1
|
Arii H, Nakane D, Nakao K, Masuda H, Kawashima T. Dehydrogenative Annulation of Silylated 1 H-Indoles with Alkynes via Silyl Migration. Org Lett 2023. [PMID: 37449923 DOI: 10.1021/acs.orglett.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
We investigated the dehydrogenative annulation of silylated 1H-indole derivatives with alkynes to synthesize a silole-fused indole. The addition of the in situ generated silylium ion to alkynes was followed by the sila-Friedel-Crafts reaction via silyl migration, realizing regioselective dehydrogenative annulation controlled by the steric bulkiness of a base. The optical properties of the obtained siloloindoles indicated fluorescence of which the intensity depends on the location of the fused silole.
Collapse
Affiliation(s)
- Hidekazu Arii
- Faculty of Education, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Daisuke Nakane
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Kenichi Nakao
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Masuda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Takayuki Kawashima
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Gunma, Japan
| |
Collapse
|
2
|
Iizuka K, Nakajima Y, Sato K. Heterolytic cleavage of a Si-H bond by a metal-ligand cooperation of a cationic iridium amido complex and hydrosilylation of aldehydes. Dalton Trans 2022; 51:12781-12785. [PMID: 35946573 DOI: 10.1039/d2dt01733d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterolytic cleavage of a Si-H bond was achieved mediated by a metal-ligand cooperation of a cationic iridium amido complex. The reaction was applied to the catalytic hydrosilylation of benzaldehyde and its derivatives, affording the corresponding hydrosilylated products in moderate to good yields.
Collapse
Affiliation(s)
- Kosuke Iizuka
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Yumiko Nakajima
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
3
|
Ríos P, Rodríguez A, Conejero S. Activation of Si-H and B-H bonds by Lewis acidic transition metals and p-block elements: same, but different. Chem Sci 2022; 13:7392-7418. [PMID: 35872827 PMCID: PMC9241980 DOI: 10.1039/d2sc02324e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/18/2022] [Indexed: 01/01/2023] Open
Abstract
In this Perspective we discuss the ability of transition metal complexes to activate and cleave the Si-H and B-H bonds of hydrosilanes and hydroboranes (tri- and tetra-coordinated) in an electrophilic manner, avoiding the need for the metal centre to undergo two-electron processes (oxidative addition/reductive elimination). A formal polarization of E-H bonds (E = Si, B) upon their coordination to the metal centre to form σ-EH complexes (with coordination modes η1 or η2) favors this type of bond activation that can lead to reactivities involving the formation of transient silylium and borenium/boronium cations similar to those proposed in silylation and borylation processes catalysed by boron and aluminium Lewis acids. We compare the reactivity of transition metal complexes and boron/aluminium Lewis acids through a series of catalytic reactions in which pieces of evidence suggest mechanisms involving electrophilic reaction pathways.
Collapse
Affiliation(s)
- Pablo Ríos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| | - Amor Rodríguez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| | - Salvador Conejero
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| |
Collapse
|
4
|
Chen F, Zheng Y, Yang H, Yang Q, Wu L, Zhou N. Iron‐Catalyzed Silylation and Spirocyclization of Biaryl‐Ynones: A Radical Cascade Process toward Silylated Spiro[5.5]trienones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fei Chen
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Yang Zheng
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Hao Yang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Qing‐Yun Yang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Lu‐Yan Wu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| |
Collapse
|
5
|
Li Y, Zhou M, Park S, Dang L. Comparative DFT Study on Dehydrogenative C(sp)-H Elementation (E = Si, Ge, and Sn) of Terminal Alkynes Catalyzed by a Cationic Ruthenium(II) Thiolate Complex. Inorg Chem 2021; 60:6228-6238. [PMID: 33852282 DOI: 10.1021/acs.inorgchem.0c03695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Described herein is a comparative theoretical study of dehydrogenative C(sp)-H functionalizations of a terminal alkyne with group-14-based hydrides (HEEt3; E = Si, Ge, Sn) catalyzed by an Ohki-Tatsumi complex-a cationic Ru(II) complex with a tethered thiolate ligand ([Ru-S] = [(DmpS)Ru(PiPr3)][BAr4F]; Dmp = 2,6-(dimesityl)2C6H3; ArF = 3,5-(CF3)2C6H3). The calculations indicate that the energy barriers for heterolytic cleavage of the H-EEt3 bonds at the Ru-S sites of the Ohki-Tatsumi complex highly vary depending on the group 14 elements from 3.8 kcal/mol (E = Sn) to 10.5 kcal/mol (E = Ge) and 18.5 kcal/mol (E = Si), where Ru and S elements cooperatively serve as the Lewis acid and base, respectively. Likewise, the transfer of the group 14 cation (Et3E+) to the C-C triple bond to generate the β-element-stabilized vinyl cations-the rate-determining step (RDS) of the overall reaction-is predicted to be susceptible to the element's identity [Ea = 36.8 for Sn < 42.9 and Ge < 50.7 for Si (kcal/mol)]. The key transition states involved in the RDS are compared in terms of energy and structure within each system of the group 14 hydrides. The distortion/interaction-activation strain (DIAS) model analysis of the transition states responsible for dehydrogenative stannylation and hydrostannation of a terminal alkyne sheds light on the origin of the experimentally observed kinetic preference toward dehydrogenative C-H stannylation over hydrostannation.
