1
|
Das S, Nag A. Tetrazine cyclized peptides for one-bead-one-compound library: Synthesis and sequencing. Methods Enzymol 2024; 698:141-167. [PMID: 38886030 DOI: 10.1016/bs.mie.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
While most FDA-approved peptide drugs are cyclic, robust cyclization chemistry of peptides and the deconvolution of the cyclic peptide sequences using tandem mass spectrometry render cyclic peptide drug discovery difficult. In this chapter, the protocol for the successful synthesis of tetrazine-linked cyclic peptide library in solid phase, which shows both robust cyclization and easy sequence deconvolution, is described. The protocol for the linearization and cleavage of cyclic peptides from the solid phase by simple UV light irradiation, followed by accurate sequencing using tandem mass spectrometry, is described. We describe the troubleshooting for this dithiol bis-arylation reaction and for the successful cleavage of the aryl cyclic peptide into linear form. This method for efficient solid-phase macrocyclization can be used for the rapid production of loop-based peptides and screening for inhibition of protein-protein interactions, by using the covalent inverse electron-demand Diels Alder reaction to supplement the non-covalent interaction between a protein and its peptide binder, isolating highly selective peptides in the process.
Collapse
Affiliation(s)
- Samir Das
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States
| | - Arundhati Nag
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States.
| |
Collapse
|
2
|
Chen Z, Lim YW, Neo JY, Ting Chan RS, Koh LQ, Yuen TY, Lim YH, Johannes CW, Gates ZP. De Novo Sequencing of Synthetic Bis-cysteine Peptide Macrocycles Enabled by "Chemical Linearization" of Compound Mixtures. Anal Chem 2023; 95:14870-14878. [PMID: 37724843 PMCID: PMC10569172 DOI: 10.1021/acs.analchem.3c01742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
A "chemical linearization" approach was applied to synthetic peptide macrocycles to enable their de novo sequencing from mixtures using nanoliquid chromatography-tandem mass spectrometry (nLC-MS/MS). This approach─previously applied to individual macrocycles but not to mixtures─involves cleavage of the peptide backbone at a defined position to give a product capable of generating sequence-determining fragment ions. Here, we first established the compatibility of "chemical linearization" by Edman degradation with a prominent macrocycle scaffold based on bis-Cys peptides cross-linked with the m-xylene linker, which are of major significance in therapeutics discovery. Then, using macrocycle libraries of known sequence composition, the ability to recover accurate de novo assignments to linearized products was critically tested using performance metrics unique to mixtures. Significantly, we show that linearized macrocycles can be sequenced with lower recall compared to linear peptides but with similar accuracy, which establishes the potential of using "chemical linearization" with synthetic libraries and selection procedures that yield compound mixtures. Sodiated precursor ions were identified as a significant source of high-scoring but inaccurate assignments, with potential implications for improving automated de novo sequencing more generally.
Collapse
Affiliation(s)
- Zhi’ang Chen
- Institute
of Molecular and Cell Biology (IMCB), Agency
for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros, Singapore 138665, Republic
of Singapore
| | - Yi Wee Lim
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros, Singapore 138665, Republic
of Singapore
| | - Jin Yong Neo
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros, Singapore 138665, Republic
of Singapore
| | - Rachel Shu Ting Chan
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros, Singapore 138665, Republic
of Singapore
| | - Li Quan Koh
- Institute
of Molecular and Cell Biology (IMCB), Agency
for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros, Singapore 138665, Republic
of Singapore
| | - Tsz Ying Yuen
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros, Singapore 138665, Republic
of Singapore
| | - Yee Hwee Lim
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros, Singapore 138665, Republic
of Singapore
| | - Charles W. Johannes
- Institute
of Molecular and Cell Biology (IMCB), Agency
for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Zachary P. Gates
- Institute
of Molecular and Cell Biology (IMCB), Agency
for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE), Agency for Science, Technology
and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros, Singapore 138665, Republic
of Singapore
| |
Collapse
|
3
|
Nag A, Mafi A, Das S, Yu MB, Alvarez-Villalonga B, Kim SK, Su Y, Goddard WA, Heath JR. Stereochemical engineering yields a multifunctional peptide macrocycle inhibitor of Akt2 by fine-tuning macrocycle-cell membrane interactions. Commun Chem 2023; 6:95. [PMID: 37202473 DOI: 10.1038/s42004-023-00890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/26/2023] [Indexed: 05/20/2023] Open
Abstract
Macrocycle peptides are promising constructs for imaging and inhibiting extracellular, and cell membrane proteins, but their use for targeting intracellular proteins is typically limited by poor cell penetration. We report the development of a cell-penetrant high-affinity peptide ligand targeted to the phosphorylated Ser474 epitope of the (active) Akt2 kinase. This peptide can function as an allosteric inhibitor, an immunoprecipitation reagent, and a live cell immunohistochemical staining reagent. Two cell penetrant stereoisomers were prepared and shown to exhibit similar target binding affinities and hydrophobic character but 2-3-fold different rates of cell penetration. Experimental and computational studies resolved that the ligands' difference in cell penetration could be assigned to their differential interactions with cholesterol in the membrane. These results expand the tool kit for designing new chiral-based cell-penetrant ligands.
Collapse
Affiliation(s)
- Arundhati Nag
- California Institute of Technology, Pasadena, CA, USA
- Clark University, Worcester, MA, USA
| | - Amirhossein Mafi
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, CA, USA
| | - Samir Das
- California Institute of Technology, Pasadena, CA, USA
- Clark University, Worcester, MA, USA
| | - Mary Beth Yu
- California Institute of Technology, Pasadena, CA, USA
| | | | - Soo-Kyung Kim
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, CA, USA
| | - Yapeng Su
- California Institute of Technology, Pasadena, CA, USA
- Institute for Systems Biology, Seattle, WA, USA
| | - William A Goddard
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, CA, USA
| | - James R Heath
- California Institute of Technology, Pasadena, CA, USA.
- Institute for Systems Biology, Seattle, WA, USA.
| |
Collapse
|
4
|
Borges A, Nguyen C, Letendre M, Onasenko I, Kandler R, Nguyen NK, Chen J, Allakhverdova T, Atkinson E, DiChiara B, Wang C, Petler N, Patel H, Nanavati D, Das S, Nag A. Facile de Novo Sequencing of Tetrazine-Cyclized Peptides through UV-Induced Ring-Opening and Cleavage from the Solid Phase. Chembiochem 2023; 24:e202200590. [PMID: 36471561 PMCID: PMC10099459 DOI: 10.1002/cbic.202200590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
While most FDA-approved peptide drugs are cyclic, the robust cyclization chemistry of peptides and the deconvolution of cyclic peptide sequences by using tandem mass spectrometry render cyclic peptide drug discovery difficult. Here we present the successful design of cyclic peptides on solid phase that addresses both of these problems. We demonstrate that this peptide cyclization method using dichloro-s-tetrazine on solid phase allows successful cyclization of a panel of random peptide sequences with various charges and hydrophobicities. The cyclic peptides can be linearized and cleaved from the solid phase by simple UV light irradiation, and we demonstrate that accurate sequence information can be obtained for the UV-cleaved linearized peptides by using tandem mass spectrometry. The tetrazine linker used in the cyclic peptides can further be explored for inverse electron-demand Diels-Alder (IEDDA) reactions for screening or bioconjugation applications in the future.
