1
|
Cen J, Ye X, Liu X, Pan W, Zhang L, Zhang G, He N, Shen A, Hu J, Liu S. Fluorinated Copolypeptide‐Stabilized Microbubbles with Maleimide‐Decorated Surfaces as Long‐Term Ultrasound Contrast Agents. Angew Chem Int Ed Engl 2022; 61:e202209610. [DOI: 10.1002/anie.202209610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jie Cen
- Department of Ultrasound Imaging & Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China 17 Lujiang Road Hefei, Anhui Province 230001 China
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei, Anhui Province 230026 China
| | - Xianjun Ye
- Department of Ultrasound Imaging & Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China 17 Lujiang Road Hefei, Anhui Province 230001 China
| | - Xiao Liu
- Department of Ultrasound Imaging & Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China 17 Lujiang Road Hefei, Anhui Province 230001 China
| | - Wenhao Pan
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei, Anhui Province 230026 China
| | - Lei Zhang
- Department of Ultrasound Imaging & Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China 17 Lujiang Road Hefei, Anhui Province 230001 China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei, Anhui Province 230026 China
| | - Nianan He
- Department of Ultrasound Imaging & Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China 17 Lujiang Road Hefei, Anhui Province 230001 China
| | - Aizong Shen
- Department of Ultrasound Imaging & Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China 17 Lujiang Road Hefei, Anhui Province 230001 China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei, Anhui Province 230026 China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei, Anhui Province 230026 China
| |
Collapse
|
2
|
Cen J, Ye X, Liu X, Pan W, Zhang L, Zhang G, He N, Shen A, Hu J, Liu S. Fluorinated Copolypeptide‐Stabilized Microbubbles with Maleimide‐Decorated Surfaces as Long‐Term Ultrasound Contrast Agents. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jie Cen
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Xianjun Ye
- China University of Science and Technology Department of Ultrasound Imaging CHINA
| | - Xiao Liu
- China University of Science and Technology Department of Ultrasound Imaging CHINA
| | - Wenhao Pan
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Lei Zhang
- China University of Science and Technology Department of Pharmacy CHINA
| | - Guoying Zhang
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Nianan He
- China University of Science and Technology Department of Ultrasound Imaging CHINA
| | - Aizong Shen
- China University of Science and Technology Department of Pharmacy CHINA
| | - Jinming Hu
- China University of Science and Technology Department of Polymer Science and Engineering 96 Jinzhai RoadDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China 230026 Hefei CHINA
| | - Shiyong Liu
- University of Science and Technology of China Department of Polymer Science and Engineering 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
3
|
Ultrasound-Responsive Smart Drug Delivery System of Lipid Coated Mesoporous Silica Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13091396. [PMID: 34575472 PMCID: PMC8468042 DOI: 10.3390/pharmaceutics13091396] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
The immediate release of chemotherapeutics at the target site, along with no premature release in circulation is always challenging. The purpose of this study was to develop a stimuli responsive drug delivery system, composed of lipid supported mesoporous silica nanoparticles (MSNPs) for triggered drug release at the target site and simultaneously avoiding the premature release. MSNPs with a higher drug loading capacity and very slow release were designed so as to enhance release by FDA approved US-irradiation. Doxorubicin, as a model drug, and perfluoropentane (PFP) as a US responsive material, were entrapped in the porous structure of MSNPs. Lipid coating enhanced the cellular uptake and in addition provided a gatekeeping effect at the pore opening to reduce premature release. The mechanical and thermal effects of US induced the conversion of liquid PFP to a gaseous form that was able to rupture the lipid layer, resulting in triggered drug release. The prolonged stability profile and non-toxic behavior made them suitable candidate for the delivery of anticancer drugs. This smart system, with the abilities of better cellular uptake and higher cytotoxic effects on US-irradiation, would be a good addition to the applied side of chemotherapeutic advanced drug delivery systems.
