1
|
Yi Z, Guo Y, Hou R, Zhang Z, Gao Y, Zhang C, Xu W. Revealing the Orientation Selectivity of Tetrapyridyl-Substituted Porphyrins Constrained in Molecular "Klotski Puzzles". J Am Chem Soc 2023; 145:22366-22373. [PMID: 37769215 DOI: 10.1021/jacs.3c03777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Understanding and controlling molecular orientations in self-assembled organic nanostructures are crucial to the development of advanced functional nanodevices. Scanning tunneling microscopy (STM) provides a powerful toolbox to recognize molecular orientations and to induce orientation changes on surfaces at the single-molecule level. Enormous effort has been devoted to directly controlling the molecular orientations of isolated single molecules in free space. However, revealing and further controlling molecular orientation selectivity in constrained environments remain elusive. In this study, by a combination of STM imaging/manipulations and density functional theory calculations, we report the orientation selectivity of tetrapyridyl-substituted porphyrins in response to various local molecular environments in artificially constructed molecular "Klotski puzzles" on Au(111). With the assistance of STM lateral manipulations, "sliding-block" molecules were able to enter predefined positions, and specific molecular orientations were adopted to fit the local molecular environments, in which the intermolecular interaction was revealed to be the key to achieving the eventual molecular orientation selectivity. Our results demonstrate the essential role of local molecular environments in directing single-molecule orientations, which would shed light on the design of molecular structures to control preferred orientations for further applications in molecular nanodevices.
Collapse
Affiliation(s)
- Zewei Yi
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Yuan Guo
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Rujia Hou
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Zhaoyu Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Yuhong Gao
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Wei Xu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| |
Collapse
|
2
|
Xie L, Ding Y, Li D, Zhang C, Wu Y, Sun L, Liu M, Qiu X, Xu W. Local Chiral Inversion of Thymine Dimers by Manipulating Single Water Molecules. J Am Chem Soc 2022; 144:5023-5028. [PMID: 35285637 DOI: 10.1021/jacs.1c13344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Water, as one of the most important and indispensable small molecules in vivo, plays a crucial role in driving biological self-assembly processes. Real-space detection and identification of water-induced organic structures and further capture of dynamic dehydration processes are important yet challenging, which would help to reveal the cooperation and competition mechanisms among water-involved noncovalent interactions. Herein, introduction of water molecules onto the self-assembled thymine (T) structures under ultrahigh vacuum (UHV) conditions results in the hydration of hydrogen-bonded T dimers forming a well-ordered water-involved T structure. Reversibly, a local dehydration process is achieved by in situ scanning tunneling microscopy (STM) manipulation on single water molecules, where the adjacent T dimers connected with water molecules undergo a local chiral inversion process with the hydrogen-bonding configuration preserved. Such a strategy enables real-space identification and detection of the interactions between water and organic molecules, which may also shed light on the understanding of biologically relevant self-assembly processes driven by water.
Collapse
Affiliation(s)
- Lei Xie
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China.,Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Yuanqi Ding
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Donglin Li
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Yangfan Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Luye Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Mengxi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Xiaohui Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Xu
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| |
Collapse
|
3
|
Single molecular insight into steric effect on C-terminal amino acids with various hydrogen bonding sites. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Xie L, Jiang H, Li D, Liu M, Ding Y, Liu Y, Li X, Li X, Zhang H, Hou Z, Luo Y, Chi L, Qiu X, Xu W. Selectively Scissoring Hydrogen-Bonded Cytosine Dimer Structures Catalyzed by Water Molecules. ACS NANO 2020; 14:10680-10687. [PMID: 32687310 DOI: 10.1021/acsnano.0c05227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A single-molecule-level understanding of the activity of solvating water molecules in hydrogen-bonded assemblies would provide insights into the properties of the first hydration shells. Herein, we investigate the solvation of one of the DNA bases, cytosine, whose glassy-state network formed on Au(111) contains diverse types of hydrogen-bonded dimer configurations with hierarchical strengths. Upon water exposure, a global structural transformation from interwoven chain segments to extended chains was identified by scanning tunneling microscopy and atomic force microscopy. Density functional theory calculation and coarse-grained molecular dynamics simulation indicate that water molecules selectively break the weak-hydrogen-bonded dimers at T-junctions, while the stable ones within chains remain intact. The resulting hydrated chain segments further self-assemble into molecular chains by forming strong hydrogen bonds and spontaneously releasing water molecules. Such an intriguing transformation cannot be realized by thermal annealing, indicating the dynamic nature of water molecules in the regulation of hydrogen bonds in a catalytic manner.
