1
|
Miyake H, Ishige N, Okai H, Iida H. Aerobic oxidative C-C bond formation through C-H bond activation catalysed by flavin and iodine. Org Biomol Chem 2024; 22:7736-7742. [PMID: 39229653 DOI: 10.1039/d4ob01317d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We report a metal/light-free aerobic oxidative C-C bond formation using sp3 C-H bond activation of tetrahydroisoquinolines catalyzed by flavin and iodine. The dual catalytic system enabled the oxidative Mannich and aza-Henry reactions by the cross-dehydrogenative coupling between two sp3 C-H bonds. Furthermore, the flavin-iodine-coupled catalysis was applied to the synthesis of pyrrolo[2,1-a]isoquinolines through the sequential oxidative 1,3-dipolar cycloaddition and dehydrogenative aromatization. The biomimetic flavin catalysis efficiently activates molecular oxygen; thus the non-metal dual catalytic system enables green oxidative transformation using molecular oxygen as an environmentally friendly terminal oxidant which generates benign water.
Collapse
Affiliation(s)
- Hazuki Miyake
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| | - Nico Ishige
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| | - Hayaki Okai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
2
|
Singh P, König B, Shaikh AC. Electro-photochemical Functionalization of C(sp 3)-H bonds: Synthesis toward Sustainability. JACS AU 2024; 4:3340-3357. [PMID: 39328771 PMCID: PMC11423327 DOI: 10.1021/jacsau.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Over the past several decades, there has been a surge of interest in harnessing the functionalization of C(sp3)-H bonds due to their promising applications across various domains. Yet, traditional methodologies have heavily leaned on stoichiometric quantities of costly and often environmentally harmful metal oxidants, posing sustainability challenges for C-H activation chemistry at large. In stark contrast, the emergence of electro-photocatalytic-driven C(sp3)-H bond activation presents a transformative alternative. This approach offers a viable route for forging carbon-carbon and carbon-heteroatom bonds. It stands out by directly engaging inert C(sp3)-H bonds, prevalent in organic compounds, without the necessity for prefunctionalization or harsh reaction conditions. Such methodology simplifies the synthesis of intricate organic compounds and facilitates the creation of novel chemical architectures with remarkable efficiency and precision. This review aims to shed light on the notable strides achieved in recent years in the realm of C(sp3)-H bond functionalization through organic electro-photochemistry.
Collapse
Affiliation(s)
- Puja Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Aslam C Shaikh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India
| |
Collapse
|
3
|
Zuo L, Yu F, Zhao S, Wang W, Wang S. Copper-Catalyzed, Intramolecular Amination of Unactivated C(sp 3)-H Bonds through Radical Relay. J Org Chem 2024; 89:13077-13084. [PMID: 39208327 DOI: 10.1021/acs.joc.4c01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Although copper-catalyzed amination of activated C(sp3)-H bonds through radical relay has been developed, amination of unactivated C(sp3)-H bonds is rare. Herein, copper-catalyzed intramolecular amination of remote unactivated C(sp3)-H bonds is reported. The reaction is conducted in a mild and effective manner with moderate to good yields, demonstrating broad tolerance toward various functional groups and exhibiting complete regio- and chemoselectivities. This innovation supplies novel synthetic pathways for the construction of saturated nitrogenated heterocycles.
Collapse
Affiliation(s)
- Liyan Zuo
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Fan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Shuai Zhao
- Qingdao Zhongda Agritech Co., Ltd., Building 1, No. 368 Hedong Road, High-tech Zone, Qingdao, Shandong 266100, P. R. China
| | - Wengui Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Shoufeng Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
4
|
Huang T, Liu J, Wu Z, Tian Z, Hai L, Wu Y. Photoredox-Catalyzed Alkylamination of Alkenes via Oxidative Radical-Polar Crossover and Site-Selective 1,5-Hydrogen Atom Transfer. Org Lett 2024; 26:6847-6852. [PMID: 39110700 DOI: 10.1021/acs.orglett.4c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
We reported the visible-light-mediated photoredox-catalyzed oxidative radical-polar crossover and 1,5-hydrogen atom transfer combined site-selective remote C(sp3)-N cross-coupling alkylamination of alkenes. Various anilines and hydroxamides (1,5-hydrogen atom transfer reagents) could be tolerated. The mechanistic studies indicated the radical nature of the reaction and the indispensability of light and photocatalyst. Stern-Volmer fluorescence quenching and cyclic voltammetry experiments have been used to outline the proposed reaction pathway.
Collapse
Affiliation(s)
- Tianle Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Jianghong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Zhenye Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Zeyu Tian
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
5
|
Fu K, Yang X, Yu Z, Song L, Shi L. Revealing the nature of covalently tethered distonic radical anions in the generation of heteroatom-centered radicals: evidence for the polarity-matching PCET pathway. Chem Sci 2024; 15:12398-12409. [PMID: 39118625 PMCID: PMC11304808 DOI: 10.1039/d4sc02602k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Recognition of the intermediacy and regulation of reactivity patterns of radical intermediates in radical chemistry have profound impacts on harnessing and developing the full potential of open-shell species in synthetic settings. In this work, the possibility of in situ formation of O/N-X intermediates from Brønsted base covalently tethered carbonyl hypohalites (BCTCs) for the generation of heteroatom-centered radicals has certainly been excluded by NMR experiments and density functional theory calculations. Instead, the spectroscopic analyses reveal that the BCTCs serve as precursors of tether-tunable distonic radical anions (TDRAs) which have been unequivocally substantiated to be involved in the direct cleavage of O/N-H bonds to generate the corresponding heteroatom-centered radicals. Meanwhile, a deep insight into the properties and reactivities of the resulting TDRAs indicates that the introduction of a tethered Brønsted base on the parent open-shell species reinforces their stabilities and leads to a reversal of electrophilicity. Moreover, the dual descriptor values and electrophilicity indices are calculated based on eleven reported radical reactions involving various electrophilic/nucleophilic radical species, further confirming their validity in the prediction of the polar effect and the polarity-matching consistency between nucleophilic TDRAs and protic O/N-H bonds. The additional halogen-free experiments mediated by the combination of phthaloyl peroxide and TEMPO also prove the feasibility of the TDRA-assisted philicity-regulation approach. Lastly, detailed intrinsic bond orbital (IBO) and Hirschfeld spin population analyses are employed to elucidate that the H-atom abstraction processes are the polarity-matching proton-coupled electron transfer (PCET) pathways, with a degree of oxidative asynchronicity.