Collapse
|
4
|
Chen L, Zhou J, Deng Q, Feng J, Qiu Q, Huang W, Chen Y, Li Y. Ultrasound-visualized, site-specific vascular embolization using magnetic protein microcapsules. J Mater Chem B 2021; 9:2407-2416. [PMID: 33623935 DOI: 10.1039/d0tb02715d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Imaging-guided vascular embolization is frequently performed on patients with advanced hepatocellular carcinoma (HCC) to alleviate symptoms and extend their survival time. Current operation procedures are not only painful for patients, but are also inaccurate in tumor targeting after the release of embolic agents from the catheter, leading to injury to healthy tissues simultaneously. In this study, we developed an ultrasound-visualized, site-specific vascular embolization strategy with magnetic protein microcapsules (MPMs). MPMs were fabricated using a rapid emulsification method, giving it a smooth surface and a core-shell structure. Their diameters could be controlled within 10 μm, allowing them to pass through capillaries. The core-shell structure and loading of magnetic Fe3O4 endowed MPMs with good contrast under ultrasound imaging and magnetically inducible targeting properties, as well as aggregation response even under flowing conditions. In vitro cytotoxicity and hemolysis evaluation demonstrated good biocompatibility of the MPMs. Furthermore, mock embolization showed that cell death could be induced by aggregation of the MPMs. Such a combination of real-time monitoring using ultrasound and control on targeted vascular embolization might be a breakthrough in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Lanxi Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jianhua Zhou
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Qiurong Deng
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jialin Feng
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Qiong Qiu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Wenwei Huang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yin Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yan Li
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Lv J, Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem Soc Rev 2021; 50:5435-5467. [DOI: 10.1039/d0cs00258e] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomedical applications of fluoropolymers in gene delivery, protein delivery, drug delivery, 19F MRI, PDT, anti-fouling, anti-bacterial, cell culture, and tissue engineering.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| |
Collapse
|
6
|
Zhang R, Mei RA, Botto L, Yang Z. Modified Voronoi Analysis of Spontaneous Formation of Interfacial Droplets on Immersed Oil-Solid Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5400-5407. [PMID: 32337992 DOI: 10.1021/acs.langmuir.9b03806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The nucleation and growth of liquid droplets on solid substrates have received much attention because of the significant relevance of these multiphase processes to both nature and practical applications. There have been extensive studies on the condensation of water from the air phase on solid substrates. Here, we focus on water diffusion through the oil phase and subsequent settlement on solid substrates because such interfacial droplets are formed. Voronoi diagram analysis is proposed to statistically characterize the size distribution of the growing droplets. It is found that modification of the standard Voronoi diagram is required for systems of interfacial droplets which have a noncircular shape and/or whose centers change with time. The modified Voronoi analysis of the growing droplets provides an automatic quantification of the droplet distribution and reveals that (i) during the nucleation stage, the interfacial droplets do not nucleate at the same time because the nucleation of newly formed droplets competes with the growth of the existing ones; (ii) the growth of interfacial droplets comes from water diffusion from the bulk water layer, and/or from adjacent interfacial droplets, and/or from coalescence of interfacial droplets; and (iii) the sizes of interfacial droplets become more polydispersed on P-glass but more monodispersed on OTS-glass as time goes. This work opens a new perspective on the formation of interfacial droplets at the interface between oil and the solid substrate and demonstrates the capability of an automatic analysis method, which can be potentially applied to similar interfacial multiphase systems.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ran Andy Mei
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lorenzo Botto
- Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, TU Delft, Delft 2628 CB, The Netherlands
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Min SH, Berkowitz ML. Bubbles in water under stretch-induced cavitation. J Chem Phys 2019; 150:054501. [DOI: 10.1063/1.5079735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Sa Hoon Min
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Max L. Berkowitz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
8
|
Peng Y, Li Q, Seekell RR, Kheir JN, Porter TM, Polizzotti BD. Tunable Nonlinear Acoustic Reporters Using Micro- and Nanosized Air Bubbles with Porous Polymeric Hard Shells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7-12. [PMID: 30444111 DOI: 10.1021/acsami.8b16737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ability to tailor acoustic cavitation of contrast agents is pivotal for ultrasound applications in enhanced imaging, drug delivery, and cancer therapy, etc. A biopolymer-based system of microbubbles and nanobubbles was developed as acoustic reporters that consist of extremely porous hard shells. Despite the existence of an incompressible shell, these porous contrast agents exhibited strong nonlinear acoustic response under very low acoustic pressure, e.g, harmonics, characteristic of free gas bubbles. The large air/water surface area within the transmural capillaries are believed to facilitate oscillation of the inner gas core. Furthermore, the acoustic cavitation can be tailored by variation in polymer structures. This synthetically based platform offers insight for the rational design of advanced acoustic biomaterials.