Collapse
Affiliation(s)
- Yahui Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Miaomiao Zhou
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Sehoon Park
- Department of Chemistry, Guangdong Technion Israel Institute of Technology, Shantou, Guangdong 515063, China.,Technion-Israel Institute of Technology, Technion City, 32000 Haifa, Israel
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
6
|
Klare HFT, Albers L, Süsse L, Keess S, Müller T, Oestreich M. Silylium Ions: From Elusive Reactive Intermediates to Potent Catalysts. Chem Rev 2021; 121:5889-5985. [PMID: 33861564 DOI: 10.1021/acs.chemrev.0c00855] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The history of silyl cations has all the makings of a drama but with a happy ending. Being considered reactive intermediates impossible to isolate in the condensed phase for decades, their actual characterization in solution and later in solid state did only fuel the discussion about their existence and initially created a lot of controversy. This perception has completely changed today, and silyl cations and their donor-stabilized congeners are now widely accepted compounds with promising use in synthetic chemistry. This review provides a comprehensive summary of the fundamental facts and principles of the chemistry of silyl cations, including reliable ways of their preparation as well as their physical and chemical properties. The striking features of silyl cations are their enormous electrophilicity and as such reactivity as super Lewis acids as well as fluorophilicity. Known applications rely on silyl cations as reactants, stoichiometric reagents, and promoters where the reaction success is based on their steady regeneration over the course of the reaction. Silyl cations can even be discrete catalysts, thereby opening the next chapter of their way into the toolbox of synthetic methodology.
Collapse
Affiliation(s)
- Hendrik F T Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 115, 10623 Berlin, Germany
| | - Lena Albers
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26129 Oldenburg, Germany
| | - Lars Süsse
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 115, 10623 Berlin, Germany
| | - Sebastian Keess
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 115, 10623 Berlin, Germany
| | - Thomas Müller
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26129 Oldenburg, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 115, 10623 Berlin, Germany
| |
Collapse
|
7
|
|
8
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Synthesis of Luminescent 2-7 Disubstituted Silafluorenes with alkynyl-carbazole, -phenanthrene, and -benzaldehyde substituents. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Wu Y, Huang YH, Chen XY, Wang P. Site-Selective Silylation of Arenes Mediated by Thianthrene S-Oxide. Org Lett 2020; 22:6657-6661. [DOI: 10.1021/acs.orglett.0c02458] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
| | - Yu-Hao Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
| | - Xiao-Yue Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
- CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
11
|
Dong Y, Sakai M, Fuji K, Sekine K, Kuninobu Y. Synthesis of six-membered silacycles by borane-catalyzed double sila-Friedel-Crafts reaction. Beilstein J Org Chem 2020; 16:409-414. [PMID: 32273904 PMCID: PMC7113548 DOI: 10.3762/bjoc.16.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/11/2020] [Indexed: 11/23/2022] Open
Abstract
We have developed a catalytic synthetic method to prepare phenoxasilins. A borane-catalyzed double sila-Friedel–Crafts reaction between amino group-containing diaryl ethers and dihydrosilanes can be used to prepare a variety of phenoxasilin derivatives in good to excellent yields. The optimized reaction conditions were also applicable for diaryl thioethers to afford their corresponding six-membered silacyclic products. The gram-scale synthesis of a representative bis(dimethylamino)phenoxasilin and the transformation of its amino groups have also been demonstrated.