Collapse
Affiliation(s)
- Kang Fu
- School of Chemistry and Chemical Engineering, School of Science(shenzhen), Harbin Institute of Technology Harbin 150001 China
| | - Xihui Yang
- School of Chemistry and Chemical Engineering, School of Science(shenzhen), Harbin Institute of Technology Harbin 150001 China
| | - Zhiyou Yu
- School of Chemistry and Chemical Engineering, School of Science(shenzhen), Harbin Institute of Technology Harbin 150001 China
| | - Lijuan Song
- School of Chemistry and Chemical Engineering, School of Science(shenzhen), Harbin Institute of Technology Harbin 150001 China
| | - Lei Shi
- School of Chemistry and Chemical Engineering, School of Science(shenzhen), Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
6
|
Huang L, Sun J, Sun B, Song S, Li J. Regioselective synthesis of isoquinolinonediones through remote unactivated C(sp 3)-H bonds. Chem Commun (Camb) 2024; 60:4818-4821. [PMID: 38616709 DOI: 10.1039/d4cc00916a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Herein, a general strategy for the remote-site-selective cascade addition/cyclization of unactivated C(sp3)-H bonds in free alcohols and sulfonamides to build isoquinolinonedione skeletons is developed. The site selectivity occurs predominantly via a 1,5-hydrogen atom transfer (HAT) process, triggered by heteroatom-centred radicals generated directly under silver catalysis. A broad substrate scope and excellent regio-/chemo-selective control are demonstrated in this method.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jun Sun
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Boxuan Sun
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shengjie Song
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jianjun Li
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Taizhou Key Laboratory of Advanced Manufacturing Technology, Taizhou Institute, Zhejiang University of Technology, Taizhou 318014, P. R. China
| |
Collapse
|
7
|
Zhang Y, Chen SS, Li KD, Huang HM. Cyclic Amine Synthesis via Catalytic Radical-Polar Crossover Cycloadditions. Angew Chem Int Ed Engl 2024; 63:e202401671. [PMID: 38418423 DOI: 10.1002/anie.202401671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/01/2024]
Abstract
The rapid assembly of valuable cyclic amine architectures in a single step from simple precursors has been recognized as an ideal platform in term of efficiency and sustainability. Although a vast number of studies regarding cyclic amine synthesis has been reported, new synthetic disconnection approaches are still high in demand. Herein, we report a catalytic radical-polar crossover cycloaddition to cyclic amine synthesis triggered from primary sulfonamide under photoredox condition. This newly developed disconnection, comparable to established synthetic approaches, will allow to construct β, β-disubstituted cyclic amine and β-monosubstituted cyclic amine derivatives efficiently. This study highlights the unique utility of primary sulfonamide as a bifunctional reagent, which acts as a radical precursor and a nucleophile. The open-shell methodology demonstrates broad tolerance to various functional groups, drug derivatives and natural products in an economically and sustainable fashion.
Collapse
Affiliation(s)
- Ying Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210, Shanghai, China
| | - Shu-Sheng Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210, Shanghai, China
| | - Kai-Dian Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210, Shanghai, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210, Shanghai, China
| |
Collapse
|
8
|
Hu SP, Gao CH, Liu TM, Miao BY, Wang HC, Yu W, Han B. Integrating Olefin Carboamination and Hofmann-Löffler-Freytag Reaction by Radical Deconstruction of Hydrazonyl N-N Bond. Angew Chem Int Ed Engl 2024; 63:e202400168. [PMID: 38380865 DOI: 10.1002/anie.202400168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
As a type of elementary organic compounds containing N-N single bond, hydrazone involved chemical conversions are extremely extensive, but they are mainly limited to N2-retention and N2-removal modes. We report herein an unprecedented protocol for the realization of division utilization of the N2-moiety of hydrazone by a radical facilitated N-N bond deconstruction strategy. This new conversion mode enables the successful combination of alkene carboamination and Hofmann-Löffler-Freytag reaction by the reaction of N-homoallyl mesitylenesulfonyl hydrazones with ethyl difluoroiodoacetate under photocatalytic redox neutral conditions. Mechanism studies reveal that the reaction undergoes a radical relay involving addition, crucial remote imino-N migration and H-atom transfer. Consequently, a series of structurally significant ϵ-N-sulphonamide-α,α-difluoro-γ-amino acid esters are efficiently produced via continuous C-C bond and dual C-N bonds forging.
Collapse
Affiliation(s)
- Si-Pei Hu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chen-Hui Gao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Tu-Ming Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bing-Yang Miao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hong-Chen Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
9
|
Baidya M, Kumbhakar P, De Sarkar S. Metal-Free Electrocatalytic Synthesis of Fused Azabicycles from N-Allyl Enamine Carboxylates. Org Lett 2024; 26:2651-2655. [PMID: 38517192 DOI: 10.1021/acs.orglett.4c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
An electrocatalytic approach to access structurally significant azabicyclic scaffolds from N-allyl enamine carboxylates is illustrated. This metal-free method functions exclusively with a catalytic amount of iodide, strategically employed to electrochemically generate a reactive hypervalent iodine species, which facilitates the cascade bicyclization processes with enhanced precision and efficiency. Excellent functional group compatibility was observed, enabling the synthesis of a series of azabicycle derivatives. Detailed mechanistic and electrochemical studies enhance the comprehension of the reaction sequence.
Collapse
Affiliation(s)
- Mrinmay Baidya
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Pintu Kumbhakar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
10
|
Ye W, Xiong H, Wang M, Chang J, Yu W. Iodine-Mediated δ-Amination of sp 3 C-H Bonds. J Org Chem 2024; 89:3481-3490. [PMID: 38381857 DOI: 10.1021/acs.joc.3c02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
We present a direct δ-amination reaction of sp3 C-H bonds, employing molecular iodine (I2) as the sole oxidant under transition-metal-free conditions. This remote C-H functionalization approach is operationally simple and provides facile, efficient access to pyrrolidines and related heterocyclic derivatives from readily accessible substrates.
