1
|
Mishra S, Aghi A, Kumar A. Rh(III)-Catalyzed Controlled Ortho-Amidation of Arylamides with Dioxazolones Using Weakly Coordinating Native Primary Amide as the Directing Group. J Org Chem 2024; 89:5606-5618. [PMID: 38557043 DOI: 10.1021/acs.joc.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein, we report a controlled introduction of an amide unit at the ortho-position of an electron-deficient arylamide system without affording any cyclized products using user-friendly dioxazolone as an amidating reagent in the presence of a Rh(III)-catalyst. This is the first report where native primary amide has been utilized as a weakly coordinating group for site-selective C-N bond formation reaction. The developed protocol works under external auxiliary-free conditions with a wide substrate scope.
Collapse
Affiliation(s)
- Saksham Mishra
- Department of Chemistry, Indian Institute of Technology, Bihta, Patna 801106, Bihar, India
| | - Anjali Aghi
- Department of Chemistry, Indian Institute of Technology, Bihta, Patna 801106, Bihar, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology, Bihta, Patna 801106, Bihar, India
| |
Collapse
|
2
|
Staronova L, Yamazaki K, Xu X, Shi H, Bickelhaupt FM, Hamlin TA, Dixon DJ. Cobalt-Catalyzed Enantio- and Regioselective C(sp 3 )-H Alkenylation of Thioamides. Angew Chem Int Ed Engl 2024; 63:e202316021. [PMID: 38143241 DOI: 10.1002/anie.202316021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
An enantioselective cobalt-catalyzed C(sp3 )-H alkenylation of thioamides with but-2-ynoate ester coupling partners employing thioamide directing groups is presented. The method is operationally simple and requires only mild reaction conditions, while providing alkenylated products as single regioisomers in excellent yields (up to 85 %) and high enantiomeric excess [up to 91 : 9 enantiomeric ratio (er), or up to >99 : 1 er after a single recrystallization]. Diverse downstream derivatizations of the products are demonstrated, delivering a range of enantioenriched constructs. Extensive computational studies using density functional theory provide insight into the detailed reaction mechanism, origin of enantiocontrol, and the unusual regioselectivity of the alkenylation reaction.
Collapse
Affiliation(s)
- Lucia Staronova
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Xing Xu
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Heyao Shi
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Trevor A Hamlin
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
3
|
Bae H, Park J, Yoon R, Lee S, Son J. Copper-catalyzed synthesis of primary amides through reductive N-O cleavage of dioxazolones. RSC Adv 2024; 14:9440-9444. [PMID: 38516159 PMCID: PMC10951817 DOI: 10.1039/d4ra00320a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
A new method for the synthesis of primary amides is developed, in which dioxazolones are treated with a copper catalyst under mild reaction conditions. A broad scope of dioxazolones is exhibited as well as dioxazolones containing biologically active structural motifs. These robust and mild reaction conditions allow the transformation of dioxazolones to primary amides, in which sensitive functional groups such as hydroxyl, aldehyde, trialkylsilyl, and unsaturated carbon units are tolerated with excellent chemoselectivity.
Collapse
Affiliation(s)
- Hyeonwoong Bae
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
- Department of Chemistry, Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
| | - Jinhwan Park
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
- Department of Chemistry, Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
| | - Rahyun Yoon
- Department of Chemistry, Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
| | - Seunghoon Lee
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
- Department of Chemistry, Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
| | - Jongwoo Son
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
- Department of Chemistry, Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
| |
Collapse
|
4
|
Jia X, Xing D, Shen J, Li B, Zeng Y, Jiang H, Huang L. 1,2,3-Thiadiazole as a Modifiable and Scalable Directing Group for ortho-C-H Functionalization. Org Lett 2024; 26:1544-1549. [PMID: 38358975 DOI: 10.1021/acs.orglett.3c04075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
In the last few decades, directed C-H bond functionalization has had enormous applicability in academia and industry. The development of a novel, readily accessible, and scalable directing group with modifiable ability is highly desirable in C-H functionalization. Herein, we report the 1,2,3-thiadiazole as a modifiable directing group for C-H amidation and alkynylation with dioxazolones, p-toluenesulfonyl azide, and bromoalkynes in high yield. The densely functionalized 1,2,3-thiadiazole products are modified into thioamide, multisubstituted furan, γ-thiapyrone, thiazole, and various alkynyl sulfides through simple and one-step reactions. The competition experiments reveal that the directing ability of 1,2,3-thiadiazole is slightly weaker than pyridine and bidentate amide but stronger than the widely used carboxylate.
