1
|
Li WF, Xu QH, Miao QY, Xiao B. Dual Photoredox/Nickel Catalysis Enables Diastereoselective Synthesis of Multisubstituted γ-Lactams Using Alkyl-GeMe 3 as Radical Precursors. J Org Chem 2024; 89:16269-16281. [PMID: 38323758 DOI: 10.1021/acs.joc.3c02348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Herein, we report a single-step, multicomponent approach to versatile γ-lactams through dual photoredox/nickel-catalyzed dicarbofunctionalization of α,β-unsaturated γ-butyrolactam. This reaction utilized alkyl trimethylgermanium as a radical precursor and acyl chloride as the electrophile, demonstrating remarkable functional group compatibility.
Collapse
Affiliation(s)
- Wen-Feng Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qing-Hao Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qi-Yue Miao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bin Xiao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Xu XH, Gao RT, Li SY, Zhou L, Liu N, Wu ZQ. Helical polyisocyanide-based macroporous organic catalysts for asymmetric Michael addition with high efficiency and stereoselectivity. Chem Sci 2024; 15:12480-12487. [PMID: 39118633 PMCID: PMC11304732 DOI: 10.1039/d4sc01316f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/29/2024] [Indexed: 08/10/2024] Open
Abstract
Porous materials have attracted interest due to their high specific surface area and rich functionality. Immobilizing organocatalysts onto porous polymers not only boosts enantioselectivity but also improves the reaction rates. In this work, a series of porous polymers C-poly-3ms with rigid polyisocyanide-carrying secondary amine pendants as building blocks were successfully prepared. And the pore size and optical activity of C-poly-3ms can be controlled by the length of the polyisocyanide blocks due to their rigid and helical backbone. C-poly-3150 demonstrated a preferred left-handed helix with a θ 364 value of -8.21 × 103. The pore size and S BET of C-poly-3150 were 17.52 nm and 7.98 m2 g-1, respectively. The porous C-poly-3150 catalyzes the asymmetric Michael addition reaction efficiently and generates the target products in satisfactory yield and excellent enantioselectivity. For 6ab, an enantiomeric excess (ee) and a diastereomeric ratio (dr) up to 99% and 99/1 could be achieved, respectively. The recovered catalyst can be recycled at least 6 times in the asymmetric Michael addition reaction while maintaining activity and stereoselectivity.
Collapse
Affiliation(s)
- Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology Hefei 230009 Anhui Province China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
| | - Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology Hefei 230009 Anhui Province China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun Jilin 130021 P. R. China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
| |
Collapse
|
3
|
Zhong H, Zhang XY, Yao YM, Chen WM, Wang W, Tian X. Asymmetric Organocatalytic 1,3-Dipolar Cycloaddition of Azomethine Ylides with β-Substituted Cyclic Enones. J Org Chem 2024; 89:9721-9732. [PMID: 38949994 DOI: 10.1021/acs.joc.3c02371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The enantioselective and diastereoselective control of 1,3-dipolar cycloaddition reactions to β-substituted cyclic enones has been developed. The 1,3-dipolar cycloaddition of phthalazinium dicyanomethanides with cyclic dienones affords chiral tetrahydropyrrolo[2,1-a]phthalazine derivatives 3 through vinylogous iminium ion activation by combining a cinchona-based primary amine C3 and a chiral camphorsulfonic acid additive. Conversely, with a weaker 3,5-bis(trifluoromethyl)benzoic acid additive, the 1,3-dipolar cycloaddition of phthalazinium dicyanomethanides with β-substituted cyclic enones leads to chiral hexahydroisoindolo[1,2-a]phthalazin-10(8H)-one derivatives 4 with excellent stereocontrol via endo-dienamine activation.
Collapse
Affiliation(s)
- Han Zhong
- The Fifth Affiliated Hospital and Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Xiao-Yi Zhang
- The Fifth Affiliated Hospital and Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Yong-Mou Yao
- The Fifth Affiliated Hospital and Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Wen-Ming Chen
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Xu Tian
- The Fifth Affiliated Hospital and Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| |
Collapse
|
4
|
Tang L, Luo Y, Sheng C, Xie F, Zhang W. Cu-Catalyzed Asymmetric Kinetic Boron Conjugate Addition of γ-Substituted α,β-Unsaturated γ-Lactams. Angew Chem Int Ed Engl 2023; 62:e202304640. [PMID: 37070236 DOI: 10.1002/anie.202304640] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/19/2023]
Abstract
Chiral α,β-unsaturated γ-lactams bearing simple γ- substituents are found in biologically active molecules and natural products, however, their synthesis still remains difficult. Herein, we report an efficient kinetic resolution (KR) of γ-substituted α,β-unsaturated γ-lactams via a Cu-catalyzed asymmetric boron conjugate addition, which also leads to the efficient synthesis of chiral β-hydroxy-γ-lactams with β,γ-stereogenic carbon centers. The KR proceeded smoothly with a wide range of γ-alkyl or aryl substituted substrates including those bearing aromatic heterocycles and different N-protected substrates in up to 347 of s value. Their highly versatile transformations, synthetic utility in biologically active molecules, and inhibitory activities against cisplatin-sensitive ovarian cancer cell A2780 have also been demonstrated. Differing from the well-known mechanism involving Cu-B species in Cu-catalyzed boron conjugate additions, our mechanistic studies using density functional theory (DFT) calculations and experiments indicate that a Lewis acid CuI -catalyzed mechanism is the likely pathway in the catalytic reaction.