Collapse
Affiliation(s)
- Ariane Borges
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Chi Nguyen
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Madison Letendre
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Iryna Onasenko
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Rene Kandler
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Ngoc K Nguyen
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Jue Chen
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Tamara Allakhverdova
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Emily Atkinson
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Bella DiChiara
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Caroline Wang
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Noa Petler
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Henna Patel
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Dhaval Nanavati
- Global Protein Sciences, AbbVie Bioresearch Center, 100 Research Dr, 01605, Worcester, MA, USA
| | - Samir Das
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| | - Arundhati Nag
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, 01610, Worcester, MA, USA
| |
Collapse
|
5
|
Zhang Y, Guo J, Cheng J, Zhang Z, Kang F, Wu X, Chu Q. High-Throughput Screening of Stapled Helical Peptides in Drug Discovery. J Med Chem 2023; 66:95-106. [PMID: 36580278 DOI: 10.1021/acs.jmedchem.2c01541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Therapeutic peptides have revolutionized treatment for a number of human diseases. In particular, the past two decades have witnessed rapid progress of stapled helical peptides in drug discovery. Stapled helical peptides are chemically modified and constrained in their bioactive α-helical conformation. Compared to unstabilized linear peptides, stapled helical peptides exhibit superior binding affinity and selectivity, enhanced membrane permeability, and improved metabolic stability, presenting exciting promise for targeting otherwise challenging protein-protein interfaces. In this Perspective, we summarize recent applications of high-throughput screening technologies for identification of potent stapled helical peptides with optimized binding properties. We expect to provide a broad reference to accelerate the development of stapled helical peptides as the next generation of therapeutic peptides for various human diseases.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiabei Guo
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Zhenghua Zhang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Fenghua Kang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xiaoxing Wu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qian Chu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Hampton JT, Lalonde TJ, Tharp JM, Kurra Y, Alugubelli YR, Roundy CM, Hamer GL, Xu S, Liu WR. Novel Regioselective Approach to Cyclize Phage-Displayed Peptides in Combination with Epitope-Directed Selection to Identify a Potent Neutralizing Macrocyclic Peptide for SARS-CoV-2. ACS Chem Biol 2022; 17:2911-2922. [PMID: 36174018 PMCID: PMC9528030 DOI: 10.1021/acschembio.2c00565] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/19/2022] [Indexed: 01/20/2023]
Abstract
Using the regioselective cyanobenzothiazole condensation reaction with an N-terminal cysteine and the chloroacetamide reaction with an internal cysteine, a phage-displayed macrocyclic 12-mer peptide library was constructed and subsequently validated. Using this library in combination with iterative selections against two epitopes from the receptor binding domain (RBD) of the novel severe acute respiratory syndrome virus 2 (SARS-CoV-2) Spike protein, macrocyclic peptides that strongly inhibit the interaction between the Spike RBD and angiotensin-converting enzyme 2 (ACE2), the human host receptor of SARS-CoV-2, were identified. The two epitopes were used instead of the Spike RBD to avoid selection of nonproductive macrocyclic peptides that bind RBD but do not directly inhibit its interactions with ACE2. Antiviral tests against SARS-CoV-2 showed that one macrocyclic peptide is highly potent against viral reproduction in Vero E6 cells with an EC50 value of 3.1 μM. The AlphaLISA-detected IC50 value for this macrocyclic peptide was 0.3 μM. The current study demonstrates that two kinetically controlled reactions toward N-terminal and internal cysteines, respectively, are highly effective in the construction of phage-displayed macrocyclic peptides, and the selection based on the SARS-CoV-2 Spike epitopes is a promising methodology in the identification of peptidyl antivirals.
Collapse
Affiliation(s)
- J. Trae Hampton
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Tyler J. Lalonde
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Jeffery M. Tharp
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Yadagiri Kurra
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Yugendar R. Alugubelli
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Shiqing Xu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Wenshe Ray Liu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Li X, Craven TW, Levine PM. Cyclic Peptide Screening Methods for Preclinical Drug Discovery. J Med Chem 2022; 65:11913-11926. [PMID: 36074956 DOI: 10.1021/acs.jmedchem.2c01077] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclic peptides are among the most diverse architectures for current drug discovery efforts. Their size, stability, and ease of synthesis provide attractive scaffolds to engage and modulate some of the most challenging targets, including protein-protein interactions and those considered to be "undruggable". With a variety of sophisticated screening technologies to produce libraries of cyclic peptides, including phage display, mRNA display, split intein circular ligation of peptides, and in silico screening, a new era of cyclic peptide drug discovery is at the forefront of modern medicine. In this perspective, we begin by discussing cyclic peptides approved for clinical use in the past two decades. Particular focus is placed around synthetic chemistries to generate de novo libraries of cyclic peptides and novel methods to screen them. The perspective culminates with future prospects for generating cyclic peptides as viable therapeutic options and discusses the advantages and disadvantages currently being faced with bringing them to market.
Collapse
Affiliation(s)
- Xinting Li
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Timothy W Craven
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Paul M Levine
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
8
|
Binding Characterization of Cyclic Peptide Ligands to Target Proteins and Chemical Epitopes Using ELISA and Fluorescence Polarization Assays. Methods Mol Biol 2021; 2371:335-354. [PMID: 34596857 DOI: 10.1007/978-1-0716-1689-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Enzyme-linked immunosorbent assay (ELISA) is a plate-based immunological assay designed to detect and quantify peptides, proteins, antibodies, and hormones. Fluorescence polarization (FP) is a solution-phase technique that can be used to determine equilibrium dissociation constant of ligand for the protein of interest. Here we describe the protocols for different ELISAs and for Fluorescence Polarization, and how they can be used to determine relative or absolute binding of macrocyclic peptides to the target proteins. In ELISA, the target protein is used as the antigen, and the binding of antigen is quantified using cyclic peptides and enzyme-linked antibodies. In Fluorescence Polarization assays, a cyclic ligand is fluorescent dye-labeled and titrated with serial concentrations of the non-labeled target protein to determine the equilibrium dissociation constant (KD) of ligand for protein. Detailed descriptions of sample preparation and the ELISA and FP experiments are provided in this chapter.