Collapse
Affiliation(s)
- Yifeng Peng
- Department of Cardiology , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
- Department of Pediatrics , Harvard Medical School , Boston , Massachussets 02115 , United States
| | - Qian Li
- Department of Biomedical Engineering , Boston University , Boston , Massachusetts 02215 , United States
| | - Raymond R Seekell
- Department of Cardiology , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
- Department of Pediatrics , Harvard Medical School , Boston , Massachussets 02115 , United States
| | - John N Kheir
- Department of Cardiology , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
- Department of Pediatrics , Harvard Medical School , Boston , Massachussets 02115 , United States
| | - Tyrone M Porter
- Department of Biomedical Engineering , Boston University , Boston , Massachusetts 02215 , United States
| | - Brian D Polizzotti
- Department of Cardiology , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
- Department of Pediatrics , Harvard Medical School , Boston , Massachussets 02115 , United States
| |
Collapse
|
9
|
Kauscher U, Holme MN, Björnmalm M, Stevens MM. Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. Adv Drug Deliv Rev 2019; 138:259-275. [PMID: 30947810 PMCID: PMC7180078 DOI: 10.1016/j.addr.2018.10.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
Over the past few decades, a range of vesicle-based drug delivery systems have entered clinical practice and several others are in various stages of clinical translation. While most of these vesicle constructs are lipid-based (liposomes), or polymer-based (polymersomes), recently new classes of vesicles have emerged that defy easy classification. Examples include assemblies with small molecule amphiphiles, biologically derived membranes, hybrid vesicles with two or more classes of amphiphiles, or more complex hierarchical structures such as vesicles incorporating gas bubbles or nanoparticulates in the lumen or membrane. In this review, we explore these recent advances and emerging trends at the edge and just beyond the research fields of conventional liposomes and polymersomes. A focus of this review is the distinct behaviors observed for these classes of vesicles when exposed to physical stimuli - such as ultrasound, heat, light and mechanical triggers - and we discuss the resulting potential for new types of drug delivery, with a special emphasis on current challenges and opportunities.
Collapse
Affiliation(s)
- Ulrike Kauscher
- Department of Materials, Imperial College London, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Margaret N Holme
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Mattias Björnmalm
- Department of Materials, Imperial College London, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden.
| |
Collapse
|
10
|
Huo M, Li D, Song G, Zhang J, Wu D, Wei Y, Yuan J. Semi-Fluorinated Methacrylates: A Class of Versatile Monomers for Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2018; 39:e1700840. [DOI: 10.1002/marc.201700840] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/05/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Meng Huo
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education; Department of Chemistry; Tsinghua University; 100084 Beijing China
- Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education; Department of Chemistry; Tsinghua University; 100084 Beijing China
| | - Dan Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education; Department of Chemistry; Tsinghua University; 100084 Beijing China
| | - Guangjie Song
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 China
| | - Jun Zhang
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory of Polymer Physics and Chemistry; Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 China
| | - Yen Wei
- Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education; Department of Chemistry; Tsinghua University; 100084 Beijing China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education; Department of Chemistry; Tsinghua University; 100084 Beijing China
| |
Collapse
|
11
|
Jin Q, Lin CY, Chang YC, Yang CM, Yeh CK. Roles of Textural and Surface Properties of Nanoparticles in Ultrasound-Responsive Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1256-1265. [PMID: 29286675 DOI: 10.1021/acs.langmuir.7b02993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Acoustic inertial cavitation (IC) is a crucial phenomenon for many ultrasound (US)-related applications. This study aimed to investigate the roles of textural and surface properties of NPs in IC generation by combining typical IC detection methods with various types of silica model NPs. Acoustic passive cavitation detection, optical high-speed photography, and US imaging have been used to quantify IC activities (referred to as the IC dose, ICD) and describe the physical characteristics of IC activities from NPs. The results showed that the ICDs from NPs were positively correlated to their surface hydrophobicity and that their external surface hydrophobicity plays a much more crucial role than do the textural properties. The high-speed photography revealed that the sizes of IC-generated bubbles from superhydrophobic NPs ranged from 20-40 μm at 4-6 MPa and collapsed in several microseconds. Bubble clouds monitored with US imaging showed that IC from NPs was consistent with the surface hydrophobicity. The simulation results based on the crevice model of cavitation nuclei correlated well with the experimental results. This study has demonstrated that the surface property, instead of the textural property, of NPs dominated the IC generation, and surface nanobubbles adsorbed on the NP surface have been proposed to be cavitation nuclei.