Collapse
Affiliation(s)
- Lei Xie
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Huijun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Donglin Li
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Mengxi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuanqi Ding
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yufang Liu
- College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China
| | - Xin Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuechao Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhonghuai Hou
- Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xiaohui Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
5
|
Kong H, Qian Y, Liu X, Wan X, Amirjalayer S, Fuchs H. Long-Range Chirality Recognition of a Polar Molecule on Au(111). Angew Chem Int Ed Engl 2020; 59:182-186. [PMID: 31532066 PMCID: PMC6973085 DOI: 10.1002/anie.201909593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/21/2019] [Indexed: 11/25/2022]
Abstract
Chiral molecular self-assemblies were usually achieved using short-range intermolecular interactions, such as hydrogen-, metal-organic, and covalent bonding. However, unavoidable surface defects, such as step edges, surface reconstructions, or site dislocations may limit the applicability of short-range chirality recognition. Long-range chirality recognition on surfaces would be an appealing but challenging strategy for chiral reservation across surface defects at long distances. Now, long-range chirality recognition is presented between neighboring 3-bromo-naphthalen-2-ol (BNOL) stripes on an inert Au(111) surface across the herringbone reconstruction as investigated by STM and DFT calculations. The key to achieving such recognition is the herringbone reconstruction-induced local dipole accumulation at the edges of the BNOL stripes. The neighboring stripes are then forced to adopt the same chirality to create the opposite edged dipoles and neutralize the neighbored dipole moments.
Collapse
Affiliation(s)
- Huihui Kong
- Herbert Gleiter Institute of NanoscienceSchool of Materials Science and EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Yinyue Qian
- Herbert Gleiter Institute of NanoscienceSchool of Materials Science and EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Xinbang Liu
- Herbert Gleiter Institute of NanoscienceSchool of Materials Science and EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Xinling Wan
- Herbert Gleiter Institute of NanoscienceSchool of Materials Science and EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Saeed Amirjalayer
- Physikalisches InstituteWestfälische Wilhelms-Universität MünsterMünster48149Germany
- Center for Nanotechnology (CeNTech)Heisenbergstrasse 1148149MünsterGermany
- Center for Multiscale Theory and Computation (CMTC)Heisenbergstrasse 1148149MünsterGermany
| | - Harald Fuchs
- Herbert Gleiter Institute of NanoscienceSchool of Materials Science and EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
- Physikalisches InstituteWestfälische Wilhelms-Universität MünsterMünster48149Germany
- Center for Nanotechnology (CeNTech)Heisenbergstrasse 1148149MünsterGermany
| |
Collapse
|
6
|
Kong H, Qian Y, Liu X, Wan X, Amirjalayer S, Fuchs H. Long‐Range Chirality Recognition of a Polar Molecule on Au(111). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Huihui Kong
- Herbert Gleiter Institute of Nanoscience School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Yinyue Qian
- Herbert Gleiter Institute of Nanoscience School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Xinbang Liu
- Herbert Gleiter Institute of Nanoscience School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Xinling Wan
- Herbert Gleiter Institute of Nanoscience School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Saeed Amirjalayer
- Physikalisches Institute Westfälische Wilhelms-Universität Münster Münster 48149 Germany
- Center for Nanotechnology (CeNTech) Heisenbergstrasse 11 48149 Münster Germany
- Center for Multiscale Theory and Computation (CMTC) Heisenbergstrasse 11 48149 Münster Germany
| | - Harald Fuchs
- Herbert Gleiter Institute of Nanoscience School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China
- Physikalisches Institute Westfälische Wilhelms-Universität Münster Münster 48149 Germany
- Center for Nanotechnology (CeNTech) Heisenbergstrasse 11 48149 Münster Germany
| |
Collapse
|
7
|
Clair S, de Oteyza DG. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem Rev 2019; 119:4717-4776. [PMID: 30875199 PMCID: PMC6477809 DOI: 10.1021/acs.chemrev.8b00601] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 01/06/2023]
Abstract
On-surface synthesis is appearing as an extremely promising research field aimed at creating new organic materials. A large number of chemical reactions have been successfully demonstrated to take place directly on surfaces through unusual reaction mechanisms. In some cases the reaction conditions can be properly tuned to steer the formation of the reaction products. It is thus possible to control the initiation step of the reaction and its degree of advancement (the kinetics, the reaction yield); the nature of the reaction products (selectivity control, particularly in the case of competing processes); as well as the structure, position, and orientation of the covalent compounds, or the quality of the as-formed networks in terms of order and extension. The aim of our review is thus to provide an extensive description of all tools and strategies reported to date and to put them into perspective. We specifically define the different approaches available and group them into a few general categories. In the last part, we demonstrate the effective maturation of the on-surface synthesis field by reporting systems that are getting closer to application-relevant levels thanks to the use of advanced control strategies.