Collapse
|
9
|
Protein Catalyzed Capture (PCC) Agents for Antigen Targeting. Methods Mol Biol 2021. [PMID: 34596849 DOI: 10.1007/978-1-0716-1689-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The protein catalyzed capture agent (PCC) method is a powerful combinatorial screening strategy for discovering synthetic macrocyclic peptide ligands, called PCCs, to designated protein epitopes. The foundational concept of the PCC method is the use of in situ click chemistry to survey large combinatorial libraries of peptides for ligands to designated biological targets. State-of-the-art PCC screens integrate synthetic libraries of constrained macrocyclic peptides with epitope-specific targeting strategies to identify high-affinity (<100 nM) binders de novo. Automated instrumentation can accelerate PCC discovery to a rapid 2-week timeframe. Here, we describe methods to perform combinatorial screens that yield epitope-targeted PCCs.
Collapse
|
10
|
Narayanam MK, Lai BT, Loredo JM, Wilson JA, Eliasen AM, LaBerge NA, Nason M, Cantu AL, Luton BK, Xu S, Agnew HD, Murphy JM. Positron Emission Tomography Tracer Design of Targeted Synthetic Peptides via 18F-Sydnone Alkyne Cycloaddition. Bioconjug Chem 2021; 32:2073-2082. [PMID: 34415731 DOI: 10.1021/acs.bioconjchem.1c00379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemically synthesized, small peptides that bind with high affinity and specificity to CD8-expressing (CD8+) tumor-infiltrating T cells, yet retain the desirable characteristics of small molecules, hold valuable potential for diagnostic molecular imaging of immune response. Here, we report the development of 18F-labeled peptides targeting human CD8α with nanomolar affinity via the strain-promoted sydnone-alkyne cycloaddition with 4-[18F]fluorophenyl sydnone. The 18F-sydnone is produced in one step, in high radiochemical yield, and the peptide labeling proceeds rapidly. A hydrophilic chemical linker results in a tracer with favorable pharmacokinetic properties and improved image contrast, as demonstrated by in vivo PET imaging studies.
Collapse
Affiliation(s)
- Maruthi Kumar Narayanam
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Bert T Lai
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | - Jacquie Malette Loredo
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | - Jeré A Wilson
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | - Anders M Eliasen
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | - Nicole A LaBerge
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | - Malley Nason
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | - Annabelle L Cantu
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | - Breanna K Luton
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | - Shili Xu
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Heather D Agnew
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | - Jennifer M Murphy
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Kandler R, Das S, Nag A. Copper-ligand clusters dictate size of cyclized peptide formed during alkyne-azide cycloaddition on solid support. RSC Adv 2021; 11:4842-4852. [PMID: 34377440 PMCID: PMC8351437 DOI: 10.1039/d0ra07491h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peptide and peptidomimetic cyclization by copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction have been used to mimic disulfide bonds, alpha helices, amide bonds, and for one-bead-one-compound (OBOC) library development. A limited number of solid-supported CuAAC cyclization methods resulting in monomeric cyclic peptide formation have been reported for specific peptide sequences, but there exists no general study on monocyclic peptide formation using CuAAC cyclization. Since several cyclic peptides identified from an OBOC CuAAC cyclized library has been shown to have important biological applications, we discuss here an efficient method of alkyne-azide 'click' catalyzed monomeric cyclic peptide formation on a solid support. The reason behind the efficiency of the method is explored. CuAAC cyclization of a peptide sequence with azidolysine and propargylglycine is performed under various reaction conditions, with different catalysts, in the presence or absence of an organic base. The results indicate that piperidine plays a critical role in the reaction yield and monomeric cycle formation by coordinating to Cu and forming Cu-ligand clusters. A previously synthesized copper compound containing piperidine, [Cu4I4(pip)4], is found to catalyze the CuAAC cyclization of monomeric peptide effectively. The use of 1.5 equivalents of CuI and the use of DMF as solvent is found to give optimal CuAAC cyclized monomer yields. The effect of the peptide sequence and peptide length on monomer formation are also investigated by varying either parameter systemically. Peptide length is identified as the determining factor for whether the monomeric or dimeric cyclic peptide is the major product. For peptides with six, seven, or eight amino acids, the monomer is the major product from CuAAC cyclization. Longer and shorter peptides on cyclization show less monomer formation. CuAAC peptide cyclization of non-optimal peptide lengths such as pentamers is affected significantly by the amino acid sequence and give lower yields.
Collapse
Affiliation(s)
- Rene Kandler
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Samir Das
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Arundhati Nag
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA
| |
Collapse
|
12
|
A synthetic mimic of phosphodiesterase type 5 based on corona phase molecular recognition of single-walled carbon nanotubes. Proc Natl Acad Sci U S A 2020; 117:26616-26625. [PMID: 33055208 DOI: 10.1073/pnas.1920352117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Molecular recognition binding sites that specifically identify a target molecule are essential for life science research, clinical diagnoses, and therapeutic development. Corona phase molecular recognition is a technique introduced to generate synthetic recognition at the surface of a nanoparticle corona, but it remains an important question whether such entities can achieve the specificity of natural enzymes and receptors. In this work, we generate and screen a library of 24 amphiphilic polymers, preselected for molecular recognition and based on functional monomers including methacrylic acid, acrylic acid, and styrene, iterating upon a poly(methacrylic acid-co-styrene) motif. When complexed to a single-walled carbon nanotube, some of the resulting corona phases demonstrate binding specificity remarkably similar to that of phosphodiesterase type 5 (PDE5), an enzyme that catalyzes the hydrolysis of secondary messenger. The corona phase binds selectively to a PDE5 inhibitor, Vardenafil, as well as its molecular variant, but not to other potential off-target inhibitors. Our work herein examines the specificity and sensitivity of polymer "mutations" to the corona phase, as well as direct competitions with the native binding PDE5. Using structure perturbation, corona surface characterization, and molecular dynamics simulations, we show that the molecular recognition is associated with the unique three-dimensional configuration of the corona phase formed at the nanotube surface. This work conclusively shows that corona phase molecular recognition can mimic key aspects of biological recognition sites and drug targets, opening up possibilities for pharmaceutical and biological applications.