Collapse
Affiliation(s)
- Yafang Dong
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Masahiko Sakai
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Kazuto Fuji
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Kohei Sekine
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Yoichiro Kuninobu
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
12
|
Maesato T, Shintani R. Synthesis of 7 H-Benzo[ e]naphtho[1,8- bc]silines by Rhodium-catalyzed [2 + 2 + 2] Cycloaddition. CHEM LETT 2020. [DOI: 10.1246/cl.200025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takumi Maesato
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
13
|
|
14
|
Zhou M, Park S, Dang L. Dual reactivity of B(C6F5)3 enables the silylative cascade conversion of N-aryl piperidines to sila-N-heterocycles: DFT calculations. Org Chem Front 2020. [DOI: 10.1039/c9qo01437c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A theoretical study reveals that the dual reactivity of B(C6F5)3 enables the unique silylative cascade conversion of N-aryl piperidines to bridged sila-N-heterocycles.
Collapse
Affiliation(s)
- Miaomiao Zhou
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University
- Guangdong 515063
- P. R. China
| | - Sehoon Park
- Department of Chemistry
- Guangdong Technion Israel Institute of Technology
- Shantou 515063
- China
- Technion-Israel Institute of Technology
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University
- Guangdong 515063
- P. R. China
| |
Collapse
|
15
|
|
16
|
Wei B, Zhang D, Chen Y, Lei A, Knochel P. Preparation of Polyfunctional Biaryl Derivatives by Cyclolanthanation of 2-Bromobiaryls and Heterocyclic Analogues Using nBu 2 LaCl⋅4 LiCl. Angew Chem Int Ed Engl 2019; 58:15631-15635. [PMID: 31461206 PMCID: PMC6856828 DOI: 10.1002/anie.201908046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/30/2019] [Indexed: 12/11/2022]
Abstract
Various aryl- and heteroaryl-substituted 2-bromobiaryls are converted to cyclometalated lanthanum intermediates by reaction with nBu2 LaCl⋅4 LiCl. These resulting lanthanum heterocycles are key intermediates for the facile preparation of functionalized 2,2'-diiodobiaryls, silafluorenes, fluoren-9-ones, phenanthrenes, and their related heterocyclic analogues. X-ray absorption fine structure (XAFS) spectroscopy was used to rationalize the proposed structures of the involved organolanthanum species.
Collapse
Affiliation(s)
- Baosheng Wei
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Dongchao Zhang
- Institute for Advanced Studies (IAS)College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072HubeiP. R. China
| | - Yi‐Hung Chen
- Institute for Advanced Studies (IAS)College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072HubeiP. R. China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS)College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072HubeiP. R. China
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
17
|
Higashi T, Kusumoto S, Nozaki K. Cleavage of Si-H, B-H, and C-H Bonds by Metal-Ligand Cooperation. Chem Rev 2019; 119:10393-10402. [PMID: 31408323 DOI: 10.1021/acs.chemrev.9b00262] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metal-ligand cooperation, in which metal and ligand participate in bond cleavage and formation, is gathering great attention in recent years. In contrast to the classical bond cleavage by active metal centers with spectator ligands, metal-ligand cooperation has enabled unprecedented reactivities. Especially, metal-ligand cooperative H-H bond cleavage has been extensively studied and applied to various catalysts. On the other hand, there are substantial efforts to expand the scope of the bond to be cleaved other than the H-H bond. This review summarizes the recent progress in the metal-ligand cooperative cleavages of Si-H, B-H, and C-H bonds and their catalytic applications.
Collapse
Affiliation(s)
- Takuya Higashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Shuhei Kusumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| |
Collapse
|
18
|
Wei B, Zhang D, Chen Y, Lei A, Knochel P. Herstellung von polyfunktionellen Biarylderivaten durch Cyclolanthanierung von 2‐Bromobiarylen und heterocyclischen Analoga unter Verwendung von
n
Bu
2
LaCl⋅4 LiCl. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Baosheng Wei
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Dongchao Zhang
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei VR China
| | - Yi‐Hung Chen
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei VR China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 Hubei VR China
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
19
|
|
20
|
Miwa T, Shintani R. Rhodium-Catalyzed Synthesis of Silicon-Bridged 1,2-Dialkenylbenzenes via 1,4-Rhodium Migration. Org Lett 2019; 21:1627-1631. [DOI: 10.1021/acs.orglett.9b00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takuya Miwa
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
21
|
Dong Y, Takata Y, Yoshigoe Y, Sekine K, Kuninobu Y. Lewis acid-catalyzed synthesis of silafluorene derivatives from biphenyls and dihydrosilanes via a double sila-Friedel–Crafts reaction. Chem Commun (Camb) 2019; 55:13303-13306. [DOI: 10.1039/c9cc07692a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The synthesis of silafluorene derivatives from aminobiphenyl compounds and dihydrosilanes via a double sila-Friedel–Crafts reaction using a borane catalyst has been achieved.