Collapse
Affiliation(s)
- Sylvain Clair
- Aix
Marseille Univ., Université de Toulon, CNRS, IM2NP, Marseille, France
| | - Dimas G. de Oteyza
- Donostia
International Physics Center, San
Sebastián 20018, Spain
- Centro
de Física de Materiales CSIC-UPV/EHU-MPC, San Sebastián 20018, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
8
|
Wang X, Ding Y, Li D, Xie L, Xu W. Linear array of cesium atoms assisted by uracil molecules on Au(111). Chem Commun (Camb) 2019; 55:12064-12067. [DOI: 10.1039/c9cc05709a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of metal–organic U + Cs structures are achieved in which the Cs cations tend to form linear arrays.
Collapse
Affiliation(s)
- Xinyi Wang
- Interdisciplinary Materials Research Center
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Yuanqi Ding
- Interdisciplinary Materials Research Center
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Donglin Li
- Interdisciplinary Materials Research Center
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Lei Xie
- Interdisciplinary Materials Research Center
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Wei Xu
- Interdisciplinary Materials Research Center
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| |
Collapse
|
9
|
Kong H, Zhang C, Sun Q, Yu X, Xie L, Wang L, Li L, Hu S, Ju H, He Y, Zhu J, Xu W. Nickel Adatoms Induced Tautomeric Dehydrogenation of Thymine Molecules on Au(111). ACS NANO 2018; 12:9033-9039. [PMID: 30130397 DOI: 10.1021/acsnano.8b02821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tautomerization of nucleobases may induce base mismatches resulting in the abnormal disturbance of gene replication and expression, which has therefore attracted widespread interests in many disciplines. Metal atoms participating in a variety of important biological processes are found to be able to affect the nucleobase tautomerization as evidenced by many theoretical and spectroscopic studies. To get the real-space evidence and to unravel the underlying mechanism for the metal-induced tautomerization, especially from the keto form to the enol one, the interplay of high-resolution scanning tunneling microscopy imaging/manipulation and density functional theory (DFT) calculations has been employed. We present a process showing the Ni adatom-induced keto-enol tautomeric dehydrogenation of thymine molecules on Au(111). The key to making such a process feasible is the Ni atoms which greatly lower the energy barrier for the tautomerization from keto to enol form, which is rationalized by extensive DFT-based transition-state search calculations.