Collapse
|
13
|
Sarkar P, Li Z, Ren W, Wang S, Shao S, Sun J, Ren X, Perkins NG, Guo Z, Chang CEA, Song J, Xue M. Inhibiting Matrix Metalloproteinase-2 Activation by Perturbing Protein-Protein Interactions Using a Cyclic Peptide. J Med Chem 2020; 63:6979-6990. [PMID: 32491863 DOI: 10.1021/acs.jmedchem.0c00180] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report on a cyclic peptide that inhibits matrix metalloproteinase-2 (MMP2) activation with a low-nM-level potency. This inhibitor specifically binds to the D570-A583 epitope on proMMP2 and interferes with the protein-protein interaction (PPI) between proMMP2 and tissue inhibitor of metalloproteinases-2 (TIMP2), thereby preventing the TIMP2-assisted proMMP2 activation process. We developed this cyclic peptide inhibitor through an epitope-targeted library screening process and validated its binding to proMMP2. Using a human melanoma cell line, we demonstrated the cyclic peptide's ability to modulate cellular MMP2 activities and inhibit cell migration. These results provide the first successful example of targeting the PPI between proMMP2 and TIMP2, confirming the feasibility of an MMP2 inhibition strategy that has been sought after for 2 decades.
Collapse
Affiliation(s)
- Priyanka Sarkar
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Zhonghan Li
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Wendan Ren
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Siwen Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Shiqun Shao
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Jianan Sun
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Nicole G Perkins
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Zhili Guo
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Min Xue
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
14
|
Idso MN, Akhade AS, Arrieta-Ortiz ML, Lai BT, Srinivas V, Hopkins JP, Gomes AO, Subramanian N, Baliga N, Heath JR. Antibody-recruiting protein-catalyzed capture agents to combat antibiotic-resistant bacteria. Chem Sci 2020; 11:3054-3067. [PMID: 34122810 PMCID: PMC8157486 DOI: 10.1039/c9sc04842a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antibiotic resistant infections are projected to cause over 10 million deaths by 2050, yet the development of new antibiotics has slowed. This points to an urgent need for methodologies for the rapid development of antibiotics against emerging drug resistant pathogens. We report on a generalizable combined computational and synthetic approach, called antibody-recruiting protein-catalyzed capture agents (AR-PCCs), to address this challenge. We applied the combinatorial protein catalyzed capture agent (PCC) technology to identify macrocyclic peptide ligands against highly conserved surface protein epitopes of carbapenem-resistant Klebsiella pneumoniae, an opportunistic Gram-negative pathogen with drug resistant strains. Multi-omic data combined with bioinformatic analyses identified epitopes of the highly expressed MrkA surface protein of K. pneumoniae for targeting in PCC screens. The top-performing ligand exhibited high-affinity (EC50 ∼50 nM) to full-length MrkA, and selectively bound to MrkA-expressing K. pneumoniae, but not to other pathogenic bacterial species. AR-PCCs that bear a hapten moiety promoted antibody recruitment to K. pneumoniae, leading to enhanced phagocytosis and phagocytic killing by macrophages. The rapid development of this highly targeted antibiotic implies that the integrated computational and synthetic toolkit described here can be used for the accelerated production of antibiotics against drug resistant bacteria.
Collapse
Affiliation(s)
- Matthew N Idso
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | | | | | - Bert T Lai
- Indi Molecular, Inc. 6162 Bristol Parkway Culver City CA 90230 USA
| | - Vivek Srinivas
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | - James P Hopkins
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | | | | | - Nitin Baliga
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | - James R Heath
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| |
Collapse
|
15
|
Borges A, Gillespie D, Nag A. Biological applications of amide and amino acid containing synthetic macrocycles. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1650178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ariane Borges
- Department of Chemistry, Clark University, Worcester, MA, USA
| | - Dylan Gillespie
- Department of Chemistry, Clark University, Worcester, MA, USA
| | - Arundhati Nag
- Department of Chemistry, Clark University, Worcester, MA, USA
| |
Collapse
|
16
|
Liang J, Bunck DN, Mishra A, Hong S, Idso MN, Heath JR. Inhibition of heme sequestration of histidine-rich protein 2 using multiple epitope-targeted peptides. J Pept Sci 2019; 25:e3203. [PMID: 31347248 DOI: 10.1002/psc.3203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
Abstract
Plasmodium falciparum is the most lethal species of malaria. In infected human red blood cells, P. falciparum digests hemoglobin as a nutrient source, liberating cytotoxic free heme in the process. Sequestration and subsequent conversion of this byproduct into hemozoin, an inert biocrystalline heme aggregate, plays a key role in parasite survival. Hemozoin has been a longstanding target of antimalarials such as chloroquine (CQ), which inhibit the biocrystallization of free heme. In this study, we explore heme-binding interactions with histidine-rich-protein 2 (HRP2), a known malarial biomarker and purported player in free heme sequestration. HRP2 is notoriously challenging to target due to its highly repetitious sequence and irregular secondary structure. We started with three protein-catalyzed capture agents (PCCs) developed against epitopes of HRP2, inclusive of heme-binding motifs, and explored their ability to inhibit heme:HRP2 complex formation. Cocktails of the individual PCCs exhibit an inhibitory potency similar to CQ, while a covalently linked structure built from two separate PCCs provided considerably increased inhibition relative to CQ. Epitope-targeted disruption of heme:HRP2 binding is a novel approach towards disrupting P. falciparum-related hemozoin formation.
Collapse
Affiliation(s)
- JingXin Liang
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, 98109-5263, USA
| | - David N Bunck
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125, USA
| | - Anvita Mishra
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd, Pasadena, CA, 91125, USA
| | - Sunga Hong
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, 98109-5263, USA
| | - Matthew N Idso
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, 98109-5263, USA
| | - James R Heath
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, 98109-5263, USA
| |
Collapse
|
17
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
18
|
Agnew HD, Coppock MB, Idso MN, Lai BT, Liang J, McCarthy-Torrens AM, Warren CM, Heath JR. Protein-Catalyzed Capture Agents. Chem Rev 2019; 119:9950-9970. [PMID: 30838853 DOI: 10.1021/acs.chemrev.8b00660] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-catalyzed capture agents (PCCs) are synthetic and modular peptide-based affinity agents that are developed through the use of single-generation in situ click chemistry screens against large peptide libraries. In such screens, the target protein, or a synthetic epitope fragment of that protein, provides a template for selectively promoting the noncopper catalyzed azide-alkyne dipolar cycloaddition click reaction between either a library peptide and a known ligand or a library peptide and the synthetic epitope. The development of epitope-targeted PCCs was motivated by the desire to fully generalize pioneering work from the Sharpless and Finn groups in which in situ click screens were used to develop potent, divalent enzymatic inhibitors. In fact, a large degree of generality has now been achieved. Various PCCs have demonstrated utility for selective protein detection, as allosteric or direct inhibitors, as modulators of protein folding, and as tools for in vivo tumor imaging. We provide a historical context for PCCs and place them within the broader scope of biological and synthetic aptamers. The development of PCCs is presented as (i) Generation I PCCs, which are branched ligands engineered through an iterative, nonepitope-targeted process, and (ii) Generation II PCCs, which are typically developed from macrocyclic peptide libraries and are precisely epitope-targeted. We provide statistical comparisons of Generation II PCCs relative to monoclonal antibodies in which the protein target is the same. Finally, we discuss current challenges and future opportunities of PCCs.