Collapse
Affiliation(s)
| | | | - Yuan-Chih Chang
- Institute of Cellular and Organismic Biology, Academia Sinica , Taipei City, Taiwan 115
| | | | | |
Collapse
|
12
|
Pellow C, Goertz DE, Zheng G. Breaking free from vascular confinement: status and prospects for submicron ultrasound contrast agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1502. [PMID: 29148219 DOI: 10.1002/wnan.1502] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/23/2017] [Accepted: 09/30/2017] [Indexed: 12/11/2022]
Abstract
The development of encapsulated microbubbles (~1-6 μm) has expanded the utility of ultrasound from soft tissue anatomical imaging to not only functional intravascular imaging, but therapeutic interventions, with compelling studies of elicited biological effects. The large diameter of these bubbles has confined their utility to the vasculature, but converging interdisciplinary research pathways are giving rise to new submicron ultrasound contrast agents capable of extending their effects beyond the vascular compartment. This article reviews the status and prospects of exogenous agents including nanobubbles, echogenic liposomes, gas vesicles, cavitation seeds, and nanodroplets, and assesses outstanding criticisms preventing their advance. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Carly Pellow
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Sunnybrook Research Institute, Toronto, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - David E Goertz
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Sunnybrook Research Institute, Toronto, Canada
| | - Gang Zheng
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
13
|
Jin Q, Lin CY, Kang ST, Chang YC, Zheng H, Yang CM, Yeh CK. Superhydrophobic silica nanoparticles as ultrasound contrast agents. ULTRASONICS SONOCHEMISTRY 2017; 36:262-269. [PMID: 28069209 DOI: 10.1016/j.ultsonch.2016.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
Microbubbles have been widely studied as ultrasound contrast agents for diagnosis and as drug/gene carriers for therapy. However, their size and stability (lifetime of 5-12min) limited their applications. The development of stable nanoscale ultrasound contrast agents would therefore benefit both. Generating bubbles persistently in situ would be one of the promising solutions to the problem of short lifetime. We hypothesized that bubbles could be generated in situ by providing stable air nuclei since it has been found that the interfacial nanobubbles on a hydrophobic surface have a much longer lifetime (orders of days). Mesoporous silica nanoparticles (MSNs) with large surface areas and different levels of hydrophobicity were prepared to test our hypothesis. It is clear that the superhydrophobic and porous nanoparticles exhibited a significant and strong contrast intensity compared with other nanoparticles. The bubbles generated from superhydrophobic nanoparticles sustained for at least 30min at a MI of 1.0, while lipid microbubble lasted for about 5min at the same settings. In summary MSNs have been transformed into reliable bubble precursors by making simple superhydrophobic modification, and made into a promising contrast agent with the potentials to serve as theranostic agents that are sensitive to ultrasound stimulation.
Collapse
Affiliation(s)
- Qiaofeng Jin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Yu Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Tsung Kang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yuan-Chih Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen China
| | - Chia-Min Yang
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
14
|
Asano I, So S, Lodge TP. Oil-in-Oil Emulsions Stabilized by Asymmetric Polymersomes Formed by AC + BC Block Polymer Co-Assembly. J Am Chem Soc 2016; 138:4714-7. [PMID: 27046136 DOI: 10.1021/jacs.6b01697] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We demonstrate a facile route to asymmetric polymersomes by blending AC and BC block copolymers in oil-in-oil emulsions containing polystyrene (PS) and polybutadiene (PB) in chloroform (CHCl3). Polymersomes were prepared by mixing polystyrene-b-poly(ethylene oxide) (SO) and polybutadiene-b-poly(ethylene oxide) (BO) in the oil-in-oil emulsion, where the droplets and continuous phase are PS- and PB-rich, respectively. The polymersome structure was directly visualized using dye-labeled SO and BO with confocal fluorescence microscopy; SO and BO with a high O block fraction co-assemble to produce asymmetric polymersomes. As the O block is insoluble in both PS and PB, we infer that the detailed structure of the polymersomes is a bilayer in which the S and B blocks face the PS-inner and PB-outer phases, respectively, while the common O blocks form the core membrane. This structure is only observed for sufficiently long O blocks. It is remarkable that although all the polymers are soluble in CHCl3, such elaborate structures are created by straightforward co-assembly. These asymmetric polymersomes should provide robust bilayer membranes around emulsion droplets, leading to stable nanoscopic dispersions of two fluids.
Collapse
Affiliation(s)
- Itaru Asano
- Chemicals Research Laboratories, Toray Industries, Inc. , 9-1, Oe-cho, Minato-ku, Nagoya 455-8502, Japan
| | | | | |
Collapse
|