Collapse
Affiliation(s)
- Yafang Dong
- Department of Molecular and Material Sciences Interdisciplinary Graduate School of Engineering Sciences Kyushu University
- Fukuoka 816-8580
- Japan
| | - Yuta Takata
- Department of Molecular and Material Sciences Interdisciplinary Graduate School of Engineering Sciences Kyushu University
- Fukuoka 816-8580
- Japan
| | - Yusuke Yoshigoe
- Department of Molecular and Material Sciences Interdisciplinary Graduate School of Engineering Sciences Kyushu University
- Fukuoka 816-8580
- Japan
| | - Kohei Sekine
- Department of Molecular and Material Sciences Interdisciplinary Graduate School of Engineering Sciences Kyushu University
- Fukuoka 816-8580
- Japan
- Institute for Materials Chemistry and Engineering Kyushu University
- Fukuoka 816-8580
| | - Yoichiro Kuninobu
- Department of Molecular and Material Sciences Interdisciplinary Graduate School of Engineering Sciences Kyushu University
- Fukuoka 816-8580
- Japan
- Institute for Materials Chemistry and Engineering Kyushu University
- Fukuoka 816-8580
| |
Collapse
|
22
|
Zhao WT, Lu ZQ, Zheng H, Xue XS, Zhao D. Rhodium-Catalyzed 2-Arylphenol-Derived Six-Membered Silacyclization: Straightforward Access toward Dibenzooxasilines and Silicon-Containing Planar Chiral Metallocenes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01992] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wen-Tao Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, People’s Republic of China
| | - Zhuo-Qun Lu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, People’s Republic of China
| | - Hanliang Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, People’s Republic of China
| | - Xiao-Song Xue
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, People’s Republic of China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, People’s Republic of China
| |
Collapse
|
23
|
Yang C, Wang J, Li J, Ma W, An K, He W, Jiang C. Visible-Light Induced Radical Silylation for the Synthesis of Dibenzosiloles via Dehydrogenative Cyclization. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Yang
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing Jiangsu 210094 People's Republic of China
| | - Jing Wang
- School of Medicine and Tsinghua-Peking Joint Centers for Life Science; Tsinghua University; Beijing 100084 People's Republic of China
| | - Jianhua Li
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing Jiangsu 210094 People's Republic of China
| | - Wenchao Ma
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing Jiangsu 210094 People's Republic of China
| | - Kun An
- School of Medicine and Tsinghua-Peking Joint Centers for Life Science; Tsinghua University; Beijing 100084 People's Republic of China
| | - Wei He
- School of Medicine and Tsinghua-Peking Joint Centers for Life Science; Tsinghua University; Beijing 100084 People's Republic of China
| | - Chao Jiang
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing Jiangsu 210094 People's Republic of China
| |
Collapse
|
24
|
Kinoshita H, Fukumoto H, Ueda A, Miura K. Syntheses of substituted benzosiloles and siloles by diisobutylaluminium hydride-promoted cyclization of 1-silyl-2-(2-silylethynyl)benzenes and 1,4-disilylalk-3-en-1-ynes. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Bähr S, Oestreich M. The electrophilic aromatic substitution approach to C–H silylation and C–H borylation. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2017-0902] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Several approaches toward electrophilic C–H silylation of electron-rich arenes are discussed, comprising transition-metal-catalyzed processes as well as Lewis-acid- and Brønsted-acid-induced protocols. These methods differ in the catalytic generation of the silicon electrophile but share proton removal in form of dihydrogen. With slight modifications, these methods are often also applicable to the related electrophilic C–H borylation.