Collapse
Affiliation(s)
- Huihui Kong
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , P. R. China
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering , Nanjing University of Science and Technology , Xiaolingwei 200 , Nanjing 210094 , Jiangsu , P. R. China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , P. R. China
| | - Qiang Sun
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , P. R. China
| | - Xin Yu
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , P. R. China
| | - Lei Xie
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , P. R. China
| | - Likun Wang
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , P. R. China
| | - Lei Li
- Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials, School of Materials Science and Engineering , Hubei University , Wuhan 430062 , P. R. China
| | - Shanwei Hu
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Huanxin Ju
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Yunbin He
- Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials, School of Materials Science and Engineering , Hubei University , Wuhan 430062 , P. R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , P. R. China
| | - Wei Xu
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , P. R. China
| |
Collapse
|
10
|
Ding Y, Wang X, Xie L, Yao X, Xu W. Two-dimensional self-assembled nanostructures of nucleobases and their related derivatives on Au(111). Chem Commun (Camb) 2018; 54:9259-9269. [PMID: 30027963 DOI: 10.1039/c8cc03585g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The construction of two-dimensional (2D) self-assembled nanostructures has been one of the considerably interesting areas of on-surface chemistry in the past few decades, and has benefited from the rapid development and improvement of scanning probe microscopy techniques. In this research field, many attempts have been made in the controllable fabrication of well-ordered and multifunctional surface nanostructures, which attracted interest because of the prospect for artificial design of functional molecular nanodevices. DNA and RNA are considered to be programmable self-assembly systems and it is possible to use their base sequences to encode instructions for assembly in a predetermined fashion at the nanometer scale. As important constituents of nucleic acids, nucleobases, with intrinsic functional groups for hydrogen bonding, coordination bonding, and electrostatic interactions, can be employed as a potential system for the versatile construction of various biomolecular nanostructures, which may be used to structure the self-assembly of DNA-based artificial molecular constructions and play an important role in novel biosensors based on surface functionalization. In this article, we will review the recent progress of on-surface self-assembly of nucleobases and their derivatives together with different reactants (e.g., metals, halogens, salts and water), and as a result, various 2D surface nanostructures are summarized.
Collapse
Affiliation(s)
- Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | | | | | | | | |
Collapse
|
11
|
Papageorgiou AC, Li J, Oh SC, Zhang B, Sağlam Ö, Guo Y, Reichert J, Marco AB, Cortizo-Lacalle D, Mateo-Alonso A, Barth JV. Tuning the ease of formation of on-surface metal-adatom coordination polymers featuring diketones. NANOSCALE 2018; 10:9561-9568. [PMID: 29745943 DOI: 10.1039/c8nr02537a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We use pyrene-4,5,9,10-tetraketone molecules with substituents of varying bulkiness in the 2,7 positions to probe the generality and versatility of the previously reported on-surface coordination of two diketones with a single metal atom, leading to one-dimensional coordination polymers. Three different low index surfaces of group 11 metals (Cu, Ag and Au) are used to provide both the support and the metal atoms for metal-organic coordination. By real space visualisation with single molecule resolution employing scanning tunnelling microscopy we investigate the molecular self-assembly and show how this can be substantiated with the formation of metal-organic linear and cyclic oligomers, depending on the employed substrate.
Collapse
|
12
|
Zhang C, Xie L, Ding Y, Yuan C, Xu W. Hierarchical formation of Fe-9eG supramolecular networks via flexible coordination bonds. Phys Chem Chem Phys 2018; 20:3694-3698. [PMID: 29345265 DOI: 10.1039/c7cp08278a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From the interplay between high-resolution scanning tunneling microscopy imaging/manipulations and density functional theory calculations, we display the hierarchical formation of supramolecular networks by codeposition of 9eG molecules and Fe atoms on Au(111) based on the flexible coordination bonds (the adaptability and versatility in the coordination modes). In the first step, homochiral islands composed of homochiral G4Fe2 motifs are formed; and then in the second step, thermal treatment results in the transformation into the porous networks composed of heterochiral G4Fe2 motifs with the ratio of the components being constant. In situ STM manipulations and the coexistence of some other heterochiral G4Fe2 motifs and clusters also show the flexibility of the coordination bonds involved. These studies may provide a fundamental understanding of the regulations of multilevel supramolecular structures and shed light on the formation of designed supramolecular nanostructures.