Collapse
Affiliation(s)
- Liang Tang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Cheng Sheng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fang Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
5
|
Subbi Reddy M, Nanubolu JB, Suresh S. Design and development of intramolecular doubly vinylogous Michael addition to access 3-aryl substituted 2-alkenyl-benzofurans and -indoles. Org Biomol Chem 2023. [PMID: 37326590 DOI: 10.1039/d3ob00861d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Herein, we have disclosed a rare example of an intramolecular doubly vinylogous Michael addition (DVMA). The reaction design exploits the innate reactivity of ortho-heteroatom substituted para-quinone methide (p-QM) derivatives. The sequential reaction of p-QMs and activated allyl halides proceeds through heteroatom-allylation, DVMA and oxidation to furnish a diverse range of 2-alkenyl benzofuran and 2-alkenyl indole derivatives in high yields.
Collapse
Affiliation(s)
- Manyam Subbi Reddy
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadeesh Babu Nanubolu
- Laboratory of X-Ray Crystallography, Department of Analytical Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Surisetti Suresh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Wu XX, He Y, Qiao XX, Ma T, Zou CP, Li G, Zhao XJ. Organocatalyzed Enantioselective Aza-Morita-Baylis-Hillman Reaction of Cyclic Ketimine with α,β-Unsaturated γ-Butyrolactam. J Org Chem 2023. [PMID: 37157120 DOI: 10.1021/acs.joc.2c02765] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The enantioselective aza-MBH reaction is an efficient strategy for constructing novel carbon-carbon bonds, providing access to multitudinous chiral densely functionalized MBH products. However, the enantioselective aza-MBH reaction of cyclic-ketimines that would generate a versatile synthon is still missing and challenging. Herein, we developed a challenging direct organocatalytic asymmetric aza-MBH reaction involving cyclic ketimines attached to a neutral functional group. Moreover, the α,β-unsaturated γ-butyrolactam was utilized as a rare nucleophile alkene in this work. The reactions provide enantiomerically enriched 2-alkenyl-2-phenyl-1,2-dihydro-3H-indol-3-ones, bearing with a tetra-substituted stereogenic center. Moreover, this reaction features high α-selectivities, high enantioselectivities (up to 99% ee), and good yields (up to 80%).
Collapse
Affiliation(s)
- Xi-Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Chang-Peng Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650500, China
| |
Collapse
|
7
|
Qin X, Zhang J, Wang ZY, Song Y, Yang Y, Zhang W, Liu H. Highly regioselective synthesis of lactams via cascade reaction of α,β-unsaturated ketones, ketoamides, and DBU as a catalyst. RSC Adv 2023; 13:4782-4786. [PMID: 36760281 PMCID: PMC9901288 DOI: 10.1039/d2ra07117g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/27/2022] [Indexed: 02/08/2023] Open
Abstract
Herein, the aldol/Michael cascade reaction on the β,γ-positions of α,β-unsaturated ketones with ketoamides to construct bicyclic lactams via DBU catalysis has been developed. The substrates were well-tolerated with high regio- and diastereoselectivities in moderate to good yields (32 examples). The control experiments revealed that the hydrogen of the amide was the key factor.
Collapse
Affiliation(s)
- Xin Qin
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 P. R. China .,Institute of New Materials & Industrial Technology, Wenzhou University Wenzhou 325035 P. R. China
| | - Jinhai Zhang
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 P. R. China .,Institute of New Materials & Industrial Technology, Wenzhou University Wenzhou 325035 P. R. China
| | - Zhan-Yong Wang
- School of Pharmacy, Xinxiang UniversityXinxiang453003P. R. China
| | - Yimei Song
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 P. R. China .,Institute of New Materials & Industrial Technology, Wenzhou University Wenzhou 325035 P. R. China
| | - Yixiao Yang
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 P. R. China .,Institute of New Materials & Industrial Technology, Wenzhou University Wenzhou 325035 P. R. China
| | - Wenhai Zhang
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 P. R. China .,Institute of New Materials & Industrial Technology, Wenzhou University Wenzhou 325035 P. R. China
| | - Hongxin Liu
- College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 P. R. China .,Institute of New Materials & Industrial Technology, Wenzhou University Wenzhou 325035 P. R. China
| |
Collapse
|
8
|
Wang YC, Xiao ZX, Wang M, Yang SQ, Liu JB, He ZT. Umpolung Asymmetric 1,5-Conjugate Addition via Palladium Hydride Catalysis. Angew Chem Int Ed Engl 2023; 62:e202215568. [PMID: 36374273 DOI: 10.1002/anie.202215568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 11/16/2022]
Abstract
Electronically matched nucleophilic 1,6-conjugate addition has been well studied and widely applied in synthetic areas. In contrast, nucleophilic 1,5-conjugate addition represents an electronically forbidden process and is considered unfeasible. Here, we describe modular protocols for 1,5-conjugate addition reactions via palladium hydride catalysis. Both palladium and synergistic Pd/organocatalyst systems are developed to catalyze 1,5-conjugate reaction, followed by inter- or intramolecular [3+2] cyclization. A migratory 1,5-addition protocol is established to corroborate the feasibility of this umpolung concept. The 1,5-addition products are conveniently transformed into a series of privileged enantioenriched motifs, including polysubstituted tetrahydrofuran, dihydrofuran, cyclopropane, cyclobutane, azetidine, oxetane, thietane, spirocycle and bridged rings. Preliminary mechanistic studies corroborate the involvement of palladium hydride catalysis.