Collapse
Affiliation(s)
- Susanne Bähr
- Institut für Chemie , Technische Universität Berlin , Strasse des 17. Juni 115 , 10623 Berlin , Germany
| | - Martin Oestreich
- Institut für Chemie , Technische Universität Berlin , Strasse des 17. Juni 115 , 10623 Berlin , Germany
| |
Collapse
|
26
|
Forster F, Rendón López VM, Oestreich M. Catalytic Dehydrogenative Stannylation of C(sp)–H Bonds Involving Cooperative Sn–H Bond Activation of Hydrostannanes. J Am Chem Soc 2018; 140:1259-1262. [DOI: 10.1021/jacs.7b13088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Francis Forster
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Victoria M. Rendón López
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
27
|
Forster F, Metsänen TT, Irran E, Hrobárik P, Oestreich M. Cooperative Al–H Bond Activation in DIBAL-H: Catalytic Generation of an Alumenium-Ion-Like Lewis Acid for Hydrodefluorinative Friedel–Crafts Alkylation. J Am Chem Soc 2017; 139:16334-16342. [DOI: 10.1021/jacs.7b09444] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francis Forster
- Institut
für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Toni T. Metsänen
- Institut
für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Elisabeth Irran
- Institut
für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Peter Hrobárik
- Institut
für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
- Department
of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - Martin Oestreich
- Institut
für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
28
|
Xu Z, Chai L, Liu ZQ. Free-Radical-Promoted Site-Selective C–H Silylation of Arenes by Using Hydrosilanes. Org Lett 2017; 19:5573-5576. [DOI: 10.1021/acs.orglett.7b02717] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhengbao Xu
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Li Chai
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhong-Quan Liu
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State
Key Laboratory Cultivation Base for TCM Quality and Efficacy, College
of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
29
|
Fang H, Hou W, Liu G, Huang Z. Ruthenium-Catalyzed Site-Selective Intramolecular Silylation of Primary C-H Bonds for Synthesis of Sila-Heterocycles. J Am Chem Soc 2017; 139:11601-11609. [PMID: 28745875 DOI: 10.1021/jacs.7b06798] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Incorporating the silicon element into bioactive organic molecules has received increasing attention in medicinal chemistry. Moreover, organosilanes are valuable synthetic intermediates for fine chemicals and materials. Transition metal-catalyzed C-H silylation has become an important strategy for C-Si bond formations. However, despite the great advances in aromatic C(sp2)-H bond silylations, catalytic methods for aliphatic C(sp3)-H bond silylations are relatively rare. Here we report a pincer ruthenium catalyst for intramolecular silylations of various primary C(sp3)-H bonds adjacent to heteroatoms (O, N, Si, Ge), including the first intramolecular silylations of C-H bonds α to O, N, and Ge. This method provides a general, synthetically efficient approach to novel classes of Si-containing five-membered [1,3]-sila-heterocycles, including oxasilolanes, azasilolanes, disila-heterocycles, and germasilolane. The trend in the reactivity of five classes of C(sp3)-H bonds toward the Ru-catalyzed silylation is elucidated. Mechanistic studies indicate that the rate-determining step is the C-H bond cleavage involving a ruthenium silyl complex as the key intermediate, while a η2-silene ruthenium hydride species is determined to be an off-cycle intermediate.
Collapse
Affiliation(s)
- Huaquan Fang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Wenjun Hou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Guixia Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
30
|
Murai M, Okada R, Asako S, Takai K. Rhodium-Catalyzed Silylative and Germylative Cyclization with Dehydrogenation Leading to 9-Sila- and 9-Germafluorenes: A Combined Experimental and Computational Mechanistic Study. Chemistry 2017; 23:10861-10870. [DOI: 10.1002/chem.201701579] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Masahito Murai
- Division of Applied Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| | - Ryo Okada
- Division of Applied Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| | - Sobi Asako
- Division of Applied Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry; Graduate School of Natural Science and Technology; Okayama University; 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| |
Collapse
|
31
|
Omann L, Königs CDF, Klare HFT, Oestreich M. Cooperative Catalysis at Metal-Sulfur Bonds. Acc Chem Res 2017; 50:1258-1269. [PMID: 28406290 DOI: 10.1021/acs.accounts.7b00089] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cooperative catalysis has attracted tremendous attention in recent years, emerging as a key strategy for the development of novel atom-economic and environmentally more benign catalytic processes. In particular, Noyori-type complexes with metal-nitrogen bonds have been extensively studied and evolved as privileged catalysts in hydrogenation chemistry. In contrast, catalysts containing metal-sulfur bonds as the reactive site are out of the ordinary, despite their abundance in living systems, where they are assumed to play a key role in biologically relevant processes. For instance, the heterolysis of dihydrogen catalyzed by [NiFe] hydrogenase is likely to proceed through cooperative H-H bond splitting at a polar nickel-sulfur bond. This Account provides an overview of reported metal-sulfur complexes that allow for cooperative E-H