1
|
He Y, Li H, Steiner AM, Fery A, Zhang Y, Ye C. Tunable Chiral Plasmonic Activities Enabled via Stimuli Responsive Micro-Origami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303595. [PMID: 37489842 DOI: 10.1002/adma.202303595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Chiral plasmonic nanomaterials with distinctive circularly polarized light-dependent optical responses over a broad range of frequency have great potential for photonic and biomedical applications. However, it still remains challenging to fabricate 3D plasmonic chiral micro-constructs with readily modulated chiroptical properties over the magnitude of ellipticity, mode frequency, and switchable handedness, especially in the vis-NIR range. In this study, polymeric micro-origami-based 3D plasmonic chiral structures are constructed through self-rolling of gold nanospheres (AuNSs)-decorated polymeric micro-sheets. Spherical AuNSs are assembled as highly ordered linear chains on 2D rectangular micro-sheets by polydimethylsiloxane-wrinkle assisted assembly. Upon rolling the micro-sheets to micro-tubules, the AuNS chains transform into 3D helices. The AuNS-assembled helices induce collective plasmonic modes propagating in a helical manner, leading to a strong chiral response over the vis-NIR range. The circular dichroism (CD) is measured to be as high as hundreds of millidegree, and the position and sign of CD peaks are actively modulated by controlling the orientated angle of AuNS chains, enabled by tuning the collective plasmonic modes. This micro-origami-based strategy incorporates the incompatible 2D assembly technique with 3D chiral structures, opening up an intriguing way toward constructing chiral plasmonic structures and modulating chiroptical effects based on responsive polymeric materials.
Collapse
Affiliation(s)
- Yisheng He
- School of Physical Science and Technology, Shanghai Tech University, 393 Huaxia Middle Rd. Pudong, Shanghai, 201210, China
| | - Haoyu Li
- Department of Physics, University of Science and Technology Beijing, 30 Xueyuan Rd., Beijing, 10008, China
| | - Anja Maria Steiner
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069, Dresden, Germany
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069, Dresden, Germany
| | - Yuan Zhang
- Key Laboratory of Material Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, 100 Kexue Ave., Zhengzhou, 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, 266 Mingli Rd., Zhengzhou, 450046, China
| | - Chunhong Ye
- School of Physical Science and Technology, Shanghai Tech University, 393 Huaxia Middle Rd. Pudong, Shanghai, 201210, China
| |
Collapse
|
2
|
Tudureanu R, Handrea-Dragan IM, Boca S, Botiz I. Insight and Recent Advances into the Role of Topography on the Cell Differentiation and Proliferation on Biopolymeric Surfaces. Int J Mol Sci 2022; 23:7731. [PMID: 35887079 PMCID: PMC9315624 DOI: 10.3390/ijms23147731] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
It is well known that surface topography plays an important role in cell behavior, including adhesion, migration, orientation, elongation, proliferation and differentiation. Studying these cell functions is essential in order to better understand and control specific characteristics of the cells and thus to enhance their potential in various biomedical applications. This review proposes to investigate the extent to which various surface relief patterns, imprinted in biopolymer films or in polymeric films coated with biopolymers, by utilizing specific lithographic techniques, influence cell behavior and development. We aim to understand how characteristics such as shape, dimension or chemical functionality of surface relief patterns alter the orientation and elongation of cells, and thus, finally make their mark on the cell proliferation and differentiation. We infer that such an insight is a prerequisite for pushing forward the comprehension of the methodologies and technologies used in tissue engineering applications and products, including skin or bone implants and wound or fracture healing.