Collapse
Affiliation(s)
- Yu-Chao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhao-Xin Xiao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Miao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shao-Qian Yang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jin-Biao Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
9
|
Organocatalytic enantioselective construction of bicyclic γ-butrolactones. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Yan J, Zhang W, He Q, Hou J, Zeng H, Wei H, Xie W. Enantioselective direct vinylogous Michael addition for constructing enantioenriched γ,γ-dialkyl substituted butyrolactams and octahydroindoles. Org Biomol Chem 2022; 20:2387-2391. [PMID: 35254368 DOI: 10.1039/d2ob00112h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel(II)-catalyzed asymmetric direct vinylogous Michael addition of γ-alkyl monosubstituted α,β-unsaturated butyrolactams to α,β-unsaturated carbonyl compounds has been disclosed, affording γ,γ-dialkyl substituted butyrolactams in good yields and satisfactory enantioselectivities. A tandem catalytic asymmetric vinylogous Michael addition/intramolecular Michael addition has also been developed based on this reaction, which enabled the construction of enantioenriched octahydroindoles with three consecutive stereogenic carbon centers.
Collapse
Affiliation(s)
- Jiahang Yan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Wenting Zhang
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiaoqiao He
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Jun Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Hongxin Zeng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Hongbo Wei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China. .,State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
11
|
Hussain Y, Tamanna, Sharma M, Kumar A, Chauhan P. Recent development in asymmetric organocatalytic domino reactions involving 1,6-addition as a key step. Org Chem Front 2022. [DOI: 10.1039/d1qo01561c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This article highlights the significant development in stereoselective domino reactions involving 1,6-addition as a crucial step.
Collapse
Affiliation(s)
- Yaseen Hussain
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| | - Tamanna
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| | - Manisha Sharma
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| | - Akshay Kumar
- Department of Chemistry, DAV University, Pathankot – Jalandhar Road, Jalandhar 144001, Punjab, India
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| |
Collapse
|
12
|
Romaniszyn M, Gronowska K, Albrecht Ł. Remote Functionalization of 4‐(Alk‐1‐en‐1‐yl)‐3‐Cyanocoumarins via the Asymmetric Organocatalytic 1,6‐Addition. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marta Romaniszyn
- Institute of Organic Chemistry Faculty of Chemistry Lodz University of Technology Zeromskiego 116 90-924 Łódź Poland
| | - Katarzyna Gronowska
- Institute of Organic Chemistry Faculty of Chemistry Lodz University of Technology Zeromskiego 116 90-924 Łódź Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry Faculty of Chemistry Lodz University of Technology Zeromskiego 116 90-924 Łódź Poland
| |
Collapse
|
13
|
Mallik S, Bhajammanavar V, Baidya M. Regioselective Nitrosocarbonyl Aldol Reaction of Deconjugated Butyrolactams: Synthesis of γ‐Heterosubstituted α,β‐Unsaturated γ‐Lactams. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sumitava Mallik
- Department of Chemistry Indian Institute of Technology Madras Chennai 6000036 Tamil Nadu India
| | - Vinod Bhajammanavar
- Department of Chemistry Indian Institute of Technology Madras Chennai 6000036 Tamil Nadu India
| | - Mahiuddin Baidya
- Department of Chemistry Indian Institute of Technology Madras Chennai 6000036 Tamil Nadu India
| |
Collapse
|
14
|
Zou C, Yang L, Zhang L, Liu C, Ma Y, Song G, Liu Z, Cheng R, Ye J. Enantioselective Vinylogous Conia-Ene Reaction Catalyzed by a Disilver(I)/Bisdiamine Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chuncheng Zou
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Lei Yang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Lei Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Chengyu Liu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Yueyue Ma
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Gonghua Song
- Shanghai Key Laboratory of Chemistry and Biology. East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Ruihua Cheng
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Jinxing Ye
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, People’s Republic of China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
15
|
Lan S, Zhang H, Chen Z, Yang S, Fang X. Rapid Construction of Polycyclic Ketones and the Divergent Kinetic Resolution Using Ruthenium‐Catalyzed Transfer Hydrogenation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shouang Lan
- College of Chemistry Fuzhou University Fuzhou 350116 People's Republic of China
| | - Hao Zhang
- College of Chemistry Fuzhou University Fuzhou 350116 People's Republic of China
| | - Zhizhou Chen
- College of Chemistry Fuzhou University Fuzhou 350116 People's Republic of China
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter University of Chinese Academy of Sciences Fuzhou 350100 People's Republic of China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter University of Chinese Academy of Sciences Fuzhou 350100 People's Republic of China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter University of Chinese Academy of Sciences Fuzhou 350100 People's Republic of China
| |
Collapse
|
16
|
Skrzyńska A, Frankowski S, Topolska A, Dyguda M, Gao XY, Xu CJ, Chen YC, Albrecht Ł. Enantioselective H-bond-directed vinylogous iminium ion strategy for the functionalization of vinyl-substituted heteroaryl aldehydes. Chem Commun (Camb) 2021; 57:1667-1670. [PMID: 33464255 DOI: 10.1039/d0cc07765h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work the first H-bond-directed vinylogous iminium ion strategy has been developed as a convenient strategy for the γ,δ-functionalization of vinyl-substituted heteroaromatic aldehydes. Their reaction with α-mercaptoketones proceeds in a cascade manner involving 1,6-addition followed by intramolecular aldol reaction. Excellent stereoselectivities have been obtained as a result of the H-bond interactions controlling the outcome of the cyclization step. The application of the strategy for the synthesis of tricyclic compounds bearing furan, tetrahydrothiophene and dihydropyran moieties has also been demonstrated.
