Exchange Dynamics on Gold Nanocrystals: Direct Monitoring of Nanoscale Polyvinylpyrrolidone-Thiol Domain Surface Morphology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3576-3587. [PMID: 28335595 DOI: 10.1021/acs.langmuir.6b04210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report direct high-resolution monitoring of an evolving mixed nanodomain surface morphology during thiol adsorption on polyvinylpyrrolidone (PVP)-stabilized single crystal gold nanocrystals. The thiol adsorption and replacement dynamics are much more complex than a simple complete substitution of the initial polymer ligand. We observed that during ligand exchange with linear thiol, the nanocrystal surface evolved from an initial 1 nm uniform PVP coating into a remarkably stable network of globular PVP domains 20-100 nm in size and ∼4 nm in height surrounded by thiol self-assembled monolayers. The final stability of such a mixed thiol-PVP surface morphology can possibly be attributed to the interfacial energy reduction from partially solvophilic surfaces and the entropic gain from mixed ligand surface layers. The ligand-exchange dynamics and the unusual equilibrium morphology revealed here provide important insights into both displacement dynamics of surface-bound molecules and the nanoscale peculiarities of surface functionalization of colloidal metal substrates.
Collapse
Affiliation(s)
- Shuaidi Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
13
|
Merz SN, Farrell ZJ, Dunn CJ, Swanson RJ, Egorov SA, Green DL. Theoretical and Experimental Investigation of Microphase Separation in Mixed Thiol Monolayers on Silver Nanoparticles. ACS NANO 2016; 10:9871-9878. [PMID: 27744676 DOI: 10.1021/acsnano.6b02091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Silver nanoparticles with mixed ligand self-assembled monolayers were synthesized from dodecanethiol and another ligand from a homologous series of alkanethiols (butanethiol, pentanethiol, heptanethiol, octanethiol, nonanethiol, decanethiol, undecanethiol, or dodecanethiol[D25]). These were hypothesized to exhibit ligand phase separation that increases with degree of physical mismatch between the ligands based on the difference in the number of carbons in the two ligands. Dodecanethiol/dodecanethiol[D25] was expected to exhibit minimal phase separation as the ligands have only isotopic differences, while dodecanethiol/butanethiol was hypothesized to exhibit the most phase separation due to the difference in chain length. Phase separation of all other ligand mixtures was expected to fall between these two extremes. Matrix-assisted laser desorption ionization (MALDI) mass spectroscopy provided a value for ligand phase separation by comparison with a binomial (random) model and subsequent calculation of the sum-of-squares error (SSR). These nanoparticle systems were also modeled using the Scheutjens and Fleer self-consistent mean-field theory (SCFT), which determined the most thermodynamically favorable arrangement of ligands on the surface. From MALDI, it was found that dodecanethiol/dodecanethiol[D25] formed a well-mixed monolayer with SSR = 0.002, and dodecanethiol/butanethiol formed a microphase separated monolayer with SSR = 0.164; in intermediate dodecanethiol/alkanethiol mixtures, SSR increased with increasing ligand length difference as expected. For comparison with experiment, an effective SSR value was calculated from SCFT simulations. The SSR values obtained by experiment and theory show good agreement and provide strong support for the validity of SCFT predictions of monolayer structure. These approaches represent robust methods of characterization for ligand phase separation on silver nanoparticles.
Collapse
Affiliation(s)
- Steven N Merz
- Department of Chemical Engineering, University of Virginia , 102 Engineers Way, Charlottesville, Virginia 22904, United States
| | - Zachary J Farrell
- Department of Chemical Engineering, University of Virginia , 102 Engineers Way, Charlottesville, Virginia 22904, United States
| | - Caroline J Dunn
- Department of Chemical Engineering, University of Virginia , 102 Engineers Way, Charlottesville, Virginia 22904, United States
| | - Richard J Swanson
- Department of Chemical Engineering, University of Virginia , 102 Engineers Way, Charlottesville, Virginia 22904, United States
| | - Sergei A Egorov
- Department of Chemical Engineering, University of Virginia , 102 Engineers Way, Charlottesville, Virginia 22904, United States
| | - David L Green
- Department of Chemical Engineering, University of Virginia , 102 Engineers Way, Charlottesville, Virginia 22904, United States
| |
Collapse
|
14
|
Koh ES, McDonald J, Tsvetkova IB, Dragnea B. Measurement of Nanoparticle Adlayer Properties by Photothermal Microscopy. J Phys Chem Lett 2015; 6:3621-3625. [PMID: 26722732 DOI: 10.1021/acs.jpclett.5b01493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Many nanoparticle applications require molecular adlayers that impart desirable interfacial characteristics. Such characteristics are crucial in controlling the interaction of the nanoparticle with the environment or other nanoparticles; however, departures from bulk values are expected for adlayer properties and in situ methods to evaluate the magnitude of these departures, preferably on the scale of a single nanoparticle, are needed. Here we investigate the potential of single-particle photothermal microscopy for measuring the thermal properties of nanoparticle-supported, layer-by-layer grown polyelectrolytes. We show that nanometer changes in adlayer thickness can be detected this way, and the water content of the nanoparticle-supported adlayers can be estimated.
Collapse
Affiliation(s)
- Eun Sohl Koh
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - James McDonald
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Irina B Tsvetkova
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Bogdan Dragnea
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|