Collapse
Affiliation(s)
- Wenjun Ye
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
| | - Hanyu Xiong
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
| | - Manman Wang
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
| | - Wenquan Yu
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Wieske LE, Erdelyi M. Halogen Bonds of Halogen(I) Ions─Where Are We and Where to Go? J Am Chem Soc 2024; 146:3-18. [PMID: 38117016 PMCID: PMC10785816 DOI: 10.1021/jacs.3c11449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Halenium ions, X+, are particularly strong halogen-bond donors that interact with two Lewis bases simultaneously to form linear [D···X···D]+-type halonium complexes. Their three-center, four-electron halogen bond is both fundamentally interesting and technologically valuable as it tames the reactivity of halogen(I) ions, opening up new horizons in a variety of fields including synthetic organic and supramolecular chemistry. Understanding this bonding situation enables the development of improved halogen(I) transfer reactions and of advanced functional materials. Following a decade of investigations of basic principles, the range of applications is now rapidly widening. In this Perspective, we assess the status of the field and identify its key advances and the main bottlenecks. Clearing common misunderstandings that may hinder future progress, we aim to inspire and direct future research efforts.
Collapse
Affiliation(s)
- Lianne
H. E. Wieske
- Department of Chemistry−BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Mate Erdelyi
- Department of Chemistry−BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| |
Collapse
|
12
|
Li W, Sun B, Zhang L, Mo F. Visible-Light-Induced Transition-Metal-Free Redox-Neutral Carboxylation of Remote Benzylic C(sp 3)-H Bonds via 1,5-Hydrogen Atom Transfer. J Org Chem 2024; 89:521-526. [PMID: 38088918 DOI: 10.1021/acs.joc.3c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The direct carboxylation of the benzylic C-H bonds under mild conditions is of great importance and is quite challenging. Herein, we report an approach for the carboxylation of remote benzylic C(sp3)-H bonds by integrating the redox-neutral visible-light photoredox catalysis and the nitrogen-centered 1,5-hydrogen atom transfer. The chemical transformation progresses via consecutive single electron transfer, 1,5-hydrogen atom transfer, formation of benzylic carbanion, and nucleophilic attack on the CO2 steps, thereby enabling access to the desired carboxylation products with moderate to high yields. We also endeavor to recover the CO2 groups generated in situ intramolecularly to achieve carboxylation under a nitrogen atmosphere, resulting in moderate yields of corresponding carboxylation.
Collapse
Affiliation(s)
- Wenke Li
- College of Engineering, Peking University, Beijing 100871, China
| | - Beiqi Sun
- College of Engineering, Peking University, Beijing 100871, China
| | - Lei Zhang
- College of Engineering, Peking University, Beijing 100871, China
| | - Fanyang Mo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Akulov AA, Varaksin MV, Nelyubina AA, Tsmokaluk AN, Mazhukin DG, Tikhonov AY, Charushin VN, Chupakhin ON. Iodine-Catalyzed Radical C-H Amination of Nonaromatic Imidazole Oxides: Access to Cyclic α-Aminonitrones. J Org Chem 2024; 89:463-473. [PMID: 38092669 DOI: 10.1021/acs.joc.3c02230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A straightforward cross-dehydrogenative coupling approach to incorporate alicyclic amino residues into the structure of model cyclic aldonitrones, 2H-imidazole oxides, is reported. The elaborated C(sp2)-H functionalization is achieved by employing cyclic amines in the presence of the I2-tert-butyl hydroperoxide (TBHP) reagent system. As a result, a series of 19 novel heterocyclic derivatives were obtained in yields of up to 97%. A mechanistic study involving electron paramagnetic resonance spectroscopic experiments allowed the radical nature of the reaction to be confirmed. In particular, the envisioned mechanistic rationale comprises N-iodination of a cyclic amine, followed by N-I bond homolysis of the resulting intermediate and subsequent amination of the nitrone moiety via the newly generated nitrogen-centered radical.
Collapse
Affiliation(s)
- Alexey A Akulov
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation
| | - Mikhail V Varaksin
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation
- I.Ya. Postovsky Institute of Organic Synthesis, 22 S. Kovaleskoy Street, Ekaterinburg 620991, Russian Federation
| | - Anna A Nelyubina
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation
| | - Anton N Tsmokaluk
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation
| | - Dmitrii G Mazhukin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 Akademika Lavrentieva Avenue, Novosibirsk 630090, Russian Federation
| | - Alexsei Y Tikhonov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 Akademika Lavrentieva Avenue, Novosibirsk 630090, Russian Federation
| | - Valery N Charushin
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation
- I.Ya. Postovsky Institute of Organic Synthesis, 22 S. Kovaleskoy Street, Ekaterinburg 620991, Russian Federation
| | - Oleg N Chupakhin
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation
- I.Ya. Postovsky Institute of Organic Synthesis, 22 S. Kovaleskoy Street, Ekaterinburg 620991, Russian Federation
| |
Collapse
|
14
|
Sun B, Li W, Liu Q, Zhang G, Mo F. Transition metal-free visible light photoredox-catalyzed remote C(sp 3)-H borylation enabled by 1,5-hydrogen atom transfer. Commun Chem 2023; 6:156. [PMID: 37488210 PMCID: PMC10366130 DOI: 10.1038/s42004-023-00960-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
The borylation of unreactive carbon-hydrogen bonds is a valuable method for transforming feedstock chemicals into versatile building blocks. Here, we describe a transition metal-free method for the photoredox-catalyzed borylation of unactivated C(sp3)-H bond, initiated by 1,5-hydrogen atom transfer (HAT). The remote borylation was directed by 1,5-HAT of the amidyl radical, which was generated by photocatalytic reduction of hydroxamic acid derivatives. The method accommodates substrates with primary, secondary and tertiary C(sp3)-H bonds, yielding moderate to good product yields (up to 92%) with tolerance for various functional groups. Mechanistic studies, including radical clock experiments and DFT calculations, provided detailed insight into the 1,5-HAT borylation process.