bond (E = H, Si, and B) activation and highlights the potential of this motif in catalytic applications. In recent years, our contributions to this research field have led to the development of a broad spectrum of synthetically useful transformations catalyzed by cationic ruthenium(II) thiolate complexes of type [(DmpS)Ru(PR3)]+BArF4- (DmpS = 2,6-dimesitylphenyl thiolate, ArF = 3,5-bis(trifluoromethyl)phenyl). The tethered coordination mode of the bulky 2,6-dimesitylphenyl thiolate ligand is crucial, stabilizing the coordinatively unsaturated ruthenium atom and also preventing formation of binuclear sulfur-bridged complexes. The ruthenium-sulfur bond of these complexes combines Lewis acidity at the metal center and Lewis basicity at the adjacent sulfur atom. This structural motif allows for reversible heterolytic splitting of E-H bonds (E = H, Si, and B) across the polar ruthenium-sulfur bond, generating a metal hydride and a sulfur-stabilized E+ cation. Hence, this activation mode provides a new strategy to catalytically generate silicon and boron electrophiles. After transfer of the electrophile to a Lewis-basic substrate, the resulting neutral ruthenium(II) hydride can either act as a hydride donor (reductant) or as a proton acceptor (Brønsted base); the latter scenario is followed by dihydrogen release. On the basis of this concept, the tethered ruthenium(II) thiolate complexes emerged as widely applicable catalysts for various transformations, which can be categorized into (i) dehydrogenative couplings [Si-C(sp2), Si-O, Si-N, and B-C(sp2)], (ii) chemoselective reductions (hydrogenation and hydrosilylation), and (iii) hydrodefluorination reactions. All reactions are promoted by a single catalyst motif through synergistic metal-sulfur interplay. The most prominent examples of these transformations are the first catalytic protocols for the regioselective C-H silylation and borylation of electron-rich heterocycles following a Friedel-Crafts mechanism.
Collapse
Affiliation(s)
- Lukas Omann
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - C. David F. Königs
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Hendrik F. T. Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
32
|
Rayment EJ, Mekareeya A, Summerhill N, Anderson EA. Mechanistic Study of Arylsilane Oxidation through 19F NMR Spectroscopy. J Am Chem Soc 2017; 139:6138-6145. [PMID: 28422497 DOI: 10.1021/jacs.7b00357] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mechanism of the oxidation of arylsilanes to phenols has been investigated using 19F NMR spectroscopy. The formation of silanols in these reactions results from a rapid background equilibrium between silanol and alkoxysilane; the relative rates of reaction of these species was evaluated by modeling of concentration profiles obtained through 19F NMR spectroscopic reaction monitoring. Combining these results with a study of initial rates of phenol formation, and of substituent electronic effects, a mechanistic picture involving rapid and reversible formation of a pentavalent peroxide ate complex, prior to rate-limiting aryl migration, has evolved.
Collapse
Affiliation(s)
- Elizabeth J Rayment
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Aroonroj Mekareeya
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Nick Summerhill
- Worldwide Medicinal Chemistry, Pfizer , Sandwich, Kent CT13 9NJ, United Kingdom
| | - Edward A Anderson
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
33
|
Bähr S, Oestreich M. Hidden Enantioselective Hydrogenation of N-Silyl Enamines and Silyl Enol Ethers in Net C═N and C═O Hydrosilylations Catalyzed by Ru–S Complexes with One Monodentate Chiral Phosphine Ligand. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Susanne Bähr
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
34
|
Omann L, Oestreich M. Catalytic Access to Indole-Fused Benzosiloles by 2-Fold Electrophilic C–H Silylation with Dihydrosilanes. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00801] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lukas Omann
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
35
|
Elektrophile aromatische Substitution mit Siliciumelektrophilen: die katalytische Friedel‐Crafts‐C‐H‐Silylierung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608470] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Bähr S, Oestreich M. Electrophilic Aromatic Substitution with Silicon Electrophiles: Catalytic Friedel-Crafts C-H Silylation. Angew Chem Int Ed Engl 2016; 56:52-59. [PMID: 27762042 DOI: 10.1002/anie.201608470] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Indexed: 11/07/2022]
Abstract
Electrophilic aromatic substitution is a fundamental reaction in synthetic chemistry. It converts C-H bonds of sufficiently nucleophilic arenes into C-X and C-C bonds using either stoichiometrically added or catalytically generated electrophiles. These reactions proceed through Wheland complexes, cationic intermediates that rearomatize by proton release. Hence, these high-energy intermediates are nothing but protonated arenes and as such strong Brønsted acids. The formation of protons is an issue in those rare cases where the electrophilic aromatic substitution is reversible. This situation arises in the electrophilic silylation of C-H bonds as the energy of the intermediate Wheland complex is lowered by the β-silicon effect. As a consequence, protonation of the silylated arene is facile, and the reverse reaction usually occurs to afford the desilylated arene. Several new approaches to overcome this inherent challenge of C-H silylation by SE Ar were recently disclosed, and this Minireview summarizes this progress.