Collapse
Affiliation(s)
- Anna Skrzyńska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yu B, Gao B, Zhang X, Zhang H, Huang H. Palladium‐Catalyzed
Aminomethylation of Nitrodienes and Dienones
via
Double C—N Bond Activation. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bangkui Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
| | - Bao Gao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
| | - Xuexia Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
| | - Haocheng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
- Center for Excellence in Molecular Synthesis of CAS Hefei Anhui 230026 China
| |
Collapse
|
18
|
Zou C, Lv Y, Lu M, Li X, Zhang L, Yang L, Liu Z, Ke Y, Song G, Ye J. Regioselective and diastereodivergent organocatalytic asymmetric vinylogous Michael addition. Org Chem Front 2021. [DOI: 10.1039/d1qo00371b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regioselective and diastereodivergent γ-position asymmetric vinylogous Michael addition (AVMA) of cyclohex-2-enones to nitroalkenes and γ′-AVMA between cyclohex-3-enones and nitroalkenes.
Collapse
Affiliation(s)
- Chuncheng Zou
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Key Laboratory of Chemistry Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yanting Lv
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Min Lu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin Li
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Yang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhen Liu
- State Key Laboratory of Chemical Engineering. East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yanxiong Ke
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gonghua Song
- Shanghai Key Laboratory of Chemistry Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jinxing Ye
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
19
|
Jiang H, Zhou L, Mao B, Yuan C, Wang W, Wu Y, Zhang C, Guo H. Organocatalytic Enantioselective [3+2] Cycloaddition of Azomethine Ylides with 2,4‐Dienals: Construction of Remote Stereogenic Centers via 1,6‐Addition Reaction. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hui Jiang
- College of Chemistry Zhengzhou University Zhengzhou Henan 450001 People's Republic of China
- Department of Chemistry China Agricultural University Beijing 100193 People's Republic of China
| | - Leijie Zhou
- Department of Chemistry China Agricultural University Beijing 100193 People's Republic of China
| | - Biming Mao
- Department of Chemistry China Agricultural University Beijing 100193 People's Republic of China
| | - Chunhao Yuan
- Department of Chemistry China Agricultural University Beijing 100193 People's Republic of China
| | - Wei Wang
- College of Public Health Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Yongjun Wu
- College of Public Health Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Cheng Zhang
- Department of Chemistry China Agricultural University Beijing 100193 People's Republic of China
| | - Hongchao Guo
- Department of Chemistry China Agricultural University Beijing 100193 People's Republic of China
| |
Collapse
|
20
|
Bifunctional Cinchona Alkaloid Catalyzed Vinylogous Michael Reaction of 3–Alkylideneoxindole with 4‐Oxo‐enoates: A Route to Chiral γ‐Keto Alkylideneoxindole Esters. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Feng K, Shen Q, Xia A, Zhang X, Huang L, Xu Z, Zhou Z, Xu D, Du X. Iodine‐Catalyzed Aerobic Oxidative Cleavage of C–C δ‐Bonds: Difunctionalization of Dienones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kai‐Xiang Feng
- State Key Laboratory Breeding Base of Green Chemistry‐Synthesis Technology Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province Zhejiang University of Technology 310014 Hangzhou P. R. China
| | - Qiao‐Yu Shen
- State Key Laboratory Breeding Base of Green Chemistry‐Synthesis Technology Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province Zhejiang University of Technology 310014 Hangzhou P. R. China
| | - Ai‐Bao Xia
- State Key Laboratory Breeding Base of Green Chemistry‐Synthesis Technology Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province Zhejiang University of Technology 310014 Hangzhou P. R. China
| | - Xing Zhang
- State Key Laboratory Breeding Base of Green Chemistry‐Synthesis Technology Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province Zhejiang University of Technology 310014 Hangzhou P. R. China
| | - Li‐Sha Huang
- State Key Laboratory Breeding Base of Green Chemistry‐Synthesis Technology Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province Zhejiang University of Technology 310014 Hangzhou P. R. China
| | - Zhong‐Yang Xu
- State Key Laboratory Breeding Base of Green Chemistry‐Synthesis Technology Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province Zhejiang University of Technology 310014 Hangzhou P. R. China
| | - Zhan‐Yu Zhou
- State Key Laboratory Breeding Base of Green Chemistry‐Synthesis Technology Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province Zhejiang University of Technology 310014 Hangzhou P. R. China
| | - Dan‐Qian Xu
- State Key Laboratory Breeding Base of Green Chemistry‐Synthesis Technology Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province Zhejiang University of Technology 310014 Hangzhou P. R. China
| | - Xiao‐Hua Du
- State Key Laboratory Breeding Base of Green Chemistry‐Synthesis Technology Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province Zhejiang University of Technology 310014 Hangzhou P. R. China
| |
Collapse
|
22
|
Jaiswal MK, Kumar R, Singh S, Jain S, Vanka K, Singh RP. The Vinylogous Michael Addition of 3‐Alkylidene‐2‐oxindoles to β,γ‐Unsaturated α‐Keto Esters by Bifunctional Cinchona Alkaloids. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Manish K. Jaiswal
- Department of Chemistry Indian Institute of Technology‐Delhi Hauz Khas 110016 New Delhi India
| | - Rajesh Kumar
- Department of Chemistry Indian Institute of Technology‐Delhi Hauz Khas 110016 New Delhi India
| | - Sanjay Singh
- Department of Chemistry Indian Institute of Technology‐Delhi Hauz Khas 110016 New Delhi India
| | - Shailija Jain