Collapse
Affiliation(s)
- Heather D Agnew
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - Matthew B Coppock
- Sensors and Electron Devices Directorate , U.S. Army Research Laboratory , Adelphi , Maryland 20783 , United States
| | - Matthew N Idso
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Bert T Lai
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - JingXin Liang
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Amy M McCarthy-Torrens
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Carmen M Warren
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - James R Heath
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| |
Collapse
|
19
|
A novel discovery, maturation, and assay integration approach for the development of ruggedized multi-valent capture receptors exemplified against the chikungunya virus E2 protein. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2018.100248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Coppock MB, Stratis-Cullum DN. A universal method for the functionalization of dyed magnetic microspheres with peptides. Methods 2019; 158:12-16. [PMID: 30707950 DOI: 10.1016/j.ymeth.2019.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/20/2018] [Accepted: 01/23/2019] [Indexed: 11/19/2022] Open
Abstract
The need for the functionalization of magnetic, water-soluble dyed microspheres with peptides is apparent with the ever-growing biointeraction capabilities and the increased use of dyed microspheres in multiplex, microsphere-based detection assays. This method describes the attachment of any peptide to dyed magnetic microspheres regardless of peptide length, size, or sequence. The method exploits 'click' chemistry with short reaction times in a mixed organic/water system for simultaneous selective surface functionalization and reduction of microsphere dye leaching. All optimization studies were performed using a Luminex 200 assay platform, but the functionalized microspheres are capable of use in any similar multiplex format.
Collapse
Affiliation(s)
- Matthew B Coppock
- Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD, United States.
| | - Dimitra N Stratis-Cullum
- Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD, United States
| |
Collapse
|
21
|
Li Z, Shao S, Ren X, Sun J, Guo Z, Wang S, Song MM, Chang CEA, Xue M. Construction of a Sequenceable Protein Mimetic Peptide Library with a True 3D Diversifiable Chemical Space. J Am Chem Soc 2018; 140:14552-14556. [PMID: 30362722 DOI: 10.1021/jacs.8b08338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present here a library of protein mimetic bicyclic peptides. These nanosized structures exhibit rigid backbones and spatially diversifiable side chains. They present modular amino acids on all three linkages, providing access to a true 3D diversifiable chemical space. These peptides are synthesized through a Cu-catalyzed click reaction and a Ru-catalyzed ring-closing metathesis reaction. Their bicyclic topology can be reduced to a linear one, using Edman degradation and Pd-catalyzed deallylation reactions. The linearization approaches allow de novo sequencing through mass spectrometry methods. We demonstrate the function of a particular peptide that was identified through a high throughput screening against the E363-R378 epitope on the intrinsically disordered c-Myc oncoprotein. Intracellular delivery of this peptide could interfere with the c-Myc-mediated transcription and inhibit proliferation in a human glioblastoma cell line.
Collapse
Affiliation(s)
- Zhonghan Li
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Shiqun Shao
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Xiaodong Ren
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Jianan Sun
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Zhili Guo
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Siwen Wang
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Michelle M Song
- Martin Luther King High School , Riverside , California 92508 , United States
| | - Chia-En A Chang
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Min Xue
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| |
Collapse
|
22
|
Shao S, Li Z, Cheng H, Wang S, Perkins NG, Sarkar P, Wei W, Xue M. A Chemical Approach for Profiling Intracellular AKT Signaling Dynamics from Single Cells. J Am Chem Soc 2018; 140:13586-13589. [PMID: 30351133 DOI: 10.1021/jacs.8b08931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present here a novel chemical method to continuously analyze intracellular AKT signaling activities at single-cell resolution, without genetic manipulations. A pair of cyclic peptide-based fluorescent probes were developed to recognize the phosphorylated Ser474 site and a distal epitope on AKT. A Förster resonance energy transfer signal is generated upon concurrent binding of the two probes onto the same AKT protein, which is contingent upon the Ser474 phosphorylation. Intracellular delivery of the probes enabled dynamic measurements of the AKT signaling activities. We further implemented this detection strategy on a microwell single-cell platform, and interrogated the AKT signaling dynamics in a human glioblastoma cell line. We resolved unique features of the single-cell signaling dynamics following different perturbations. Our study provided the first example of monitoring the temporal evolution of cellular signaling heterogeneities and unveiled biological information that was inaccessible to other methods.
Collapse
Affiliation(s)
- Shiqun Shao
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Zhonghan Li
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Hanjun Cheng
- Institute for Systems Biology , Seattle , Washington 98109 , United States
| | - Siwen Wang
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Nicole G Perkins
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Priyanka Sarkar
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| | - Wei Wei
- Institute for Systems Biology , Seattle , Washington 98109 , United States
| | - Min Xue
- Department of Chemistry , University of California, Riverside , Riverside , California 92521 , United States
| |
Collapse
|
23
|
McCarthy AM, Kim J, Museth AK, Henning RK, Heath JE, Winson E, Oh JJ, Liang J, Hong S, Heath JR. Allosteric Inhibitor of KRas Identified Using a Barcoded Assay Microchip Platform. Anal Chem 2018; 90:8824-8830. [PMID: 29979578 PMCID: PMC6734936 DOI: 10.1021/acs.analchem.8b00706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein catalyzed capture agents (PCCs) are synthetic antibody surrogates that can target a wide variety of biologically relevant proteins. As a step toward developing a high-throughput PCC pipeline, we report on the preparation of a barcoded rapid assay platform for the analysis of hits from PCC library screens. The platform is constructed by first surface patterning a micrometer scale barcode composed of orthogonal ssDNA strands onto a glass slide. The slide is then partitioned into microwells, each of which contains multiple copies of the full barcode. Biotinylated candidate PCCs from a click screen are assembled onto the barcode stripes using a complementary ssDNA-encoded cysteine-modified streptavidin library. This platform was employed to evaluate candidate PCC ligands identified from an epitope targeted in situ click screen against the two conserved allosteric switch regions of the Kirsten rat sarcoma (KRas) protein. A single microchip was utilized for the simultaneous evaluation of 15 PCC candidate fractions under more than a dozen different assay conditions. The platform also permitted more than a 10-fold savings in time and a more than 100-fold reduction in biological and chemical reagents relative to traditional multiwell plate assays. The best ligand was shown to exhibit an in vitro inhibition constant (IC50) of ∼24 μM.