Collapse
Affiliation(s)
- Xiaoyan Jia
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Donghui Xing
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiayi Shen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Bo Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yue Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
5
|
Zuo Y, Liu M, Du J, Zhang T, Wang X, Wang C. Ir(iii)/Ag(i)-catalyzed directly C-H amidation of arenes with OH-free hydroxyamides as amidating agents. RSC Adv 2024; 14:5975-5980. [PMID: 38362076 PMCID: PMC10867557 DOI: 10.1039/d4ra00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
A versatile Ir(iii)-catalyzed C-H amidation of arenes by employing readily available and stable OH-free hydroxyamides as a novel amidation source. The reaction occurred with high efficiency and tolerance of a range of functional groups. A wide scope of aryl OH-free hydroxyzamides, including conjugated and challenging non-conjugated OH-free hydroxyzamides, were capable of this transformation and no addition of an external oxidant is required. This protocol provided a simple, straightforward and economic method to a variety N-(2-(1H-pyrazol-1-yl)alkyl)amide derivates with good to excellent yield. Mechanistic study demonstrated that reversible C-H bond functionalisation might be involved in this reaction.
Collapse
Affiliation(s)
- Youpeng Zuo
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Meijun Liu
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Jun Du
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Tianren Zhang
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Xiaoqing Wang
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Cong Wang
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| |
Collapse
|
6
|
Pradhan S, Kweon J, Sahoo MK, Jung H, Heo J, Kim YB, Kim D, Park JW, Chang S. A Formal γ-C-H Functionalization of Carboxylic Acids Guided by Metal-Nitrenoids as an Unprecedented Mechanistic Motif. J Am Chem Soc 2023; 145:28251-28263. [PMID: 38100053 DOI: 10.1021/jacs.3c11628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Harnessing the key intermediates in metal-catalyzed reactions is one of the most essential strategies in the development of selective organic transformations. The nitrogen group transfer reactivity of metal-nitrenoids to ubiquitous C-H bonds allows for diverse C-N bond formation to furnish synthetically valuable aminated products. In this study, we present an unprecedented reactivity of iridium and ruthenium nitrenoids to generate remote carbocation intermediates, which subsequently undergo nucleophile incorporation, thus developing a formal γ-C-H functionalization of carboxylic acids. Mechanistic investigations elucidated a unique singlet metal-nitrenoid reactivity to initiate an abstraction of γ-hydride to form the carbocation intermediate that eventually reacts with a broad range of carbon, nitrogen, and oxygen nucleophiles, as well as biorelevant molecules. Alternatively, the same intermediate can lead to deprotonation to afford β,γ-unsaturated amides in a less nucleophilic solvent.
Collapse
Affiliation(s)
- Sourav Pradhan
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jeonguk Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Manoj Kumar Sahoo
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Joon Heo
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Yeong Bum Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jung-Woo Park
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
7
|
Wang Q, Jung H, Kim D, Chang S. Iridium-Catalyzed Migratory Terminal C(sp 3)-H Amidation of Heteroatom-Substituted Internal Alkenes via Olefin Chain Walking. J Am Chem Soc 2023. [PMID: 37906814 DOI: 10.1021/jacs.3c09679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Hydroamination facilitated by metal hydride catalysis is an appealing synthetic approach to access valuable nitrogen-containing compounds from readily available unsaturated hydrocarbons. While high regioselectivity can be achieved usually for substrates bearing polar chelation groups, the reaction involving simple alkenes frequently provides nonselective outcomes. Herein, we report an iridium-catalyzed highly regioselective terminal C(sp3)-H amidation of internal alkenes utilizing dioxazolones as an amino source via olefin chain walking. Most notably, this mechanistic motif of double bond migration to the terminal position operates not only with dialkyl-substituted simple alkenes including styrenes but also with heteroatom-substituted olefins such as enol ethers, vinyl silanes, and vinyl borons, thus representing the first example of the terminal methyl amidation of the latter type of alkenes through a nondissociative chain walking process.
Collapse
Affiliation(s)
- Qing Wang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
8
|
Li W, Wang R, Li Z, Chen J, Zhang Y, Lv N. Convergent synthesis of triarylamines via Ni-catalyzed dual C(sp 2)-H amination from benzamides with benzohydroxamic acids. Chem Commun (Camb) 2023; 59:4360-4363. [PMID: 36946231 DOI: 10.1039/d3cc00165b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
An unprecedented method of nickel-catalyzed dual C(sp2)-H amination of N-quinolylbenzamides with benzohydroxamic acids is developed to access triarylamines in one pot. For the first time, broad-spectrum hydroxylamine is employed as an amino source for C-H amination, featuring good chemo-selectivity and functional group tolerance. Furthermore, the catalytic system could be further extended to N-(pivaloyloxy)benzamide, dioxazolone, isocyanate and aniline for C-H amination.