Collapse
Affiliation(s)
- Raluca Tudureanu
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Iuliana M. Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
| |
Collapse
|
3
|
Zhao Z, He Y, Meng X, Ye C. 3D-to-3D Microscale Shape-Morphing from Configurable Helices with Controlled Chirality. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61723-61732. [PMID: 34913686 DOI: 10.1021/acsami.1c15711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tunable and reconfigurable materials with autonomic shape transformation in response to the environment have emerged as one of the most promising approaches for a variety of biomedical applications, such as tissue engineering, biosensing, and in vivo biomedical devices. Currently, it is still quite challenging to fabricate soft, microscaled 3D shape-reconfigurable structures due to either complicated microfabrication or limited microscale photopolymerization-based printing approaches to enable adaptive shape transformation. Here, a one-step photo-cross-linking approach has been demonstrated to obtain a 3D-to-3D morphological transformable microhelix from a self-rolled hydrogel microsheet, resulting in chirality conversion. It was enabled by a custom-designed "hard" stripe/"soft" groove topography on the microsheets for introducing, which introduced both in-planar and out-of-planar anisotropies. Both experiment and simulation confirmed that a stripe/groove geometry can effectively control the 3D transformation by activating in-planar or/and out-of-planar mismatch stress within the microsheets, resulting in switching of the rolling direction between perpendicular/parallel to the length of the stripe. Furthermore, versatile 3D microconstructs with the ability to transform between two distinct 3D configurations have been achieved based on controlled rolling of microhelices, demonstrated as "windmill"-to-"T-cross" and "cylinder"-to-"scroll" transformations and dynamic blossoming of biomimetic orchids. In contrast to conventional 2D-to-3D micro-origami, we have successfully demonstrated an approach for fabricating microscale, all-soft-material-based constructs with autonomic 3D-to-3D structural transformation, which presents an opportunity for designing more complex hydrogel-based microrobotics.
Collapse
Affiliation(s)
- Zhenyu Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yisheng He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Xiao Meng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Chunhong Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
4
|
Abstract
In contrast to conventional hard actuators, soft actuators offer many vivid advantages, such as improved flexibility, adaptability, and reconfigurability, which are intrinsic to living systems. These properties make them particularly promising for different applications, including soft electronics, surgery, drug delivery, artificial organs, or prosthesis. The additional degree of freedom for soft actuatoric devices can be provided through the use of intelligent materials, which are able to change their structure, macroscopic properties, and shape under the influence of external signals. The use of such intelligent materials allows a substantial reduction of a device's size, which enables a number of applications that cannot be realized by externally powered systems. This review aims to provide an overview of the properties of intelligent synthetic and living/natural materials used for the fabrication of soft robotic devices. We discuss basic physical/chemical properties of the main kinds of materials (elastomers, gels, shape memory polymers and gels, liquid crystalline elastomers, semicrystalline ferroelectric polymers, gels and hydrogels, other swelling polymers, materials with volume change during melting/crystallization, materials with tunable mechanical properties, and living and naturally derived materials), how they are related to actuation and soft robotic application, and effects of micro/macro structures on shape transformation, fabrication methods, and we highlight selected applications.
Collapse
Affiliation(s)
- Indra Apsite
- Faculty of Engineering Science, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Sahar Salehi
- Department of Biomaterials, Center of Energy Technology und Materials Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
| | - Leonid Ionov
- Faculty of Engineering Science, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany.,Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
5
|
Jakšić Z, Jakšić O. Biomimetic Nanomembranes: An Overview. Biomimetics (Basel) 2020; 5:E24. [PMID: 32485897 PMCID: PMC7345464 DOI: 10.3390/biomimetics5020024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/30/2022] Open
Abstract
Nanomembranes are the principal building block of basically all living organisms, and without them life as we know it would not be possible. Yet in spite of their ubiquity, for a long time their artificial counterparts have mostly been overlooked in mainstream microsystem and nanosystem technologies, being a niche topic at best, instead of holding their rightful position as one of the basic structures in such systems. Synthetic biomimetic nanomembranes are essential in a vast number of seemingly disparate fields, including separation science and technology, sensing technology, environmental protection, renewable energy, process industry, life sciences and biomedicine. In this study, we review the possibilities for the synthesis of inorganic, organic and hybrid nanomembranes mimicking and in some way surpassing living structures, consider their main properties of interest, give a short overview of possible pathways for their enhancement through multifunctionalization, and summarize some of their numerous applications reported to date, with a focus on recent findings. It is our aim to stress the role of functionalized synthetic biomimetic nanomembranes within the context of modern nanoscience and nanotechnologies. We hope to highlight the importance of the topic, as well as to stress its great applicability potentials in many facets of human life.