Collapse
Affiliation(s)
- Chi Zhang
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai 201804, P. R. China.
| | | | | | | | | |
Collapse
|
13
|
Song Y, Wang Y, Jin Q, Zhou K, Shi Z, Liu PN, Ma YQ. Self-Assembly and Local Manipulation of Au-Pyridyl Coordination Networks on Metal Surfaces. Chemphyschem 2017; 18:2088-2093. [DOI: 10.1002/cphc.201700439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Yang Song
- Center for Soft Condensed Matter Physics & Interdisciplinary Research; College of Physics, Optoelectronics and Energy; Soochow University; 215006 Suzhou China
| | - Yuxu Wang
- Center for Soft Condensed Matter Physics & Interdisciplinary Research; College of Physics, Optoelectronics and Energy; Soochow University; 215006 Suzhou China
| | - Qiao Jin
- Shanghai Key Laboratory of Functional Materials Chemistry; Key Lab for Advanced Materials and School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Kun Zhou
- Center for Soft Condensed Matter Physics & Interdisciplinary Research; College of Physics, Optoelectronics and Energy; Soochow University; 215006 Suzhou China
| | - Ziliang Shi
- Center for Soft Condensed Matter Physics & Interdisciplinary Research; College of Physics, Optoelectronics and Energy; Soochow University; 215006 Suzhou China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry; Key Lab for Advanced Materials and School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Yu-qiang Ma
- Center for Soft Condensed Matter Physics & Interdisciplinary Research; College of Physics, Optoelectronics and Energy; Soochow University; 215006 Suzhou China
- National Laboratory of Solid State Microstructures and Department of Physics; Nanjing University; Nanjing 210093 China
| |
Collapse
|
14
|
Cai L, Sun Q, Bao M, Ma H, Yuan C, Xu W. Competition between Hydrogen Bonds and Coordination Bonds Steered by the Surface Molecular Coverage. ACS NANO 2017; 11:3727-3732. [PMID: 28383885 DOI: 10.1021/acsnano.6b08374] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In addition to the choices of metal atoms/molecular linkers and surfaces, several crucial parameters, including surface temperature, molecular stoichiometric ratio, electrical stimulation, concentration, and solvent effect for liquid/solid interfaces, have been demonstrated to play key roles in the formation of on-surface self-assembled supramolecular architectures. Moreover, self-assembled structural transformations frequently occur in response to a delicate control over those parameters, which, in most cases, involve either conversions from relatively weak interactions to stronger ones (e.g., hydrogen bonds to coordination bonds) or transformations between the comparable interactions (e.g., different coordination binding modes or hydrogen bonding configurations). However, intermolecular bond conversions from relatively strong coordination bonds to weak hydrogen bonds were rarely reported. Moreover, to our knowledge, a reversible conversion between hydrogen bonds and coordination bonds has not been demonstrated before. Herein, we have demonstrated a facile strategy for the regulation of stepwise intermolecular bond conversions from the metal-organic coordination bond (Cu-N) to the weak hydrogen bond (CH···N) by increasing the surface molecular coverage. From the DFT calculations we quantify that the loss in intermolecular interaction energy is compensated by the increased molecular adsorption energy at higher molecular coverage. Moreover, we achieved a reversible conversion from the weak hydrogen bond to the coordination bond by decreasing the surface molecular coverage.
Collapse
Affiliation(s)
- Liangliang Cai
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University , Shanghai 201804, P. R. China
| | - Qiang Sun
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University , Shanghai 201804, P. R. China
| | - Meiling Bao
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University , Shanghai 201804, P. R. China
| | - Honghong Ma
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University , Shanghai 201804, P. R. China
| | - Chunxue Yuan
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University , Shanghai 201804, P. R. China
| | - Wei Xu
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University , Shanghai 201804, P. R. China
| |
Collapse
|
15
|
Xie L, Zhang C, Ding Y, Xu W. Structural Transformation and Stabilization of Metal-Organic Motifs Induced by Halogen Doping. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Xie
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| | - Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| | - Wei Xu
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| |
Collapse
|
16
|
Xie L, Zhang C, Ding Y, Xu W. Structural Transformation and Stabilization of Metal-Organic Motifs Induced by Halogen Doping. Angew Chem Int Ed Engl 2017; 56:5077-5081. [DOI: 10.1002/anie.201702589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Lei Xie
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| | - Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| | - Wei Xu
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| |
Collapse
|
17
|
Geng YF, Li P, Li JZ, Zhang XM, Zeng QD, Wang C. STM probing the supramolecular coordination chemistry on solid surface: Structure, dynamic, and reactivity. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Zhang C, Wang L, Xie L, Ding Y, Xu W. On-Surface Dual-Response Structural Transformations of Guanine Molecules and Fe Atoms. Chemistry 2017; 23:2356-2362. [DOI: 10.1002/chem.201604775] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Chi Zhang
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| | - Likun Wang
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| | - Lei Xie
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| | - Yuanqi Ding
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| | - Wei Xu
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| |
Collapse
|
19
|
Ma H, Bao M, Cai L, Sun Q, Yuan C. Self-assembled nanostructures of a di-carbonitrile molecule on copper single-crystal surfaces. RSC Adv 2017. [DOI: 10.1039/c6ra28157e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A di-carbonitrile molecule prefers to form nanostructures by hydrogen bonds rather than coordination bonds on Cu(110) and Cu(100) at RT.