- Physical and Materials Chemistry Division National Chemical Laboratory Dr. Homi Bhabha Road 411008 Pune India
| | - Kumar Vanka
- Physical and Materials Chemistry Division National Chemical Laboratory Dr. Homi Bhabha Road 411008 Pune India
| | - Ravi P. Singh
- Department of Chemistry Indian Institute of Technology‐Delhi Hauz Khas 110016 New Delhi India
| |
Collapse
|
23
|
Pawar TJ, Mitkari SB, Peña‐Cabrera E, Villegas Gómez C, Cruz Cruz D. Polyenals and Polyenones in Aminocatalysis: A Decade Building Complex Frameworks from Simple Blocks. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tushar Janardan Pawar
- Departamento de Química División de Ciencias Naturales y Exactas Universidad de Guanajuato Noria Alta S/N 36050 Guanajuato Gto México
| | - Suhas Balasaheb Mitkari
- Departamento de Química División de Ciencias Naturales y Exactas Universidad de Guanajuato Noria Alta S/N 36050 Guanajuato Gto México
| | - Eduardo Peña‐Cabrera
- Departamento de Química División de Ciencias Naturales y Exactas Universidad de Guanajuato Noria Alta S/N 36050 Guanajuato Gto México
| | - Clarisa Villegas Gómez
- Departamento de Química División de Ciencias Naturales y Exactas Universidad de Guanajuato Noria Alta S/N 36050 Guanajuato Gto México
| | - David Cruz Cruz
- Departamento de Química División de Ciencias Naturales y Exactas Universidad de Guanajuato Noria Alta S/N 36050 Guanajuato Gto México
| |
Collapse
|
24
|
Wang M, Tseng P, Chi W, Suresh S, Edukondalu A, Chen Y, Lin W. Diversity‐Oriented Synthesis of Spirocyclohexene Indane‐1,3‐diones and Coumarin‐Fused Cyclopentanes via an Organobase‐Controlled Cascade Reaction. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Min Wang
- Department of ChemistryNational Taiwan Normal University, 88, Sec. 4 Tingchow Road Taipei 11677 Taiwan
| | - Ping‐Yao Tseng
- Department of ChemistryNational Taiwan Normal University, 88, Sec. 4 Tingchow Road Taipei 11677 Taiwan
| | - Woei‐Jye Chi
- Department of ChemistryNational Taiwan Normal University, 88, Sec. 4 Tingchow Road Taipei 11677 Taiwan
| | - Sundaram Suresh
- Department of ChemistryNational Taiwan Normal University, 88, Sec. 4 Tingchow Road Taipei 11677 Taiwan
| | - Athukuri Edukondalu
- Department of ChemistryNational Taiwan Normal University, 88, Sec. 4 Tingchow Road Taipei 11677 Taiwan
| | - Yi‐Ru Chen
- Department of ChemistryNational Taiwan Normal University, 88, Sec. 4 Tingchow Road Taipei 11677 Taiwan
| | - Wenwei Lin
- Department of ChemistryNational Taiwan Normal University, 88, Sec. 4 Tingchow Road Taipei 11677 Taiwan
| |
Collapse
|
25
|
Stereoselective synthesis of δ-amino-α,β,γ,δ-unsaturated cycloketones via Mannich-type reaction. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Curti C, Battistini L, Sartori A, Zanardi F. New Developments of the Principle of Vinylogy as Applied to π-Extended Enolate-Type Donor Systems. Chem Rev 2020; 120:2448-2612. [PMID: 32040305 PMCID: PMC7993750 DOI: 10.1021/acs.chemrev.9b00481] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 12/19/2022]
Abstract
The principle of vinylogy states that the electronic effects of a functional group in a molecule are possibly transmitted to a distal position through interposed conjugated multiple bonds. As an emblematic case, the nucleophilic character of a π-extended enolate-type chain system may be relayed from the legitimate α-site to the vinylogous γ, ε, ..., ω remote carbon sites along the chain, provided that suitable HOMO-raising strategies are adopted to transform the unsaturated pronucleophilic precursors into the reactive polyenolate species. On the other hand, when "unnatural" carbonyl ipso-sites are activated as nucleophiles (umpolung), vinylogation extends the nucleophilic character to "unnatural" β, δ, ... remote sites. Merging the principle of vinylogy with activation modalities and concepts such as iminium ion/enamine organocatalysis, NHC-organocatalysis, cooperative organo/metal catalysis, bifunctional organocatalysis, dicyanoalkylidene activation, and organocascade reactions represents an impressive step forward for all vinylogous transformations. This review article celebrates this evolutionary progress, by collecting, comparing, and critically describing the achievements made over the nine year period 2010-2018, in the generation of vinylogous enolate-type donor substrates and their use in chemical synthesis.
Collapse
Affiliation(s)
| | | | | | - Franca Zanardi
- Dipartimento di Scienze degli
Alimenti e del Farmaco, Università
di Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy
| |
Collapse
|
27
|
Remote regioselective organocatalytic asymmetric [3+2] cycloaddition of N-2,2,2-trifluoroethyl isatin ketimines with cyclic 2,4-dienones. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Torán R, Vila C, Sanz-Marco A, Muñoz MC, Pedro JR, Blay G. Organocatalytic Enantioselective 1,6-aza
-Michael Addition of Isoxazolin-5-ones to p
-Quinone Methides. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901907] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ricardo Torán
- Departament de Química Orgànica; Universitat de València; C/ Dr. Moliner 50 46100 Burjassot (València) Spain
| | - Carlos Vila
- Departament de Química Orgànica; Universitat de València; C/ Dr. Moliner 50 46100 Burjassot (València) Spain
| | - Amparo Sanz-Marco
- Departament de Química Orgànica; Universitat de València; C/ Dr. Moliner 50 46100 Burjassot (València) Spain
| | - M. Carmen Muñoz
- Departament de Física Aplicada; Universitat Politècnica de València; 46071 València Spain
| | - José R. Pedro
- Departament de Química Orgànica; Universitat de València; C/ Dr. Moliner 50 46100 Burjassot (València) Spain
| | - Gonzalo Blay
- Departament de Química Orgànica; Universitat de València; C/ Dr. Moliner 50 46100 Burjassot (València) Spain
| |
Collapse
|
29
|
Romaniszyn M, Sieroń L, Albrecht Ł. Asymmetric vinylogous Michael addition of 5-substituted-furan-2(3H)-ones to an α,β-unsaturated-γ-lactam. Org Biomol Chem 2020; 18:8633-8637. [DOI: 10.1039/d0ob01750g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric vinylogous Michael addition involving an α,β-unsaturated-γ-lactam as an acceptor is described.