Collapse
Affiliation(s)
- Zoran Jakšić
- Center of Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | | |
Collapse
|
6
|
Xiong R, Luan J, Kang S, Ye C, Singamaneni S, Tsukruk VV. Biopolymeric photonic structures: design, fabrication, and emerging applications. Chem Soc Rev 2020; 49:983-1031. [PMID: 31960001 DOI: 10.1039/c8cs01007b] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biological photonic structures can precisely control light propagation, scattering, and emission via hierarchical structures and diverse chemistry, enabling biophotonic applications for transparency, camouflaging, protection, mimicking and signaling. Corresponding natural polymers are promising building blocks for constructing synthetic multifunctional photonic structures owing to their renewability, biocompatibility, mechanical robustness, ambient processing conditions, and diverse surface chemistry. In this review, we provide a summary of the light phenomena in biophotonic structures found in nature, the selection of corresponding biopolymers for synthetic photonic structures, the fabrication strategies for flexible photonics, and corresponding emerging photonic-related applications. We introduce various photonic structures, including multi-layered, opal, and chiral structures, as well as photonic networks in contrast to traditionally considered light absorption and structural photonics. Next, we summarize the bottom-up and top-down fabrication approaches and physical properties of organized biopolymers and highlight the advantages of biopolymers as building blocks for realizing unique bioenabled photonic structures. Furthermore, we consider the integration of synthetic optically active nanocomponents into organized hierarchical biopolymer frameworks for added optical functionalities, such as enhanced iridescence and chiral photoluminescence. Finally, we present an outlook on current trends in biophotonic materials design and fabrication, including current issues, critical needs, as well as promising emerging photonic applications.
Collapse
Affiliation(s)
- Rui Xiong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Aigner T, Scheibel T. Self-Rolling Refillable Tubular Enzyme Containers Made of Recombinant Spider Silk and Chitosan. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15290-15297. [PMID: 30924630 DOI: 10.1021/acsami.9b01654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Encapsulation of enzymes is often necessary to stabilize them against environmental conditions or to protect them from other harmful enzymes such as proteases. Here, a refillable spatial confinement system was produced using a fully degradable self-rolling biopolymer bilayer. The enzyme containers comprise spider silk and chitosan and enable one-pot reactions in the micro- to milliliter regime by trapping the enzyme inside the semipermeable tube and allow the substrate and/or product either to diffuse freely or to be entrapped. The tubes are stable toward several organic and aqueous solvents. A one-tube system with esterase-2 was used to establish the system. Further, a two-tube system was applied to mimic enzymatic cascades, where the enzymes have to be separated, because they, for example, inhibit each other. The entrapment mode was also tested in the two-tube system, which is beneficial for toxic products or for obtaining high concentrations of the desired product.
Collapse
|
8
|
Carvalho CR, Costa JB, da Silva Morais A, López-Cebral R, Silva-Correia J, Reis RL, Oliveira JM. Tunable Enzymatically Cross-Linked Silk Fibroin Tubular Conduits for Guided Tissue Regeneration. Adv Healthc Mater 2018; 7:e1800186. [PMID: 29999601 DOI: 10.1002/adhm.201800186] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/03/2018] [Indexed: 01/11/2023]
Abstract
Hollow tubular conduits (TCs) with tunable architecture and biological properties are in great need for modulating cell functions and drug delivery in guided tissue regeneration. Here, a new methodology to produce enzymatically cross-linked silk fibroin TCs is described, which takes advantage of the tyrosine groups present in silk structure that are known to allow the formation of a covalently cross-linked hydrogel. Three different processing methods are used as a final step to modulate the properties of the silk-based TCs. This approach allows to virtually adjust any characteristic of the final TCs. The final microstructure ranges from a nonporous to a highly porous network, allowing the TCs to be selectively porous to 4 kDa molecules, but not to human skin fibroblasts. Mechanical properties are dependent both on the processing method and thickness of the TCs. Bioactivity is observed after 30 days of immersion in simulated body fluid only for the TCs submitted to a drying processing method (50 °C). The in vivo study performed in mice demonstrates the good biocompatibility of the TCs. The enzymatically cross-linked silk fibroin TCs are versatile and have adjustable characteristics that can be exploited in a variety of biomedical applications, particularly in guidance of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Cristiana R. Carvalho
- 3B's Research Group; I3Bs-Research Institute on Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Parque de Ciência e Tecnologia; Zona Industrial da Gandra; 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision Medicine; Headquarters at University of Minho, Avepark; 4805-017 Barco Guimarães Portugal