Collapse
Affiliation(s)
- Susanne Bähr
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| |
Collapse
|
37
|
Lopez MJ, Kondo A, Nagae H, Yamamoto K, Tsurugi H, Mashima K. C(sp3)–H Alkenylation Catalyzed by Cationic Alkylhafnium Complexes: Stereoselective Synthesis of Trisubstituted Alkenes from 2,6-Dimethylpyridines and Internal Alkynes. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michael J. Lopez
- Department of Chemistry,
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Ai Kondo
- Department of Chemistry,
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Haruki Nagae
- Department of Chemistry,
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Koji Yamamoto
- Department of Chemistry,
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Hayato Tsurugi
- Department of Chemistry,
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Kazushi Mashima
- Department of Chemistry,
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
38
|
Murata M, Takizawa M, Sasaki H, Kohari Y, Sakagami H, Namikoshi T, Watanabe S. Synthesis of Dibenzosiloles via Platinum-catalyzed Intramolecular Dehydrogenative Cyclization of 2-(Dialkylsilyl)biaryls. CHEM LETT 2016. [DOI: 10.1246/cl.160415] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Arii H, Nakabayashi K, Mochida K, Kawashima T. Intramolecular Chain Hydrosilylation of Alkynylphenylsilanes Using a Silyl Cation as a Chain Carrier. Molecules 2016; 21:E999. [PMID: 27490522 PMCID: PMC6273890 DOI: 10.3390/molecules21080999] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 12/01/2022] Open
Abstract
Diorganyl[2-(trimethylsilylethynyl)phenyl]silanes 1a-c and methyl-substituted phenylsilanes 1d and 1e were treated with a small amount of trityl tetrakis(pentafluorophenyl)borate (TPFPB) as an initiator in benzene to afford the corresponding benzosiloles (2a-e) in moderate to good yields. However, no reaction was observed for the reaction using [2-(1-hexynyl)phenyl]diisopropylsilane lf. The methyl substituent was tolerated under the reaction conditions and increased the yield of the corresponding benzosilole depending on the substitution position. From the result using 1f, the current reaction was found to require the trimethylsilyl group, which can stabilize intermediary alkenyl carbocations by the β-silyl effect. The current reaction can be considered an intramolecular chain hydrosilylation of alkynylarylsilanes involving silyl cations as chain carriers. Therefore, the silyl cations generated by hydride abstraction from hydrosilanes 1 with the trityl cation causes intramolecular electrophilic addition to the C-C triple bond to form ethenyl cations, which abstract a hydride from 1 to afford benzosiloles 2 with the regeneration of the silyl cations.
Collapse
Affiliation(s)
- Hidekazu Arii
- Faculty of Education, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki, 889-2192 Miyazaki, Japan.
| | - Kenichi Nakabayashi
- Faculty of Education, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki, 889-2192 Miyazaki, Japan.
| | - Kunio Mochida
- Department of Chemistry, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588 Tokyo, Japan.
| | - Takayuki Kawashima
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, 376-8515 Gunma, Japan.
| |
Collapse
|
40
|
Chen QA, Klare HFT, Oestreich M. Brønsted Acid-Promoted Formation of Stabilized Silylium Ions for Catalytic Friedel-Crafts C-H Silylation. J Am Chem Soc 2016; 138:7868-71. [PMID: 27303857 DOI: 10.1021/jacs.6b04878] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A counterintuitive approach to electrophilic aromatic substitution with silicon electrophiles is disclosed. A strong Brønsted acid that would usually promote the reverse reaction, i.e., protodesilylation, was found to initiate the C-H silylation of electron-rich (hetero)arenes with hydrosilanes. Protonation of the hydrosilane followed by liberation of dihydrogen is key to success, fulfilling two purposes: to generate the stabilized silylium ion and to remove the proton released from the Wheland intermediate.