Collapse
Affiliation(s)
- Amy M. McCarthy
- The Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jungwoo Kim
- The Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - A. Katrine Museth
- The Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan K. Henning
- The Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - John E. Heath
- The Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Emma Winson
- The Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Joseph J. Oh
- The Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jingxin Liang
- The Institute for Systems Biology. 401 N Terry Avenue, Seattle, WA 98109
| | - Sunga Hong
- The Institute for Systems Biology. 401 N Terry Avenue, Seattle, WA 98109
| | - James R. Heath
- The Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- The Institute for Systems Biology. 401 N Terry Avenue, Seattle, WA 98109
| |
Collapse
|
24
|
Li X, Zou Y, Hu HG. Different stapling-based peptide drug design: Mimicking α-helix as inhibitors of protein–protein interaction. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Abstract
Supramolecular interactions, such as those observed between antibodies and antigens, have been employed in developing analytical methods for several decades. One major area of interest concerns cancer research, where intricate supramolecular designs have emerged to tackle difficult analytes in complex tumor systems. Our increasing knowledge toward supramolecular systems have elicited profound interest in creating more efficient analytical approaches, evidenced by the ever-growing body of literature in the field. Some of the novel tools have indeed facilitated our understanding of cancer biology, through providing previously inaccessible information. In this review, we describe common strategies of developing supramolecular analytical methods and their implementations in cancer research. We provide an overview for each of the approaches and discuss representative examples in recent literature.
Collapse
Affiliation(s)
- Shiqun Shao
- Department of Chemistry, University of California Riverside, Riverside, CA, United States
| | - Min Xue
- Department of Chemistry, University of California Riverside, Riverside, CA, United States.
| |
Collapse
|
26
|
Kearney P, Boniface JJ, Price ND, Hood L. The building blocks of successful translation of proteomics to the clinic. Curr Opin Biotechnol 2018; 51:123-129. [PMID: 29427919 PMCID: PMC6091638 DOI: 10.1016/j.copbio.2017.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/11/2017] [Indexed: 11/28/2022]
Abstract
Recently, the first two multiplexed tests using selective reaction monitoring (SRM-MS) mass spectrometry have entered clinical practice. Despite different areas of indication, risk stratification in lung cancer and preterm birth, they share multiple steps in their development strategies. Here we review these strategies and their implications for successful translation of biomarkers to clinical practice. We believe that the identification of blood protein panels for the identification of disease phenotypes is now a reproducible and standard (albeit complex) process.
Collapse
Affiliation(s)
- Paul Kearney
- Integrated Diagnostics, Seattle, WA, United States
| | | | - Nathan D Price
- Institute for Systems Biology, Seattle, WA, United States
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, United States.
| |
Collapse
|
27
|
Bunck DN, Atsavapranee B, Museth AK, VanderVelde D, Heath JR. Modulating the Folding Landscape of Superoxide Dismutase 1 with Targeted Molecular Binders. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- David N. Bunck
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard MC 172-27 USA
| | - Beatriz Atsavapranee
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard MC 172-27 USA
| | - Anna K. Museth
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard MC 172-27 USA
| | - David VanderVelde
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard MC 172-27 USA
| | - James R. Heath
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard MC 172-27 USA
| |
Collapse
|
28
|
Abstract
Chemical methods have enabled the total synthesis of protein molecules of ever-increasing size and complexity. However, methods to engineer synthetic proteins comprising noncanonical amino acids have not kept pace, even though this capability would be a distinct advantage of the total synthesis approach to protein science. In this work, we report a platform for protein engineering based on the screening of synthetic one-bead one-compound protein libraries. Screening throughput approaching that of cell surface display was achieved by a combination of magnetic bead enrichment, flow cytometry analysis of on-bead screens, and high-throughput MS/MS-based sequencing of identified active compounds. Direct screening of a synthetic protein library by these methods resulted in the de novo discovery of mirror-image miniprotein-based binders to a ∼150-kDa protein target, a task that would be difficult or impossible by other means.
Collapse
|
29
|
Bunck DN, Atsavapranee B, Museth AK, VanderVelde D, Heath JR. Modulating the Folding Landscape of Superoxide Dismutase 1 with Targeted Molecular Binders. Angew Chem Int Ed Engl 2018; 57:6212-6215. [PMID: 29645329 DOI: 10.1002/anie.201802269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Indexed: 01/20/2023]
Abstract
Amyotrophic lateral sclerosis, or Lou Gehrig's disease, is characterized by motor neuron death, with average survival times of two to five years. One cause of this disease is the misfolding of superoxide dismutase 1 (SOD1), a phenomenon influenced by point mutations spanning the protein. Herein, we used an epitope-specific high-throughput screen to identify a peptide ligand that stabilizes the SOD1 native conformation and accelerates its folding by a factor of 2.5. This strategy may be useful for fundamental studies of protein energy landscapes as well as designing new classes of therapeutics.
Collapse
Affiliation(s)
- David N Bunck
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC, 172-27, USA
| | - Beatriz Atsavapranee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC, 172-27, USA
| | - Anna K Museth
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC, 172-27, USA
| | - David VanderVelde
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC, 172-27, USA
| | - James R Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC, 172-27, USA
| |
Collapse
|
30
|
Pickens CJ, Johnson SN, Pressnall MM, Leon MA, Berkland CJ. Practical Considerations, Challenges, and Limitations of Bioconjugation via Azide-Alkyne Cycloaddition. Bioconjug Chem 2018; 29:686-701. [PMID: 29287474 PMCID: PMC6310217 DOI: 10.1021/acs.bioconjchem.7b00633] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interrogating biological systems is often limited by access to biological probes. The emergence of "click chemistry" has revolutionized bioconjugate chemistry by providing facile reaction conditions amenable to both biologic molecules and small molecule probes such as fluorophores, toxins, or therapeutics. One particularly popular version is the copper-catalyzed azide-alkyne cycloaddition (AAC) reaction, which has spawned new alternatives such as the strain-promoted azide-alkyne cycloaddition reaction, among others. This focused review highlights practical approaches to AAC reactions for the synthesis of peptide or protein bioconjugates and contrasts current challenges and limitations in light of recent advances in the field. The conical success of antibody drug conjugates has expanded the toolbox of linkers and payloads to facilitate practical applications of bioconjugation to create novel therapeutics and biologic probes. The AAC reaction in particular is poised to enable a large set of functionalized molecules as a combinatorial approach to high-throughput bioconjugate generation, screening, and honing of lead compounds.