| | - João B. Costa
- 3B's Research Group; I3Bs-Research Institute on Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Parque de Ciência e Tecnologia; Zona Industrial da Gandra; 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision Medicine; Headquarters at University of Minho, Avepark; 4805-017 Barco Guimarães Portugal
| | - Alain da Silva Morais
- 3B's Research Group; I3Bs-Research Institute on Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Parque de Ciência e Tecnologia; Zona Industrial da Gandra; 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga Guimarães Portugal
| | - Rita López-Cebral
- 3B's Research Group; I3Bs-Research Institute on Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Parque de Ciência e Tecnologia; Zona Industrial da Gandra; 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision Medicine; Headquarters at University of Minho, Avepark; 4805-017 Barco Guimarães Portugal
| | - Joana Silva-Correia
- 3B's Research Group; I3Bs-Research Institute on Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Parque de Ciência e Tecnologia; Zona Industrial da Gandra; 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group; I3Bs-Research Institute on Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Parque de Ciência e Tecnologia; Zona Industrial da Gandra; 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision Medicine; Headquarters at University of Minho, Avepark; 4805-017 Barco Guimarães Portugal
| | - J. Miguel Oliveira
- 3B's Research Group; I3Bs-Research Institute on Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark, Parque de Ciência e Tecnologia; Zona Industrial da Gandra; 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associate Laboratory; Braga Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision Medicine; Headquarters at University of Minho, Avepark; 4805-017 Barco Guimarães Portugal
| |
Collapse
|
9
|
Huang G, Mei Y. Assembly and Self-Assembly of Nanomembrane Materials-From 2D to 3D. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703665. [PMID: 29292590 DOI: 10.1002/smll.201703665] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Nanoscience and nanotechnology offer great opportunities and challenges in both fundamental research and practical applications, which require precise control of building blocks with micro/nanoscale resolution in both individual and mass-production ways. The recent and intensive nanotechnology development gives birth to a new focus on nanomembrane materials, which are defined as structures with thickness limited to about one to several hundred nanometers and with much larger (typically at least two orders of magnitude larger, or even macroscopic scale) lateral dimensions. Nanomembranes can be readily processed in an accurate manner and integrated into functional devices and systems. In this Review, a nanotechnology perspective of nanomembranes is provided, with examples of science and applications in semiconductor, metal, insulator, polymer, and composite materials. Assisted assembly of nanomembranes leads to wrinkled/buckled geometries for flexible electronics and stacked structures for applications in photonics and thermoelectrics. Inspired by kirigami/origami, self-assembled 3D structures are constructed via strain engineering. Many advanced materials have begun to be explored in the format of nanomembranes and extend to biomimetic and 2D materials for various applications. Nanomembranes, as a new type of nanomaterials, allow nanotechnology in a controllable and precise way for practical applications and promise great potential for future nanorelated products.
Collapse
Affiliation(s)
- Gaoshan Huang
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yongfeng Mei
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, 220 Handan Road, Shanghai, 200433, China
| |
Collapse
|
10
|
Teshima TF, Nakashima H, Ueno Y, Sasaki S, Henderson CS, Tsukada S. Cell Assembly in Self-foldable Multi-layered Soft Micro-rolls. Sci Rep 2017; 7:17376. [PMID: 29273722 PMCID: PMC5741765 DOI: 10.1038/s41598-017-17403-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/24/2017] [Indexed: 02/06/2023] Open
Abstract
Multi-layered thin films with heterogeneous mechanical properties can be spontaneously transformed to realise various three-dimensional (3D) geometries. Here, we describe micro-patterned all-polymer films called micro-rolls that we use for encapsulating, manipulating, and observing adherent cells in vitro. The micro-rolls are formed of twin-layered films consisting of two polymers with different levels of mechanical stiffness; therefore they can be fabricated by using the strain engineering and a self-folding rolling process. By controlling the strain of the films geometrically, we can achieve 3D tubular architectures with controllable diameters. Integration with a batch release of sacrificial hydrogel layers provides a high yield and the biocompatibility of the micro-rolls with any length in the release process without cytotoxicity. Thus, the multiple cells can be wrapped in individual micro-rolls and artificially reconstructed into hollow or fibre-shaped cellular 3D constructs that possess the intrinsic morphologies and functions of living tissues. This system can potentially provide 3D bio-interfaces such as those needed for reconstruction and assembly of functional tissues and implantable tissue grafts.