Collapse
Affiliation(s)
- Qing-An Chen
- Institut für Chemie, Technische Universität Berlin , Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Hendrik F T Klare
- Institut für Chemie, Technische Universität Berlin , Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin , Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
41
|
Zhang QW, An K, Liu LC, Guo S, Jiang C, Guo H, He W. Rhodium-Catalyzed Intramolecular C−H Silylation by Silacyclobutanes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602376] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qing-Wei Zhang
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Kun An
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Li-Chuan Liu
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Shuangxi Guo
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Chenran Jiang
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Huifang Guo
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Wei He
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| |
Collapse
|
42
|
Zhang QW, An K, Liu LC, Guo S, Jiang C, Guo H, He W. Rhodium-Catalyzed Intramolecular C-H Silylation by Silacyclobutanes. Angew Chem Int Ed Engl 2016; 55:6319-23. [PMID: 27073004 DOI: 10.1002/anie.201602376] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 11/11/2022]
Abstract
Silacyclobutane was discovered to be an efficient C-H bond silylation reagent. Under the catalysis of Rh(I) /TMS-segphos, silacyclobutane undergoes sequential C-Si/C-H bond activations, affording a series of π-conjugated siloles in high yields and regioselectivities. The catalytic cycle was proposed to involve a rarely documented endocyclic β-hydride elimination of five-membered metallacycles, which after reductive elimination gave rise to a Si-Rh(I) species that is capable of C-H activation.
Collapse
Affiliation(s)
- Qing-Wei Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Kun An
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Li-Chuan Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuangxi Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chenran Jiang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Huifang Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
43
|
Bähr S, Simonneau A, Irran E, Oestreich M. An Air-Stable Dimeric Ru–S Complex with an NHC as Ancillary Ligand for Cooperative Si–H Bond Activation. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00110] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Susanne Bähr
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Antoine Simonneau
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Elisabeth Irran
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
44
|
Yin Q, Klare HFT, Oestreich M. Friedel-Crafts-Type Intermolecular C-H Silylation of Electron-Rich Arenes Initiated by Base-Metal Salts. Angew Chem Int Ed Engl 2016; 55:3204-7. [PMID: 26821860 DOI: 10.1002/anie.201510469] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/11/2015] [Indexed: 11/06/2022]
Abstract
An electrophilic aromatic substitution (SE Ar) with a catalytically generated silicon electrophile is reported. Essentially any commercially available base-metal salt acts as an initiator/catalyst when activated with NaBAr(F)4. The thus-generated Lewis acid then promotes the SE Ar of electron-rich arenes with hydrosilanes but not halosilanes. This new C-H silylation was optimized for FeCl2/NaBAr(F)4, affording good yields at catalyst loadings as low as 0.5 mol %. The procedure is exceedingly straightforward and comes close to typical Friedel-Crafts methods, where no added base is needed to absorb the released protons.
Collapse
Affiliation(s)
- Qin Yin
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Hendrik F T Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany.
| |
Collapse
|
45
|
Yin Q, Klare HFT, Oestreich M. Durch Nichtedelmetallsalze ausgelöste Friedel-Crafts-artige intermolekulare C-H-Silylierung von elektronenreichen Arenen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510469] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qin Yin
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Hendrik F. T. Klare
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Martin Oestreich
- Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 115 10623 Berlin Deutschland
| |
Collapse
|
46
|
Devaraj K, Sollert C, Juds C, Gates PJ, Pilarski LT. Ru-catalysed C–H silylation of unprotected gramines, tryptamines and their congeners. Chem Commun (Camb) 2016; 52:5868-71. [DOI: 10.1039/c6cc00803h] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Directed and undirected Ru-catalysed C–H silylation of unprotected heteroarenes is presented which requires no protecting groups.
Collapse
Affiliation(s)
- K. Devaraj
- Department of Chemistry – BMC
- Uppsala University
- Uppsala
- Sweden
| | - C. Sollert
- Department of Chemistry – BMC
- Uppsala University
- Uppsala
- Sweden
| | - C. Juds
- Department of Chemistry – BMC
- Uppsala University
- Uppsala
- Sweden
| | - P. J. Gates
- School of Chemistry
- University of Bristol
- Cantock's Close
- Bristol
- UK
| | - L. T. Pilarski
- Department of Chemistry – BMC
- Uppsala University
- Uppsala
- Sweden
| |
Collapse
|