Collapse
Affiliation(s)
- Marta Romaniszyn
- Institute of Organic Chemistry
- Faculty of Chemistry
- Lodz University of Technology
- 90-924 Łódź
- Poland
| | - Lesław Sieroń
- Institute of General and Ecological Chemistry
- Faculty of Chemistry
- Lodz University of Technology
- 90-924 Łódź
- Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry
- Faculty of Chemistry
- Lodz University of Technology
- 90-924 Łódź
- Poland
| |
Collapse
|
30
|
Lu M, Li H, Zou C, Li J, Liu C, Sun M, Ma Y, Cheng R, Ye J. Primary amine catalyzed diastereo- and enantioselective Michael reaction of thiazolones and α,β-unsaturated ketones. Org Biomol Chem 2019; 17:9305-9312. [PMID: 31633136 DOI: 10.1039/c9ob02067e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The chiral primary amine catalyzed asymmetric Michael reaction of thiazolones and α,β-unsaturated ketones was reported. Two different optimal catalytic systems were obtained corresponding to cyclic and linear α,β-unsaturated ketones. By employing chiral primary amines as the catalysts and amino-acid derivatives as the additives, a variety of Michael adducts containing the scaffold of the thiazole ring were prepared in moderate to good yields and with excellent diastereo- and enantioselectivities (up to 95% yield, all up to >19/1 dr, up to 96% ee). The reaction was scaled up to obtain 1.73 grams of the Michael adduct with the maintenance of yield and stereoselectivity.
Collapse
Affiliation(s)
- Min Lu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gao XY, Yan RJ, Xiao BX, Du W, Albrecht Ł, Chen YC. Asymmetric Formal Vinylogous Iminium Ion Activation for Vinyl-Substituted Heteroaryl and Aryl Aldehydes. Org Lett 2019; 21:9628-9632. [PMID: 31762285 DOI: 10.1021/acs.orglett.9b03794] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xin-Yue Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ru-Jie Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ben-Xian Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Łukasz Albrecht
- Institute of Organic Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
32
|
Pan GF, Zhang XL, Zhu XQ, Guo RL, Wang YQ. Synthesis of (E,E)-Dienones and (E,E)-Dienals via Palladium-Catalyzed γ,δ-Dehydrogenation of Enones and Enals. iScience 2019; 20:229-236. [PMID: 31590075 PMCID: PMC6817633 DOI: 10.1016/j.isci.2019.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 11/30/2022] Open
Abstract
A new strategy for the synthesis of conjugated (E,E)-dienones and (E,E)-dienals via a palladium-catalyzed aerobic γ,δ-dehydrogenation of enones and enals has been developed. The method can be employed in the direct and efficient synthesis of various (E,E)-dienones and (E,E)-dienals, including non-substituted α-, β-, and γ- and/or δ-substituted (E,E)-dienones and (E,E)-dienals. The protocol is featured by the ready accessibility and elaboration of the starting materials, good functional group compatibility, and mild reaction conditions. Furthermore, the reaction is of complete E,E-stereoselectivity and uses molecular oxygen as the sole clean oxidant.
Collapse
Affiliation(s)
- Gao-Fei Pan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xing-Long Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xue-Qing Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Rui-Li Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| |
Collapse
|
33
|
Feng KX, Shen QY, Zheng YY, Xia AB, Zhou ZY, Tang CK, Zhong AG, Xu DQ, Du XH. Aminocatalytic Enantioselective 1, 6-Addition of (Nitromethyl)benzenes to α, β, γ, δ-Cyclic Dienones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kai-Xiang Feng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Qiao-Yu Shen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Ya-Yun Zheng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Ai-Bao Xia
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Zhan-Yu Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Cheng-Ke Tang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Ai-Guo Zhong
- Department of Pharmaceutical and Chemical Engineering; Taizhou College; 317000 Linhai Zhejiang China
| | - Dan-Qian Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Xiao-Hua Du
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| |
Collapse
|
34
|
Mondal B, Balha M, Pan SC. Organocatalytic asymmetric spirocyclization reactions of cyclic 2,4-dienones with cyanoketones: synthesis of spiro-dihydropyrano cyclohexanones. Org Biomol Chem 2019; 17:7849-7853. [PMID: 31393510 DOI: 10.1039/c9ob01415b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The first organocatalytic asymmetric synthesis of spiro-dihydropyrano cyclohexanones has been developed via the cascade reaction between cyanoketones and cyclic 2,4-dienones. A cinchona alkaloid-derived bifunctional primary amine catalyst in combination with N-Boc-tleucine was found to be the most effective for this spirocyclization reaction and provided the desired products in moderate to good yields with high enantioselectivities.