Collapse
Affiliation(s)
- Chad J Pickens
- Department of Pharmaceutical Chemistry , University of Kansas , 2095 Constant Avenue , Lawrence , Kansas 66047 , United States
| | - Stephanie N Johnson
- Department of Pharmaceutical Chemistry , University of Kansas , 2095 Constant Avenue , Lawrence , Kansas 66047 , United States
| | - Melissa M Pressnall
- Department of Pharmaceutical Chemistry , University of Kansas , 2095 Constant Avenue , Lawrence , Kansas 66047 , United States
| | - Martin A Leon
- Department of Chemistry , University of Kansas , 1251 Wescoe Hall Drive , Lawrence , Kansas 66047 , United States
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry , University of Kansas , 2095 Constant Avenue , Lawrence , Kansas 66047 , United States
- Department of Chemistry , University of Kansas , 1251 Wescoe Hall Drive , Lawrence , Kansas 66047 , United States
- Department of Chemical and Petroleum Engineering , University of Kansas , , 4132 Learned Hall, 1530 W. 15th , Lawrence , Kansas 66045 , United States
| |
Collapse
|
31
|
Lai BT, Wilson JA, Malette Loredo J, Pitram SM, LaBerge NA, Heath JR, Agnew HD. Epitope-Targeted Macrocyclic Peptide Ligand with Picomolar Cooperative Binding to Interleukin-17F. Chemistry 2018; 24:3760-3767. [PMID: 29319889 DOI: 10.1002/chem.201704752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Indexed: 12/14/2022]
Abstract
The IL-17 cytokine family is associated with multiple immune and autoimmune diseases and comprises important diagnostic and therapeutic targets. This work reports the development of epitope-targeted ligands designed for differential detection of human IL-17F and its closest homologue IL-17A. Non-overlapping and unique epitopes on IL-17F and IL-17A were identified by comparative sequence analysis of the two proteins. Synthetic variants of these epitopes were utilized as targets for in situ click screens against a comprehensive library of synthetic peptide macrocycles with 5-mer variable regions. Single generation screens yielded selective binders for IL-17F and IL-17A with low cross-reactivity. Macrocyclic peptide binders against two distinct IL-17F epitopes were coupled using variable length chemical linkers to explore the physical chemistry of cooperative binding. The optimized linker length yielded a picomolar affinity binder, while retaining high selectivity. The presented method provides a rational approach towards targeting discontinuous epitopes, similar to what is naturally achieved by many B cell receptors.
Collapse
Affiliation(s)
- Bert T Lai
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, CA, 90230, USA
| | - Jeré A Wilson
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, CA, 90230, USA
| | | | - Suresh M Pitram
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, CA, 90230, USA
| | - Nicole A LaBerge
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, CA, 90230, USA
| | - James R Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
| | - Heather D Agnew
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, CA, 90230, USA
| |
Collapse
|
32
|
Streamlined circular proximity ligation assay provides high stringency and compatibility with low-affinity antibodies. Proc Natl Acad Sci U S A 2018; 115:E925-E933. [PMID: 29339495 DOI: 10.1073/pnas.1718283115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proximity ligation assay (PLA) is a powerful tool for quantitative detection of protein biomarkers in biological fluids and tissues. Here, we present the circular proximity ligation assay (c-PLA), a highly specific protein detection method that outperforms traditional PLA in stringency, ease of use, and compatibility with low-affinity reagents. In c-PLA, two proximity probes bind to an analyte, providing a scaffolding that positions two free oligonucleotides such that they can be ligated into a circular DNA molecule. This assay format stabilizes antigen proximity probe complexes and enhances stringency by reducing the probability of random background ligation events. Circle formation also increases selectivity, since the uncircularized DNA can be removed enzymatically. We compare this method with traditional PLA on several biomarkers and show that the higher stringency for c-PLA improves reproducibility and enhances sensitivity in both buffer and human plasma. The limit of detection ranges from femtomolar to nanomolar concentrations for both methods. Kinetic analyses using surface plasmon resonance (SPR) and biolayer interferometry (BLI) reveal that the variation in limit of detection is due to the variation in antibody affinity and that c-PLA outperforms traditional PLA for low-affinity antibodies. The lower background signal can be used to increase proximity probe concentration while maintaining a high signal-to-noise ratio, thereby enabling the use of low-affinity reagents in a homogeneous assay format. We anticipate that the advantages of c-PLA will be useful in a variety of clinical protein detection applications where high-affinity reagents are lacking.
Collapse
|
33
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. New Modalities for Challenging Targets in Drug Discovery. Angew Chem Int Ed Engl 2017; 56:10294-10323. [PMID: 28186380 DOI: 10.1002/anie.201611914] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/31/2017] [Indexed: 12/11/2022]
Abstract
Our ever-increasing understanding of biological systems is providing a range of exciting novel biological targets, whose modulation may enable novel therapeutic options for many diseases. These targets include protein-protein and protein-nucleic acid interactions, which are, however, often refractory to classical small-molecule approaches. Other types of molecules, or modalities, are therefore required to address these targets, which has led several academic research groups and pharmaceutical companies to increasingly use the concept of so-called "new modalities". This Review defines for the first time the scope of this term, which includes novel peptidic scaffolds, oligonucleotides, hybrids, molecular conjugates, as well as new uses of classical small molecules. We provide the most representative examples of these modalities to target large binding surface areas such as those found in protein-protein interactions and for biological processes at the center of cell regulation.
Collapse
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Stéphanie M Guéret
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany.,Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, The Netherlands
| | - Alleyn T Plowright
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| |
Collapse
|
34
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. Neue Modalitäten für schwierige Zielstrukturen in der Wirkstoffentwicklung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611914] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Stéphanie M. Guéret
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
- Fakultät für Chemie and Chemische Biologie; Technische Universität Dortmund; Deutschland
| | - Tom N. Grossmann
- Chemical Genomics Centre der Max-Planck-Gesellschaft; Dortmund Deutschland
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; Niederlande
| | - Alleyn T. Plowright
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| |
Collapse
|
35
|
Coppock MB, Warner CR, Dorsey B, Orlicki JA, Sarkes DA, Lai BT, Pitram SM, Rohde RD, Malette J, Wilson JA, Kearney P, Fang KC, Law SM, Candelario SL, Farrow B, Finch AS, Agnew HD, Heath JR, Stratis‐Cullum DN. Protein catalyzed capture agents with tailored performance for in vitro and in vivo applications. Biopolymers 2017; 108:e22934. [PMID: 27539157 PMCID: PMC6585716 DOI: 10.1002/bip.22934] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/25/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
We report on peptide-based ligands matured through the protein catalyzed capture (PCC) agent method to tailor molecular binders for in vitro sensing/diagnostics and in vivo pharmacokinetics parameters. A vascular endothelial growth factor (VEGF) binding peptide and a peptide against the protective antigen (PA) protein of Bacillus anthracis discovered through phage and bacterial display panning technologies, respectively, were modified with click handles and subjected to iterative in situ click chemistry screens using synthetic peptide libraries. Each azide-alkyne cycloaddition iteration, promoted by the respective target proteins, yielded improvements in metrics for the application of interest. The anti-VEGF PCC was explored as a stable in vivo imaging probe. It exhibited excellent stability against proteases and a mean elimination in vivo half-life (T1/2 ) of 36 min. Intraperitoneal injection of the reagent results in slow clearance from the peritoneal cavity and kidney retention at extended times, while intravenous injection translates to rapid renal clearance. The ligand competed with the commercial antibody for binding to VEGF in vivo. The anti-PA ligand was developed for detection assays that perform in demanding physical environments. The matured anti-PA PCC exhibited no solution aggregation, no fragmentation when heated to 100°C, and > 81% binding activity for PA after heating at 90°C for 1 h. We discuss the potential of the PCC agent screening process for the discovery and enrichment of next generation antibody alternatives.