Collapse
Affiliation(s)
- Beiqi Sun
- School of Materials Science and Engineering, Peking University, Yiheyuan Road, Beijing, 100871, China
- College of Engineering, Peking University, Yiheyuan Road, Beijing, 100871, China
| | - Wenke Li
- College of Engineering, Peking University, Yiheyuan Road, Beijing, 100871, China
| | - Qianyi Liu
- College of Engineering, Peking University, Yiheyuan Road, Beijing, 100871, China
| | - Gaoge Zhang
- College of Engineering, Peking University, Yiheyuan Road, Beijing, 100871, China
| | - Fanyang Mo
- School of Materials Science and Engineering, Peking University, Yiheyuan Road, Beijing, 100871, China.
| |
Collapse
|
15
|
White CM, Zorigt N, Deng T, Driver TG. Iodine(III)-Mediated Oxidation of Anilines to Construct Dibenzazepines. Chemistry 2023; 29:e202301141. [PMID: 37053500 PMCID: PMC10330268 DOI: 10.1002/chem.202301141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/15/2023]
Abstract
The development of an efficient process that produces bioactive medium-sized N-heterocyclic scaffolds from 2-substituted anilines using either iodosobenzene or (bis(trifluoroacetoxy)iodo)-benzene is reported. The tether between the sulfonamide and the aryl group can be varied to access dihydroacridine-, dibenzazepine-, or dibenzazocine scaffolds. While substitution on the aniline portion is limited to electron-neutral- or electron-poor groups, a broader range of functional groups are tolerated on the ortho-aryl substituent and site selective C-NAr bond formation can be achieved. Preliminary mechanistic investigations suggest that medium-ring formation occurs via radical reactive intermediates.
Collapse
Affiliation(s)
- Carmen Margaret White
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Naranchimeg Zorigt
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Tianning Deng
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Tom G Driver
- Department of Chemistry, University of Illinois Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| |
Collapse
|
16
|
Sheng XX, Du YJ, Li JH, Teng QQ, Chen M. Photoinduced Nitrogen-to-Alkyl Radical Relay Heck Reaction of o-Alkylbenzamides with Vinyl Arenes by Palladium Catalysis. Org Lett 2023; 25:3664-3669. [PMID: 37171228 DOI: 10.1021/acs.orglett.3c01030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Here, a palladium-catalyzed photoinduced N-to-alkyl radical relay Heck reaction of o-alkylbenzamides at benzylic sites with vinyl arenes is described. The reaction employs neither exogeneous photosensitizers nor external oxidants. It is proposed to proceed via a N-to-alkyl hybrid palladium-radical mechanism which occurs under mild conditions that are compatible with a wide range of functional groups. The products are easily transformed to azepinone derivatives, which are prevalent in pharmaceuticals and natural products.
Collapse
Affiliation(s)
- Xia-Xin Sheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Yu-Jia Du
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Jun-Hua Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Qiao-Qiao Teng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| |
Collapse
|
17
|
Xu H, Mo JN, Liu WD, Zhao J. N-Heterocyclic Carbene-Catalyzed Remote C(sp3)−H Acylation of Amides. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
18
|
Roy S, Panja S, Sahoo SR, Chatterjee S, Maiti D. Enroute sustainability: metal free C-H bond functionalisation. Chem Soc Rev 2023; 52:2391-2479. [PMID: 36924227 DOI: 10.1039/d0cs01466d] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The term "C-H functionalisation" incorporates C-H activation followed by its transformation. In a single line, this can be defined as the conversion of carbon-hydrogen bonds into carbon-carbon or carbon-heteroatom bonds. The catalytic functionalisation of C-H bonds using transition metals has emerged as an atom-economical technique to engender new bonds without activated precursors which can be considered as a major drawback while attempting large-scale synthesis. Replacing the transition-metal-catalysed approach with a metal-free strategy significantly offers an alternative route that is not only inexpensive but also environmentally benign to functionalize C-H bonds. Recently metal free synthetic approaches have been flourishing to functionalize C-H bonds, motivated by the search for greener, cost-effective, and non-toxic catalysts. In this review, we will highlight the comprehensive and up-to-date discussion on recent examples of ground-breaking research on green and sustainable metal-free C-H bond functionalisation.
Collapse
Affiliation(s)
- Sayan Roy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sumeet Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sagnik Chatterjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
19
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
20
|
Zhou S, Liu T, Bao X. Direct intermolecular C(sp)–H amidation with dioxazolones via synergistic decatungstate anion photocatalysis and nickel catalysis: A combined experimental and computational study. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Tang X, Tak RK, Noda H, Shibasaki M. A Missing Link in Multisubstituted Pyrrolidines: Remote Stereocontrol Forged by Rhodium‐Alkyl Nitrene. Angew Chem Int Ed Engl 2022; 61:e202212421. [DOI: 10.1002/anie.202212421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Xinxin Tang
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki Shinagawa-ku, Tokyo 141-0021 Japan
| | - Raj K. Tak
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki Shinagawa-ku, Tokyo 141-0021 Japan
| | - Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki Shinagawa-ku, Tokyo 141-0021 Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki Shinagawa-ku, Tokyo 141-0021 Japan
| |
Collapse
|
22
|
Shimizu D, Kurose A, Nishikata T. Remote Nucleophilic Substitution at a C(sp 3)–H Bond of α-Bromocarboxamides via 1,4-Hydrogen Atom Transfer To Access N-Acyl- N, O-acetal Compounds. Org Lett 2022; 24:7873-7877. [DOI: 10.1021/acs.orglett.2c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daisuke Shimizu
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Ayako Kurose
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| |
Collapse
|
23
|
Wang MM, Nguyen TVT, Waser J. Activation of aminocyclopropanes via radical intermediates. Chem Soc Rev 2022; 51:7344-7357. [PMID: 35938356 DOI: 10.1039/d2cs00090c] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminocyclopropanes are versatile building blocks for accessing high value-added nitrogen-containing products. To control ring-opening promoted by ring strain, the Lewis acid activation of donor-acceptor substituted systems is now well established. Over the last decade, alternative approaches have emerged proceeding via the formation of radical intermediates, alleviating the need for double activation of the cyclopropanes. This tutorial review summarizes key concepts and recent progress in ring-opening transformations of aminocyclopropanes via radical intermediates, divided into formal cycloadditions and 1,3-difunctionalizations.