Collapse
Affiliation(s)
- Buddhadeb Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, India.
| | | | | |
Collapse
|
35
|
Wang ZH, Zhang XY, You Y, Zhao JQ, Zhou MQ, Zhang XM, Xu XY, Yuan WC. Efficient construction of polycyclic chromans through 4-methylbenzenesulfonic acid mediated domino 1,6-addition/oxa-Mannich reaction of ortho-hydroxyphenyl substituted para-quinone methides and cyclic enamides. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Zhukovsky D, Dar'in D, Kantin G, Krasavin M. Synthetic Exploration of α-Diazo γ-Butyrolactams. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Daniil Zhukovsky
- Saint Petersburg State University; 199034 Saint Petersburg Russian Federation
| | - Dmitry Dar'in
- Saint Petersburg State University; 199034 Saint Petersburg Russian Federation
| | - Grigory Kantin
- Saint Petersburg State University; 199034 Saint Petersburg Russian Federation
| | - Mikhail Krasavin
- Saint Petersburg State University; 199034 Saint Petersburg Russian Federation
| |
Collapse
|
37
|
Harish B, Subbireddy M, Obulesu O, Suresh S. One-Pot Allylation-Intramolecular Vinylogous Michael Addition-Isomerization Cascade of o-Hydroxycinnamates and Congeners: Synthesis of Substituted Benzofuran Derivatives. Org Lett 2019; 21:1823-1827. [PMID: 30835484 DOI: 10.1021/acs.orglett.9b00414] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A unique intramolecular vinylogous Michael addition leading to the synthesis of heterocycles has been disclosed. Base-promoted one-pot sequential O-allylation of o-hydroxy-cinnamates or -cinnamonitrile or -chalcones with γ-bromocrotonates followed by an intramolecular conjugate addition of vinylogous Michael donors resulted in the formation of highly substituted benzofuran derivatives in good to excellent yields. The intramolecular event followed by two [1,3]-H shifts leading to aromatization appears to be the key to the success of this unprecedented transformation.
Collapse
Affiliation(s)
- Battu Harish
- Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology (CSIR-IICT) , Hyderabad 500 007 , India.,Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | - Manyam Subbireddy
- Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology (CSIR-IICT) , Hyderabad 500 007 , India
| | - Owk Obulesu
- Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology (CSIR-IICT) , Hyderabad 500 007 , India.,Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | - Surisetti Suresh
- Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology (CSIR-IICT) , Hyderabad 500 007 , India.,Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| |
Collapse
|
38
|
Sugano G, Kawada K, Shigeta M, Hata T, Urabe H. Iron-catalyzed δ-selective conjugate addition of methyl and cyclopropyl Grignard reagents to α,β,γ,δ-unsaturated esters and amides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.12.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Song T, Arseniyadis S, Cossy J. Asymmetric Synthesis of α-Quaternary γ-Lactams through Palladium-Catalyzed Asymmetric Allylic Alkylation. Org Lett 2019; 21:603-607. [DOI: 10.1021/acs.orglett.8b03613] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tao Song
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI), ESPCI Paris/CNRS/PSL Research University, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - Stellios Arseniyadis
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI), ESPCI Paris/CNRS/PSL Research University, 10 rue Vauquelin, 75231 Paris Cedex 05, France
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London, E1 4NS, U.K
| | - Janine Cossy
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI), ESPCI Paris/CNRS/PSL Research University, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| |
Collapse
|
40
|
Wang ZH, Lei CW, Zhang XY, You Y, Zhao JQ, Yuan WC. Asymmetric domino 1,6-addition/annulation reaction of 3-cyano-4-alkenyl-2H-chromen-2-ones with isatin-derived MBH carbonates: enantioselective synthesis of 3,3′-cyclopentenylspirooxindoles bearing 2H-chromen-2-ones. Org Chem Front 2019. [DOI: 10.1039/c9qo00890j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An asymmetric domino 1,6-addition/annulation reaction of 3-cyano-4-alkenyl-2H-chromen-2-ones with isatin-derived MBH carbonates was achieved by using a modified cinchona alkaloid as a catalyst.
Collapse
Affiliation(s)
- Zhen-Hua Wang
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Chuan-Wen Lei
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Xia-Yan Zhang
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Yong You
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Jian-Qiang Zhao
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Wei-Cheng Yuan
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
- National Engineering Research Center of Chiral Drugs
| |
Collapse
|
41
|
Li SW, Du Y, Kang Q. A chiral-at-metal asymmetric catalyzed vinylogous Michael addition of ortho-methyl aromatic nitro compounds for isoxazole derivative synthesis. Org Chem Front 2019. [DOI: 10.1039/c9qo00676a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A chiral-at-metal rhodium(iii) complex catalyzed asymmetric vinylogous Michael addition of 5-methyl 4-nitroisoxazoles with α,β-unsaturated 2-acyl imidazoles has been developed, delivering the corresponding adducts with up to 96% yield and 97% ee.
Collapse
Affiliation(s)
- Shi-Wu Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Yu Du
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Qiang Kang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| |
Collapse
|
42
|
Huang H, Lu X, Mao Y, Ye J. Asymmetric synthesis of highly functionalized furanones via direct Michael reactions mediated by a bulky primary amine. Org Chem Front 2019. [DOI: 10.1039/c8qo01132j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A bulky chiral primary amine catalyzed Michael reaction of 3(2H)-furanones has been realized, leading to the construction of substituted furanone derivatives.