Collapse
Affiliation(s)
- Tetsuhiko F Teshima
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, Japan.
| | - Hiroshi Nakashima
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| | - Yuko Ueno
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| | - Satoshi Sasaki
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| | - Calum S Henderson
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
- School of Chemistry, The University of Edinburgh, Scotland David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Shingo Tsukada
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| |
Collapse
|
11
|
Green JJ, Elisseeff JH. Mimicking biological functionality with polymers for biomedical applications. Nature 2017; 540:386-394. [PMID: 27974772 DOI: 10.1038/nature21005] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022]
Abstract
The vast opportunities for biomaterials design and functionality enabled by mimicking nature continue to stretch the limits of imagination. As both biological understanding and engineering capabilities develop, more sophisticated biomedical materials can be synthesized that have multifaceted chemical, biological and physical characteristics designed to achieve specific therapeutic goals. Mimicry is being used in the design of polymers for biomedical applications that are required locally in tissues, systemically throughout the body, and at the interface with tissues.
Collapse
Affiliation(s)
- Jordan J Green
- Translational Tissue Engineering Center, Departments of Biomedical Engineering and Ophthalmology, and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Departments of Biomedical Engineering and Ophthalmology, and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
12
|
Hines L, Petersen K, Lum GZ, Sitti M. Soft Actuators for Small-Scale Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603483. [PMID: 28032926 DOI: 10.1002/adma.201603483] [Citation(s) in RCA: 517] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/05/2016] [Indexed: 05/17/2023]
Abstract
This review comprises a detailed survey of ongoing methodologies for soft actuators, highlighting approaches suitable for nanometer- to centimeter-scale robotic applications. Soft robots present a special design challenge in that their actuation and sensing mechanisms are often highly integrated with the robot body and overall functionality. When less than a centimeter, they belong to an even more special subcategory of robots or devices, in that they often lack on-board power, sensing, computation, and control. Soft, active materials are particularly well suited for this task, with a wide range of stimulants and a number of impressive examples, demonstrating large deformations, high motion complexities, and varied multifunctionality. Recent research includes both the development of new materials and composites, as well as novel implementations leveraging the unique properties of soft materials.
Collapse
Affiliation(s)
- Lindsey Hines
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | | | - Guo Zhan Lum
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | - Metin Sitti
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
- Max Planck ETH Center for Learning Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
- Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA
| |
Collapse
|
13
|
Ionov L, Stoychev G, Jehnichen D, Sommer JU. Reversibly Actuating Solid Janus Polymeric Fibers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4873-4881. [PMID: 27991772 DOI: 10.1021/acsami.6b13084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It is commonly assumed that the substantial element of reversibly actuating soft polymeric materials is chemical cross-linking, which is needed to provide elasticity required for the reversible actuation. On the example of melt spun and three-dimensional printed Janus fibers, we demonstrate here for the first time that cross-linking is not an obligatory prerequisite for reversible actuation of solid entangled polymers, since the entanglement network itself can build elasticity during crystallization. Indeed, we show that not-cross-linked polymers, which typically demonstrate plastic deformation in melt, possess enough elastic behavior to actuate reversibly. The Janus polymeric structure bends because of contraction of the polymer and due to entanglements and formation of nanocrystallites upon cooling. Actuation upon melting is simply due to relaxation of the stressed nonfusible component. This approach opens perspectives for design of solid active materials and actuator for robotics, biotechnology, and smart textile applications. The great advantage of our principle is that it allows design of non-cross-linked self-moving materials, which are able to actuate in both water and air, which are not cross-linked. We demonstrate application of actuating fibers for design of walkers, structures with switchable length, width, and thickness, which can be used for smart textile applications.
Collapse
Affiliation(s)
- Leonid Ionov
- College of Engineering, College of Family and Consumer Sciences, University of Georgia , Athens, Georgia 30602, United States
| | - Georgi Stoychev
- College of Engineering, College of Family and Consumer Sciences, University of Georgia , Athens, Georgia 30602, United States
| | - Dieter Jehnichen
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Str. 6, 01069 Dresden, Germany
| | - Jens Uwe Sommer
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
14
|
Abstract
Shape-programmable matter is a class of active materials whose geometry can be controlled to potentially achieve mechanical functionalities beyond those of traditional machines. Among these materials, magnetically actuated matter is particularly promising for achieving complex time-varying shapes at small scale (overall dimensions smaller than 1 cm). However, previous work can only program these materials for limited applications, as they rely solely on human intuition to approximate the required magnetization profile and actuating magnetic fields for their materials. Here, we propose a universal programming methodology that can automatically generate the required magnetization profile and actuating fields for soft matter to achieve new time-varying shapes. The universality of the proposed method can therefore inspire a vast number of miniature soft devices that are critical in robotics, smart engineering surfaces and materials, and biomedical devices. Our proposed method includes theoretical formulations, computational strategies, and fabrication procedures for programming magnetic soft matter. The presented theory and computational method are universal for programming 2D or 3D time-varying shapes, whereas the fabrication technique is generic only for creating planar beams. Based on the proposed programming method, we created a jellyfish-like robot, a spermatozoid-like undulating swimmer, and an artificial cilium that could mimic the complex beating patterns of its biological counterpart.