Collapse
Affiliation(s)
- Ming-Ming Wang
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. .,Department of Chemical Biology, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Tin V T Nguyen
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
24
|
Visible-light-induced photocatalyst-free intramolecular sp3 C–H oxidation of 2‑alkyl benzamides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
1,2-Amino oxygenation of alkenes with hydrogen evolution reaction. Nat Commun 2022; 13:4430. [PMID: 35908027 PMCID: PMC9338937 DOI: 10.1038/s41467-022-32084-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
1,2-Amino oxygenation of alkenes has emerged as one of the most straightforward synthetic methods to produce β-amino alcohols, which are important organic building blocks. Thus, a practical synthetic strategy for 1,2-amino oxygenation is highly desirable. Here, we reported an electro-oxidative intermolecular 1,2-amino oxygenation of alkenes with hydrogen evolution, removing the requirement of extra-oxidant. Using commercial oxygen and nitrogen sources as starting materials, this method provides a cheap, scalable, and efficient route to a set of valuable β-amino alcohol derivatives. Moreover, the merit of this protocol has been exhibited by its broad substrate scope and good application in continuous-flow reactors. Furthermore, this method can be extended to other amino-functionalization of alkenes, thereby showing the potential to inspire advances in applications of electro-induced N-centered radicals (NCRs). 1,2-Aminoxygenation of alkenes without extra oxidant is a practical yet challenging way to prepare β-amino alcohols. Here, the authors report an electro-oxidative route achieving such a goal with H2 evolution, exhibiting broad scope and application potential.
Collapse
|
26
|
Ravindar L, Hasbullah SA, Hassan NI, Qin HL. Cross‐Coupling of C‐H and N‐H Bonds: a Hydrogen Evolution Strategy for the Construction of C‐N Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lekkala Ravindar
- Universiti Kebangsaan Malaysia Fakulti Teknologi dan Sains Maklumat Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Siti Aishah Hasbullah
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Nurul Izzaty Hassan
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Hua-Li Qin
- Wuhan University of Technology School of Chemistry 430070 Hubei CHINA
| |
Collapse
|
27
|
Abstract
Synthetic chemists have long focused on selective C(sp 3)-N bond-forming approaches in response to the high value of this motif in natural products, pharmaceutical agents and functional materials. In recent years, visible light-induced protocols have become an important synthetic platform to promote this transformation under mild reaction conditions. These photo-driven methods rely on converting visible light into chemical energy to generate reactive but controllable radical species. This Review highlights recent advances in this area, mostly after 2014, with an emphasis placed on C(sp 3)-H bond activations, including amination of olefins and carbonyl compounds, and cross-coupling reactions.
Collapse
|
28
|
Huang H, Steiniger KA, Lambert TH. Electrophotocatalysis: Combining Light and Electricity to Catalyze Reactions. J Am Chem Soc 2022; 144:12567-12583. [PMID: 35816101 DOI: 10.1021/jacs.2c01914] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Visible-light photocatalysis and electrocatalysis are two powerful strategies for the promotion of chemical reactions that have received tremendous attention in recent years. In contrast, processes that combine these two modalities, an area termed electrophotocatalysis, have until recently remained quite rare. However, over the past several years a number of reports in this area have shown the potential of combining the power of light and electrical energy to realize new catalytic transformations. Electrophotocatalysis offers the ability to perform photoredox reactions without the need for large quantities of stoichiometric or superstoichiometric chemical oxidants or reductants by making use of an electrochemical potential as the electron source or sink. In addition, electrophotocatalysis is readily amenable to the generation of open-shell photocatalysts, which tend to have exceptionally strong redox potentials. In this way, potent yet selective redox reactions have been realized under relatively mild conditions. This Perspective highlights recent advances in the area of electrophotocatalysis and provides some possible avenues for future work in this growing area.
Collapse
Affiliation(s)
- He Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Keri A Steiniger
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
29
|
Payne JL, Deng Z, Flach AL, Johnston JN. Enantioselective iodolactonization to prepare ε-lactone rings using hypervalent iodine. Chem Sci 2022; 13:7318-7324. [PMID: 35799806 PMCID: PMC9214890 DOI: 10.1039/d2sc01587k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 01/03/2023] Open
Abstract
Despite the rapid growth of enantioselective halolactonization reactions in recent years, most are effective only when forming smaller (6,5,4-membered) rings. Seven-membered ε-lactones, are rarely formed with high selectivity, and never without conformational bias. We describe the first highly enantioselective 7-exo-trig iodolactonizations of conformationally unbiased ε-unsaturated carboxylic acids, effected by an unusual combination of a bifunctional BAM catalyst, I2, and I(iii) reagent (PhI(OAc)2:PIDA). We describe the first highly enantioselective 7-exo-trig iodolactonizations of conformationally unbiased ε-unsaturated carboxylic acids, effected by an unusual combination of a bifunctional BAM catalyst, I2, and I(iii) reagent (PhI(OAc)2:PIDA).![]()
Collapse
Affiliation(s)
- Jenna L Payne
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville Tennessee 37235-1822 USA
| | - Zihang Deng
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville Tennessee 37235-1822 USA
| | - Andrew L Flach
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville Tennessee 37235-1822 USA
| | - Jeffrey N Johnston
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville Tennessee 37235-1822 USA
| |
Collapse
|
30
|
Sun L, Cui J, Nie S, Xie L, Wang Y, Wu L. NIS‐Mediated Intramolecular sp3 C–H Oxidation of 2‐Alkyl‐Substituted Benzamides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lei Sun
- Liaocheng University College of Chemistry and Chemical engineering CHINA
| | - Jichun Cui
- Liaocheng University College of Chemistry and Chemical engineering CHINA
| | - Shaozhen Nie
- Liaocheng University School of pharmacy, College of Chemistry and Chemical engineering CHINA
| | - Lei Xie
- Liaocheng University School of pharmacy, College of Chemistry and Chemical engineering CHINA
| | - Yanlan Wang
- Liaocheng University College of Chemistry and Chemical engineering CHINA
| | - Lingang Wu
- Liaocheng University College of Chemistry and Chemical engineering No. 1, Hunan Road 252000 Liaocheng CHINA
| |
Collapse
|
31
|
Li QZ, Zeng R, Fan Y, Liu YQ, Qi T, Zhang X, Li JL. Remote C(sp 3 )-H Acylation of Amides and Cascade Cyclization via N-Heterocyclic Carbene Organocatalysis. Angew Chem Int Ed Engl 2022; 61:e202116629. [PMID: 35112461 DOI: 10.1002/anie.202116629] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/08/2022]
Abstract
The direct functionalization of inert C(sp3 )-H bonds under environmentally benign catalytic conditions remains a challenging task in synthetic chemistry. Here, we report an organocatalytic remote C(sp3 )-H acylation of amides and cascade cyclization through a radical-mediated 1,5-hydrogen atom transfer mechanism using N-heterocyclic carbene as the catalyst. Notably, a diversity of nitrogen-containing substrates, including simple linear aliphatic carbamates and ortho-alkyl benzamides, can be successfully applied to this organocatalytic system. With the established protocol, over 120 examples of functionalized δ-amino ketones and isoquinolinones with diverse substituents were easily synthesized in up to 99 % yield under mild conditions. The robustness and generality of the organocatalytic strategy were further highlighted by the successful acylation of unactivated C(sp3 )-H bonds and late-stage modification of pharmaceutical molecules. Then, the asymmetric control of the radical reaction was attempted and proven feasible by using a newly designed chiral thiazolium catalyst, and moderate enantioselectivity was obtained at the current stage. Preliminary mechanistic investigations including several control reactions, KIE experiments, and computational studies shed light on the organocatalytic radical reaction mechanism.