Collapse
Affiliation(s)
- Huicai Huang
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Xue Lu
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Yukang Mao
- Research Center of Chinese Herbal Resource Science and Engineering
- Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine)
- Ministry of Education
- Guangzhou
- P. R. China
| | - Jinxing Ye
- Engineering Research Centre of Pharmaceutical Process Chemistry
- Ministry of Education
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|
43
|
Yang SM, Karanam P, Wang M, Jang YJ, Yeh YS, Tseng PY, Ganapuram MR, Liou YC, Lin W. A vinylogous Michael addition-triggered quadruple cascade reaction for the enantioselective generation of multiple quaternary stereocenters. Chem Commun (Camb) 2019; 55:1398-1401. [DOI: 10.1039/c8cc09219b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An efficient organocatalytic vinylogous Michael addition-triggered quadruple cascade reaction resulting in fused spiroxindoles bearing multiple quaternary stereocenters is demonstrated from β-trifluoroacetylarylidene indanediones and 3-alkylideneoxindoles.
Collapse
Affiliation(s)
- Shu-Mei Yang
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Republic of China
| | - Praneeth Karanam
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Republic of China
| | - Min Wang
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Republic of China
| | - Yeong-Jiunn Jang
- Chinese Medicine Research and Development Center
- China Medical University Hospital
- Taichung 40447
- Republic of China
| | - Yu-Sheng Yeh
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Republic of China
| | - Ping-Yao Tseng
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Republic of China
| | | | - Yan-Cheng Liou
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Republic of China
| | - Wenwei Lin
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Republic of China
| |
Collapse
|
44
|
Cheng WF, Chen LY, Xu FF, Lin WY, Ren X, Li Y. Organocatalytic asymmetric Michael addition between 3-subsituted oxindoles and enals catalyzed by camphor sulfonyl hydrazine. Org Biomol Chem 2019; 17:885-891. [DOI: 10.1039/c8ob02934b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
3,3-Disubstituted oxindoles containing vicinal stereogenic carbon centers have been synthesized through organocatalytic asymmetric Michael addition between 3-substituted oxindoles and enals catalyzed by chiral camphor sulfonyl hydrazines (CaSHs).
Collapse
Affiliation(s)
- Wen-Fu Cheng
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Ling-Yan Chen
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Fang-Fang Xu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Wei-Yu Lin
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Xinfeng Ren
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Ya Li
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| |
Collapse
|
45
|
Wang ZH, Zhang XY, Lei CW, Zhao JQ, You Y, Yuan WC. Highly enantioselective sequential vinylogous aldol reaction/transesterification of methyl-substituted olefinic butyrolactones with isatins for the construction of chiral spirocyclic oxindole-dihydropyranones. Chem Commun (Camb) 2019; 55:9327-9330. [DOI: 10.1039/c9cc04427b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A highly stereoselective sequential vinylogous aldol reaction/transesterification of methyl-substituted olefinic butyrolactones and isatins was developed with 10 mol% Takemoto's amine–thiourea catalyst.
Collapse
Affiliation(s)
- Zhen-Hua Wang
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Xia-Yan Zhang
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Chuan-Wen Lei
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Jian-Qiang Zhao
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Yong You
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Wei-Cheng Yuan
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
- National Engineering Research Center of Chiral Drugs
| |
Collapse
|
46
|
|
47
|
Zhong Y, Hong S, Cai Z, Ma S, Jiang X. Direct β-selectivity of α,β-unsaturated γ-butyrolactam for asymmetric conjugate additions in an organocatalytic manner. RSC Adv 2018; 8:28874-28878. [PMID: 35548007 PMCID: PMC9084493 DOI: 10.1039/c8ra05264f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/05/2018] [Indexed: 01/06/2023] Open
Abstract
The β-selective asymmetric addition of γ-butyrolactam with cyclic imino esters catalyzed by a bifunctional chiral tertiary amine has been developed, which provides an efficient access to optically active β-position functionalized pyrrolidin-2-one derivatives in both high yield and enantioselectivity (up to 78% yield and 95 : 5 er). This is the first catalytic method to access chiral β-functionalized pyrrolidin-2-one via a direct organocatalytic approach.
Collapse
Affiliation(s)
- Yuan Zhong
- School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Sihua Hong
- School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhengjun Cai
- School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Shixiong Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
48
|
Li Z, Song W. Regiospecific 1,4-Michael Addition of Phenylacetonitrile to 1,5-Diarylpenta-2,4-Dien-1-Ones. JOURNAL OF CHEMICAL RESEARCH 2018. [DOI: 10.3184/174751918x15314820245660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The regiospecific 1,4-Michael addition of phenylacetonitrile to (2E,4E)-1,5-diarylpenta-2,4-dien-1-ones produced 12 novel (E)-3-(2-oxo-2-arylethyl)-2,5-diarylpent-4-enenitriles in 77-88% yield. The advantages of the method are broad substrate scope, mild conditions, good to high yields and high selectivity. The method can also be extended to a gram scale.
Collapse
Affiliation(s)
- Zheng Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Wenli Song
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| |
Collapse
|
49
|
Reddy VR, Maripally N, Mutyala R, Nanubolu JB, Chandra R. DMAP catalysed vinylogous Rauhut–Currier reaction of allenoates with para -quinone methides. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.05.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Sharma V, Bhardwaj VK, Chimni SS. Stereoselective Organocatalytic Synthesis of
γ,γ‐
Disubstituted Butenolides. ChemistrySelect 2018. [DOI: 10.1002/slct.201801217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vivek Sharma
- Department of ChemistryU.G.C. Centre of Advanced StudiesGuru Nanak Dev University Amritsar 143005 India
| | - Vimal K. Bhardwaj
- Department of ChemistryIndian Institute of Technology Ropar Nangal Road Rupnagar 140001 India
| | - Swapandeep S. Chimni
- Department of ChemistryU.G.C. Centre of Advanced StudiesGuru Nanak Dev University Amritsar 143005 India
| |
Collapse
|