Collapse
Affiliation(s)
- Matthew B. Coppock
- Sensors and Electron Devices DirectorateU.S. Army Research LaboratoryAdelphiMD20783
| | - Candice R. Warner
- Excet, SpringfieldVA 22151 supporting USA Edgewood Chemical Biological CenterAberdeen Proving GroundMD21010
| | - Brandi Dorsey
- Federal Staffing Resources, Annapolis, MD supporting U.S. Army Research LaboratoryAdelphiMD20783
| | - Joshua A. Orlicki
- Weapons and Materials Research DirectorateU.S. Army Research LaboratoryAberdeen Proving GroundMD21005
| | - Deborah A. Sarkes
- Sensors and Electron Devices DirectorateU.S. Army Research LaboratoryAdelphiMD20783
| | - Bert T. Lai
- Indi Molecular6162 Bristol ParkwayCulver CityCA90230
| | | | | | | | | | | | | | | | | | - Blake Farrow
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology1200 East California BoulevardPasadenaCA91125
| | - Amethist S. Finch
- Sensors and Electron Devices DirectorateU.S. Army Research LaboratoryAdelphiMD20783
| | | | - James R. Heath
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology1200 East California BoulevardPasadenaCA91125
| | | |
Collapse
|
36
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2015. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Sarkes DA, Hurley MM, Stratis-Cullum DN. Unraveling the Roots of Selectivity of Peptide Affinity Reagents for Structurally Similar Ribosomal Inactivating Protein Derivatives. Molecules 2016; 21:E1504. [PMID: 27834872 PMCID: PMC6272918 DOI: 10.3390/molecules21111504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 11/17/2022] Open
Abstract
Peptide capture agents have become increasingly useful tools for a variety of sensing applications due to their ease of discovery, stability, and robustness. Despite the ability to rapidly discover candidates through biopanning bacterial display libraries and easily mature them to Protein Catalyzed Capture (PCC) agents with even higher affinity and selectivity, an ongoing challenge and critical selection criteria is that the peptide candidates and final reagent be selective enough to replace antibodies, the gold-standard across immunoassay platforms. Here, we have discovered peptide affinity reagents against abrax, a derivative of abrin with reduced toxicity. Using on-cell Fluorescence Activated Cell Sorting (FACS) assays, we show that the peptides are highly selective for abrax over RiVax, a similar derivative of ricin originally designed as a vaccine, with significant structural homology to abrax. We rank the newly discovered peptides for strongest affinity and analyze three observed consensus sequences with varying affinity and specificity. The strongest (Tier 1) consensus was FWDTWF, which is highly aromatic and hydrophobic. To better understand the observed selectivity, we use the XPairIt peptide-protein docking protocol to analyze binding location predictions of the individual Tier 1 peptides and consensus on abrax and RiVax. The binding location profiles on the two proteins are quite distinct, which we determine is due to differences in pocket size, pocket environment (including hydrophobicity and electronegativity), and steric hindrance. This study provides a model system to show that peptide capture candidates can be quite selective for a structurally similar protein system, even without further maturation, and offers an in silico method of analysis for understanding binding and down-selecting candidates.
Collapse
Affiliation(s)
- Deborah A Sarkes
- Biotechnology Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, Adelphi, MD 20783, USA.
| | - Margaret M Hurley
- Biotechnology Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, Adelphi, MD 20783, USA.
| | - Dimitra N Stratis-Cullum
- Biotechnology Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, Adelphi, MD 20783, USA.
| |
Collapse
|
38
|
Rezaei Araghi R, Keating AE. Designing helical peptide inhibitors of protein-protein interactions. Curr Opin Struct Biol 2016; 39:27-38. [PMID: 27123812 DOI: 10.1016/j.sbi.2016.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/28/2016] [Accepted: 04/03/2016] [Indexed: 02/04/2023]
Abstract
Short helical peptides combine characteristics of small molecules and large proteins and provide an exciting area of opportunity in protein design. A growing number of studies report novel helical peptide inhibitors of protein-protein interactions. New techniques have been developed for peptide design and for chemically stabilizing peptides in a helical conformation, which frequently improves protease resistance and cell permeability. We summarize advances in peptide crosslinking chemistry and give examples of peptide design studies targeting coiled-coil transcription factors, Bcl-2 family proteins, MDM2/MDMX, and HIV gp41, among other targets.
Collapse
Affiliation(s)
- Raheleh Rezaei Araghi
- MIT Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Amy E Keating
- MIT Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; MIT Department of Biological Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| |
Collapse
|
39
|
Henning RK, Varghese JO, Das S, Nag A, Tang G, Tang K, Sutherland AM, Heath JR. Degradation of Akt using protein-catalyzed capture agents. J Pept Sci 2016; 22:196-200. [PMID: 26880702 DOI: 10.1002/psc.2858] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 12/22/2022]
Abstract
Abnormal signaling of the protein kinase Akt has been shown to contribute to human diseases such as diabetes and cancer, but Akt has proven to be a challenging target for drugging. Using iterative in situ click chemistry, we recently developed multiple protein-catalyzed capture (PCC) agents that allosterically modulate Akt enzymatic activity in a protein-based assay. Here, we utilize similar PCCs to exploit endogenous protein degradation pathways. We use the modularity of the anti-Akt PCCs to prepare proteolysis targeting chimeric molecules that are shown to promote the rapid degradation of Akt in live cancer cells. These novel proteolysis targeting chimeric molecules demonstrate that the epitope targeting selectivity of PCCs can be coupled with non-traditional drugging moieties to inhibit challenging targets.
Collapse
Affiliation(s)
- Ryan K Henning
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, Pasadena, CA 91125
| | - Joseph O Varghese
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, Pasadena, CA 91125
| | - Samir Das
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, Pasadena, CA 91125
| | - Arundhati Nag
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, Pasadena, CA 91125
| | - Grace Tang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, Pasadena, CA 91125
| | - Kevin Tang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, Pasadena, CA 91125
| | - Alexander M Sutherland
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, Pasadena, CA 91125
| | - James R Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, Pasadena, CA 91125
| |
Collapse
|