Collapse
Affiliation(s)
- Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Rong Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yang Fan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yan-Qing Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.,College of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
32
|
Ni SF, Huang G, Chen Y, Wright JS, Li M, Dang L. Recent advances in γ-C(sp3)–H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Li Q, Zeng R, Fan Y, Liu Y, Qi T, Zhang X, Li J. Remote C(sp
3
)−H Acylation of Amides and Cascade Cyclization via N‐Heterocyclic Carbene Organocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qing‐Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
| | - Rong Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
| | - Yang Fan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
| | - Yan‐Qing Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
- College of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
| | - Jun‐Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 China
| |
Collapse
|
34
|
Wang X, Xue Y, Hu W, Shi L, Zhu X, Hao XQ, Song MP. Cu(II)-Catalyzed N-Directed Distal C(sp 3)-H Heteroarylation of Aliphatic N-Fluorosulfonamides. Org Lett 2022; 24:1055-1059. [PMID: 35080894 DOI: 10.1021/acs.orglett.1c04280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A copper-catalyzed δ-regioselective C(sp3)-H heteroarylation of N-fluorosulfonamides has been developed. A broad range of heteroarenes were well tolerated and reacted with various N-fluorosulfonamides to give the corresponding heteroarylated amides in good yields. Notably, all types (1°, 2°, and 3°) of δ-C(sp3)-H bonds in the N-fluorosulfonamides could be regioselectively activated through the 1,5-HAT process. This protocol provides a practical strategy for the functionalization of heteroarenes and amides via forging a C(sp3)-C(sp2) bond.
Collapse
Affiliation(s)
- Xu Wang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Yuting Xue
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Weinan Hu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
35
|
Lan W, Lei R, Luo J, Qin Z, Fu B, Xie L. A Facile Approach to Benzosultam‐fused 4‐Imidazolidinone Derivatives from N‐Sulfonyl Ketimine and α‐Halogenated Hydroxamates. ChemistrySelect 2022. [DOI: 10.1002/slct.202103670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenjie Lan
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Rong‐chao Lei
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Jiayu Luo
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Zhaohai Qin
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Bin Fu
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Lei Xie
- School of Pharmacy Liaocheng University Shandong 252000 P. R. China
| |
Collapse
|
36
|
Zhang XK, Miao XY, Zhou Y, Wang YM, Song YC, Liu H, Xiong YL, Li LY, Wu AX, Zhu YP. Iodine-catalyzed oxidative annulation: facile synthesis of pyrazolooxepinopyrazolones via methyl azaarene sp 3 C-H functionalization. Org Biomol Chem 2022; 20:1236-1242. [PMID: 35043797 DOI: 10.1039/d1ob02436a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iodine-catalyzed methyl azaarene sp3 C-H functionalization has been developed for the synthesis of a seven-membered O-heterocyclic architecture containing three different heterocyclic aromatic hydrocarbons. This method can be applied to a wide range of substituted methyl azaarenes and diverse 2,4-dihydro-3H-pyrazol-3-ones, and brings about the efficient preparation of 2,9-dihydrooxepino[2,3-c:6,5-c']dipyrazol-3(7H)-ones in high yields with the merits of low catalyst loading, good functional group tolerance and metal-free conditions.
Collapse
Affiliation(s)
- Xin-Ke Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Xiao-Yu Miao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Yu Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Yu-Mei Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Ying-Chun Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Hang Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Yi-Lu Xiong
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - Ling-Yu Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai, 264005, P. R. China.
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Hubei, Wuhan, 430079, P. R. China
| | - Yan-Ping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai, 264005, P. R. China.
| |
Collapse
|
37
|
Georgiou E, Spinnato D, Chen K, Melchiorre P, Muñiz K. Switchable photocatalysis for the chemodivergent benzylation of 4-cyanopyridines. Chem Sci 2022; 13:8060-8064. [PMID: 35919417 PMCID: PMC9278488 DOI: 10.1039/d2sc02698h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
We report a photocatalytic strategy for the chemodivergent radical benzylation of 4-cyanopyridines. The chemistry uses a single photoredox catalyst to generate benzyl radicals upon N–F bond activation of 2-alkyl N-fluorobenzamides. The judicious choice of different photocatalyst quenchers allowed us to select at will between mechanistically divergent processes. The two reaction manifolds, an ipso-substitution path proceeding via radical coupling and a Minisci-type addition, enabled selective access to regioisomeric C4 or C2 benzylated pyridines, respectively. Mechanistic investigations shed light on the origin of the chemoselectivity switch. We report a photocatalytic strategy for the chemodivergent radical benzylation of 4-cyanopyridines. The chemistry uses a single photoredox catalyst to generate benzyl radicals upon N–F bond activation of 2-alkyl N-fluorobenzamides.![]()
Collapse
Affiliation(s)
- Eleni Georgiou
- ICIQ – Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Avenida Països Catalans 16 – 43007, Tarragona, Spain
- Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili (URV), 43007, Tarragona, Spain
| | - Davide Spinnato
- ICIQ – Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Avenida Països Catalans 16 – 43007, Tarragona, Spain
- Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili (URV), 43007, Tarragona, Spain
| | - Kang Chen
- ICIQ – Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Avenida Països Catalans 16 – 43007, Tarragona, Spain
| | - Paolo Melchiorre
- ICIQ – Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Avenida Països Catalans 16 – 43007, Tarragona, Spain
- ICREA, Passeig Lluís Companys 23 – 08010, Barcelona, Spain
| | | |
Collapse
|
38
|
Bugaenko DI, Karchava AV, Yurovskaya MA. Transition metal-free cross-coupling reactions with the formation of carbon-heteroatom bonds. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Wei H, Zhang Z, Zhang X, Gao S, Wang T, Zhao M, Wei P, Wang M. Copper-catalyzed intramolecular iminolactonization cyclization reactions of remote C(sp 3)–H bonds in carboxamides. Org Biomol Chem 2022; 20:8912-8916. [DOI: 10.1039/d2ob01711c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A novel and efficient synthetic method for iminolactones by copper-catalyzed intramolecular C(sp3)–H bond functionalization of carboxamides via a cascade process is reported for the first time.