Collapse
Affiliation(s)
- Honghong Ma
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Meiling Bao
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Liangliang Cai
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Qiang Sun
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| | - Chunxue Yuan
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials
- College of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- P. R. China
| |
Collapse
|
20
|
Kong H, Zhang C, Xie L, Wang L, Xu W. Constitutional Dynamics of Metal-Organic Motifs on a Au(111) Surface. Angew Chem Int Ed Engl 2016; 55:7157-60. [DOI: 10.1002/anie.201602572] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/07/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Huihui Kong
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| | - Chi Zhang
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| | - Lei Xie
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| | - Likun Wang
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| | - Wei Xu
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| |
Collapse
|
21
|
Kong H, Zhang C, Xie L, Wang L, Xu W. Constitutional Dynamics of Metal-Organic Motifs on a Au(111) Surface. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huihui Kong
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| | - Chi Zhang
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| | - Lei Xie
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| | - Likun Wang
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| | - Wei Xu
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P.R. China
| |
Collapse
|
22
|
Zhang C, Xie L, Wang L, Kong H, Tan Q, Xu W. Atomic-Scale Insight into Tautomeric Recognition, Separation, and Interconversion of Guanine Molecular Networks on Au(111). J Am Chem Soc 2015; 137:11795-800. [DOI: 10.1021/jacs.5b07314] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chi Zhang
- Tongji-Aarhus Joint Research
Center for Nanostructures and Functional Nanomaterials, College of
Materials Science and Engineering, Tongji University, Caoan Road
4800, Shanghai 201804, People’s Republic of China
| | - Lei Xie
- Tongji-Aarhus Joint Research
Center for Nanostructures and Functional Nanomaterials, College of
Materials Science and Engineering, Tongji University, Caoan Road
4800, Shanghai 201804, People’s Republic of China
| | - Likun Wang
- Tongji-Aarhus Joint Research
Center for Nanostructures and Functional Nanomaterials, College of
Materials Science and Engineering, Tongji University, Caoan Road
4800, Shanghai 201804, People’s Republic of China
| | - Huihui Kong
- Tongji-Aarhus Joint Research
Center for Nanostructures and Functional Nanomaterials, College of
Materials Science and Engineering, Tongji University, Caoan Road
4800, Shanghai 201804, People’s Republic of China
| | - Qinggang Tan
- Tongji-Aarhus Joint Research
Center for Nanostructures and Functional Nanomaterials, College of
Materials Science and Engineering, Tongji University, Caoan Road
4800, Shanghai 201804, People’s Republic of China
| | - Wei Xu
- Tongji-Aarhus Joint Research
Center for Nanostructures and Functional Nanomaterials, College of
Materials Science and Engineering, Tongji University, Caoan Road
4800, Shanghai 201804, People’s Republic of China
| |
Collapse
|
23
|
Sun Q, Cai L, Ma H, Yuan C, Xu W. On-surface construction of a metal-organic Sierpiński triangle. Chem Commun (Camb) 2015; 51:14164-6. [PMID: 26247871 DOI: 10.1039/c5cc05554g] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through a careful design of the molecular precursor we have successfully constructed the metal-organic Sierpiński triangles on Au(111) via on-surface coordination chemistry, which is demonstrated by the interplay of high-resolution STM imaging and DFT calculations. The coordination Sierpiński triangles show high stabilities as evidenced by room temperature STM imaging, and could withstand a thermal treatment up to 450 K.
Collapse
Affiliation(s)
- Qiang Sun
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai 201804, P. R. China.
| | | | | | | | | |
Collapse
|