Collapse
|
15
|
Ye C, Nikolov SV, Geryak RD, Calabrese R, Ankner JF, Alexeev A, Kaplan DL, Tsukruk VV. Bimorph Silk Microsheets with Programmable Actuating Behavior: Experimental Analysis and Computer Simulations. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17694-17706. [PMID: 27308946 DOI: 10.1021/acsami.6b05156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microscaled self-rolling construct sheets from silk protein material have been fabricated, containing a silk bimorph composed of silk ionomers as an active layer and cross-linked silk β-sheet as the passive layer. The programmable morphology was experimentally explored along with a computational simulation to understand the mechanism of shape reconfiguration. The neutron reflectivity shows that the active silk ionomers layer undergoes remarkable swelling (eight times increase in thickness) after deprotonation while the passive silk β-sheet retains constant volume under the same conditions and supports the bimorph construct. This selective swelling within the silk-on-silk bimorph microsheets generates strong interfacial stress between layers and out-of-plane forces, which trigger autonomous self-rolling into various 3D constructs such as cylindrical and helical tubules. The experimental observations and computational modeling confirmed the role of interfacial stresses and allow programming the morphology of the 3D constructs with particular design. We demonstrated that the biaxial stress distribution over the 2D planar films depends upon the lateral dimensions, thickness and the aspect ratio of the microsheets. The results allow the fine-tuning of autonomous shape transformations for the further design of complex micro-origami constructs and the silk based rolling/unrolling structures provide a promising platform for polymer-based biomimetic devices for implant applications.
Collapse
Affiliation(s)
| | | | | | - Rossella Calabrese
- Department of Biomedical Engineering, Tufts University , 4 Colby street, Medford, Massachusetts 02155 United States
| | - John F Ankner
- Spallation Neutron Source, Oak Ridge National Laboratory , Oka Ridge, Tennessee 37831, United States
| | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University , 4 Colby street, Medford, Massachusetts 02155 United States
| | | |
Collapse
|
16
|
Oh MS, Song YS, Kim C, Kim J, You JB, Kim TS, Lee CS, Im SG. Control of Reversible Self-Bending Behavior in Responsive Janus Microstrips. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8782-8. [PMID: 26974225 DOI: 10.1021/acsami.5b12704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Here, we demonstrate a simple method to systematically control the responsive self-bending behavior of Janus hydrogel microstrips consisting of a polymeric bilayer with a high modulus contrast. The Janus hydrogel microstrips could be easily fabricated by a simple micromolding technique combined with an initiated chemical vapor deposition (iCVD) coating, providing high flexibility in controlling the physical and chemical properties of the microstrips. The fabricated Janus hydrogel microstrip is composed of a soft, pH-responsive polymer hydrogel layer laminated with a highly cross-linked, rigid thin film, generating a geometric anisotropy at a micron scale. The large difference in the elastic moduli between the two layers of the Janus microstrips leads to a self-bending behavior in response to the pH change. More specifically, the impact of the physical and chemical properties of the microstrip on the self-bending phenomena was systematically investigated by changing the thickness and composition of two layers of the microstrip, which renders high controllability in bending of the microstrips. The curvature of the Janus microstrips, formed by self-bending, highly depends on the applied acidity. A reversible, responsive self-bending/unbending exhibits a perfect resilience pattern with repeated changes in pH for 5 cycles. We envision that the Janus microstrips can be engineered to form complex 3D microstructures applicable to various fields such as soft robotics, scaffolds, and drug delivery. The reliable responsive behaviors obtained from the systematic investigation will provide critical information in bridging the gap between the theoretical mechanical analysis and the chemical properties to achieve micron-scale soft robotics.
Collapse
Affiliation(s)
- Myung Seok Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Young Shin Song
- Department of Chemical Engineering, Chungnam National University , Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Cheolgyu Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jongmin Kim
- Department of Chemical Engineering, Chungnam National University , Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Jae Bem You
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering, Chungnam National University , Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Yuseong-gu, Daejeon 305-701, Republic of Korea
| |
Collapse
|
17
|
|