Collapse
Affiliation(s)
- He Wei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Zhenhua Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Xiang Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Shuo Gao
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Tongtong Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Mengmeng Zhao
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Pifeng Wei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Min Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| |
Collapse
|
40
|
Zhong LJ, Lv GF, Ouyang XH, Li Y, Li JH. Copper-Catalyzed Fluoroamide-Directed Remote Benzylic C-H Olefination: Facile Access to Internal Alkenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00822j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general, site-selective copper-catalyzed fluoroamide-directed remote benzylic C-H olefination of N-fluoroamides with terminal alkenes for producing internal alkenes is disclosed. This protocol proceeds via a hybrid Cu-radical mechanism, which synergistically...
Collapse
|
41
|
Zhong LJ, Xiong ZQ, Ouyang XH, Li Y, Song RJ, Sun Q, Lu X, Li JH. Intermolecular 1,2-Difunctionalization of Alkenes Enabled by Fluoroamide-Directed Remote Benzyl C(sp 3)-H Functionalization. J Am Chem Soc 2021; 144:339-348. [PMID: 34935377 DOI: 10.1021/jacs.1c10053] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A copper-catalyzed remote benzylic C-H functionalization strategy enabling 1,2-difunctionalization of alkenes with 2-methylbenzeneamides and nucleophiles, including alcohols, indoles, pyrroles, and the intrinsic amino groups, is reported, which is characterized by its redox-neutral conditions, exquisite site-selectivity, broad substrate scope, and wide utilizations of late-stage modifying bioactive molecules. This reaction proceeds through nitrogen-centered radical generation, hydrogen atom transfer, benzylic radical addition across the alkenes, single-electron oxidation, and carbocation electrophilic course cascades. While using external nucleophiles manipulates three-component alkene alkylalkoxylation and alkyl-heteroarylation with 2-methylbenzeneamides to access dialkyl ethers, 3-alkylindoles, and 3-alkylpyrroles, omitting the external nucleophiles results in two-component alkylamidation ([5+2] annulation) of alkenes with 2-methylbenzeneamides to benzo-[f][1,2]thiazepine 1,1-dioxides.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surface & Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.,Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
42
|
Van Trieste GP, Reid KA, Hicks MH, Das A, Figgins MT, Bhuvanesh N, Ozarowski A, Telser J, Powers DC. Nitrene Photochemistry of Manganese
N
‐Haloamides**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Kaleb A. Reid
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Madeline H. Hicks
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Anuvab Das
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Matthew T. Figgins
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Nattamai Bhuvanesh
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory Florida State University Tallahassee FL 32310 USA
| | - Joshua Telser
- Department of Biological, Physical and Chemical Sciences Roosevelt University Chicago IL 60605 USA
| | - David C. Powers
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| |
Collapse
|
43
|
Santana AG, Herrera AJ, González CC. Intramolecular Metal-Free C(sp 3)-H Activation Enables a Selective Mono O-Debenzylation of Fully Protected Aminosugars. J Org Chem 2021; 86:16736-16752. [PMID: 34807601 DOI: 10.1021/acs.joc.1c01977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbamate-bearing benzylated aminosugars undergo an I2/I(III)-promoted intramolecular hydrogen atom transfer (IHAT) followed by a nucleophilic attack to provide polycyclic structures. Thus, suitably positioned benzyl ethers are surgically oxidized into the corresponding mixed N/O-benzylidene acetals, which can be conveniently deprotected under mild acidic conditions to grant access to selectively O-deprotected aminosugars amenable for further derivatization. The scope of this strategy has been proven with a series of furanosic and pyranosic scaffolds. Preliminary mechanistic studies, including Hammett LFER and KIE analyses, support a reaction pathway with nucleophilic cyclization as the rate-determining step.
Collapse
Affiliation(s)
- Andrés G Santana
- Instituto de Productos Naturales y Agrobiología del C.S.I.C., Avenida Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Antonio J Herrera
- Instituto de Productos Naturales y Agrobiología del C.S.I.C., Avenida Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Concepción C González
- Instituto de Productos Naturales y Agrobiología del C.S.I.C., Avenida Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
44
|
Wang J, Fang WH, Qu LB, Shen L, Maseras F, Chen X. An Expanded SET Model Associated with the Functional Hindrance Dominates the Amide-Directed Distal sp 3 C-H Functionalization. J Am Chem Soc 2021; 143:19406-19416. [PMID: 34761900 DOI: 10.1021/jacs.1c07983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanistic understanding of catalytic radical reactions currently lags behind the flourishing development of new types of catalytic activation. Herein, an innovative single electron transfer (SET) model has been expanded by using the nonadiabatic crossing integrated with the rate-determining step of 1,5-hydrogen atom transfer (HAT) reaction to provide the control mechanism of radical decay dynamics through calculating excited-state relaxation paths of a paradigm example of the amide-directed distal sp3 C-H bond alkylation mediated by Ir-complex-based photocatalysts. The stability of carbon radical intermediates, the functional hindrance associated with the back SET, and the energy inversion between the reactive triplet and closed-shell ground states were verified to be key factors in improving catalytic efficiency via blocking radical inhibition. The expanded SET model associated with the dynamic behaviors and kinetic data could guide the design and manipulation of visible-light-driven inert bond activation by the utilization of photocatalysts bearing more or less electron-withdrawing groups and the comprehensive considerations of kinetic solvent effects and electron-withdrawing effects of substrates.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Wei-Hai Fang
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lin Shen
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.,College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuebo Chen
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China.,College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
45
|
Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Toolbox for Distal C-H Bond Functionalizations in Organic Molecules. Chem Rev 2021; 122:5682-5841. [PMID: 34662117 DOI: 10.1021/acs.chemrev.1c00220] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition metal catalyzed C-H activation has developed a contemporary approach to the omnipresent area of retrosynthetic disconnection. Scientific researchers have been tempted to take the help of this methodology to plan their synthetic discourses. This paradigm shift has helped in the development of industrial units as well, making the synthesis of natural products and pharmaceutical drugs step-economical. In the vast zone of C-H bond activation, the functionalization of proximal C-H bonds has gained utmost popularity. Unlike the activation of proximal C-H bonds, the distal C-H functionalization is more strenuous and requires distinctly specialized techniques. In this review, we have compiled various methods adopted to functionalize distal C-H bonds, mechanistic insights within each of these procedures, and the scope of the methodology. With this review, we give a complete overview of the expeditious progress the distal C-H activation has made in the field of synthetic organic chemistry while also highlighting its pitfalls, thus leaving the field open for further synthetic modifications.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
46
|
Van Trieste GP, Reid KA, Hicks MH, Das A, Figgins MT, Bhuvanesh N, Ozarowski A, Telser J, Powers DC. Nitrene Photochemistry of Manganese N-Haloamides*. Angew Chem Int Ed Engl 2021; 60:26647-26655. [PMID: 34662473 DOI: 10.1002/anie.202108304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 11/06/2022]
Abstract
Manganese complexes supported by macrocyclic tetrapyrrole ligands represent an important platform for nitrene transfer catalysis and have been applied to both C-H amination and olefin aziridination catalysis. The reactivity of the transient high-valent Mn nitrenoids that mediate these processes renders characterization of these species challenging. Here we report the synthesis and nitrene transfer photochemistry of a family of MnIII N-haloamide complexes. The S=2 N-haloamide complexes are characterized by 1 H NMR, UV-vis, IR, high-frequency and -field EPR (HFEPR) spectroscopies, and single-crystal X-ray diffraction. Photolysis of these complexes results in the formal transfer of a nitrene equivalent to both C-H bonds, such as the α-C-H bonds of tetrahydrofuran, and olefinic substrates, such as styrene, to afford aminated and aziridinated products, respectively. Low-temperature spectroscopy and analysis of kinetic isotope effects for C-H amination indicate halogen-dependent photoreactivity: Photolysis of N-chloroamides proceeds via initial cleavage of the Mn-N bond to generate MnII and amidyl radical intermediates; in contrast, photolysis of N-iodoamides proceeds via N-I cleavage to generate a MnIV nitrenoid (i.e., {MnNR}7 species). These results establish N-haloamide ligands as viable precursors in the photosynthesis of metal nitrenes and highlight the power of ligand design to provide access to reactive intermediates in group-transfer catalysis.
Collapse
Affiliation(s)
| | - Kaleb A Reid
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Madeline H Hicks
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Anuvab Das
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew T Figgins
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Joshua Telser
- Department of Biological, Physical and Chemical Sciences, Roosevelt University, Chicago, IL, 60605, USA
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
47
|
Giofrè S, Keller M, Lo Presti L, Beccalli EM, Molteni L. Switchable Oxidative Reactions of N-allyl-2-Aminophenols: Palladium-Catalyzed Alkoxyacyloxylation vs an Intramolecular Diels-Alder Reaction. Org Lett 2021; 23:7698-7702. [PMID: 34570517 PMCID: PMC8524420 DOI: 10.1021/acs.orglett.1c02539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The Pd(II)-catalyzed
reaction of N-allyl-2-aminophenols
in the presence of PhI(OCOR)2 as the oxidant resulted in
an alkoxyacyloxylation process, with the formation of functionalized
dihydro-1,4-benzoxazines. The reaction performed in the absence of
palladium catalyst switched to an intramolecular Diels–Alder
reaction (IMDA) pathway, which was the result of an oxidative dearomatization
of the 2-aminophenol, nucleophilic addition, and Diels–Alder
reaction cascade, highlighting the role of the oxidant as both a nucleophilic
donor and an oxidizing agent.
Collapse
Affiliation(s)
- Sabrina Giofrè
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Manfred Keller
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| | - Leonardo Lo Presti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Egle M Beccalli
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Letizia Molteni
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
48
|
Gao Y, Zhao Q, Li L, Ma YN. Synthesis of Six-Membered N-Heterocycle Frameworks Based on Intramolecular Metal-Free N-Centered Radical Chemistry. CHEM REC 2021; 22:e202100218. [PMID: 34618405 DOI: 10.1002/tcr.202100218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/29/2022]
Abstract
The formation of intramolecular C-N bond represents a powerful strategy in organic transformation as the great importance of N-heterocycles in the fields of natural products and bioactive molecules. This personal account describes the synthesis of cyclic phosphinamidation, benzosultam, benzosulfoximine, phenanthridine and their halogenated compounds through transition-metal-free intramolecular oxidative C-N bond formation. Mechanism study reveals that N-X bond is initially formed under the effect of hypervalent halogen, which is very unstable and easily undergoes thermal or light homolytic cleavage to generate nitrogen radical. Then the nitrogen radical is trapped by the arene to give aryl radical. Rearomatization of aryl radical under the oxidant to provide corresponding N-heterocycle. Under suitable conditions, the N-heterocycles can be further transformed to halogenated N-heterocycles.
Collapse
Affiliation(s)
- Yan Gao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Qianyi Zhao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Lixin Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
| | - Yan-Na Ma
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
49
|
Kiyokawa K, Jou K, Minakata S. Intramolecular C-H Amination of N-Alkylsulfamides by tert-Butyl Hypoiodite or N-Iodosuccinimide. Chemistry 2021; 27:13971-13976. [PMID: 34403187 DOI: 10.1002/chem.202102635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 01/15/2023]
Abstract
1,3-Diamines are an important class of compounds that are broadly found in natural products and are also widely used as building blocks in organic synthesis. Although the intramolecular C-H amination of N-alkylsulfamide derivatives is a reliable method for the construction of 1,3-diamine structures, the majority of these methods involve the use of a transition-metal catalyst. We herein report on a new transition-metal-free method using tert-butyl hypoiodite (t-BuOI) or N-iodosuccinimide (NIS), enabling secondary non-benzylic and tertiary C-H amination reactions to proceed. The cyclic sulfamide products can be easily transformed into 1,3-diamines. Mechanistic investigations revealed that amination reactions using t-BuOI or NIS each proceed via different pathways.
Collapse
Affiliation(s)
- Kensuke Kiyokawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Keisuke Jou
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Satoshi Minakata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
50
|
Cai H, Datta Khanal H, Rok Lee Y. Iodine‐Catalyzed Annulations of 2‐Amino Carbonyls for Diverse 1‐Azaxanthones, Quinolines, and Naphthyridines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hongyun Cai
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Hari Datta Khanal
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|