Collapse
Affiliation(s)
- Wenwei Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Ruxue Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Zhefeng Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Ningning Lv
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
9
|
Pati BV, Puthalath NN, Banjare SK, Nanda T, Ravikumar PC. Transition metal-catalyzed C-H/C-C activation and coupling with 1,3-diyne. Org Biomol Chem 2023; 21:2842-2869. [PMID: 36917476 DOI: 10.1039/d3ob00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
This review provides a broad overview of the recent developments in the field of transition metal-catalyzed C-H/C-C bond activation and coupling with 1,3-diyne for assembling alkynylated heterocycles, bis-heterocycles, and 1,3-enynes. Transition metal-catalyzed inert bond (C-H/C-C) activation has been the focus of attention among synthetic chemists in recent times. Enormous developments have taken place in C-H/C-C bond activation chemistry in the last two decades. In recent years the use of 2π-unsaturated units as coupling partners for the synthesis of heterocycles through C-H/C-C bond activation and annulation sequence has received immense attention. Among the unsaturated units employed for assembling heterocycles, the use of 1,3-diynes has garnered significant attention due to its ability to render bis-heterocycles in a straightforward manner. The C-H bond activation and coupling with 1,3-diyne has been very much explored in recent years. However, the development of strategies for the use of 1,3-diynes in the analogous C-C bond activation chemistry is less explored. Earlier methods employed to assemble bis-heterocycle used heterocycles that were preformed and pre-functionalized via transition metal-catalyzed coupling reactions. The expensive pre-functionalized halo-heterocycles and sensitive and expensive heterocyclic metal reagents limit its broad application. However, the transition metal-catalyzed C-H activation obviates the need for expensive heterocyclic metal reagents and pre-functionalized halo-heterocycles. The C-H bond activation strategy makes use of C-H bonds as functional groups for effecting the transformation. This renders the overall synthetic sequence both step and cost economic. Hence, this strategy of C-H activation and subsequent reaction with 1,3-diyne could be used for the larger-scale synthesis of chemicals in the pharmaceutical industry. Despite these advances, there is still the possibility of exploration of earth-abundant and cost-effective first-row transition metals (Ni, Cu, Mn. Fe, etc.) for the synthesis of bis-heterocycles. Moreover, the Cp*-ligand-free, simple metal-salt-mediated synthesis of bis-heterocycles is also less explored. Thus, more exploration of reaction conditions for the Cp*-free synthesis of bis-heterocycles is called for. We hope this review will inspire scientists to investigate these unexplored domains.
Collapse
Affiliation(s)
- Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Nitha Nahan Puthalath
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Odisha 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
10
|
Cobalt(III)-catalyzed asymmetric ring-opening of 7-oxabenzonorbornadienes via indole C-H functionalization. Nat Commun 2023; 14:1094. [PMID: 36841798 PMCID: PMC9968317 DOI: 10.1038/s41467-023-36723-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
Asymmetric ring-opening of 7-oxabenzonorbornadienes is achieved via Co-catalyzed indole C-H functionalization. The utilization of chiral Co-catalyst consisting of a binaphthyl-derived trisubstituted cyclopentadienyl ligand resulted in high yields (up to 99%) and excellent enantioselectivity (>99% ee) for the target products with tolerance for diverse functional groups. Opposite diastereoselectivities are obtained with chiral Co-catalyst or Cp*CoI2CO. Combined experimental and computational studies suggest β-oxygen elimination being the selectivity-determining step of the reaction. Meanwhile, the reactions of 7-azabenzonorbornadiene could also be executed in a diastereodivergent manner.
Collapse
|
11
|
Liang Z, Wang K, Sun Q, Peng Y, Bao X. Iron-catalyzed dual decarboxylative coupling of α-amino acids and dioxazolones under visible-light to access amide derivatives. Chem Commun (Camb) 2023; 59:752-755. [PMID: 36541573 DOI: 10.1039/d2cc03318f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An iron-catalyzed decarboxylative C-N coupling of α-amino acids with dioxazolones is described herein to synthesize amide derivatives under visible-light. The desired products can be given in good to excellent yields under simple, mild, and oxidant-free conditions. This protocol provides a practical route for the transformation of α-amino acids to the corresponding amides. Computational studies were carried out to shed light on the mechanism of this reaction.
Collapse
Affiliation(s)
- Zhanqun Liang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Kaifeng Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Qing Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Yuzhu Peng
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China. .,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
12
|
He XL, Ma XR, Yan N, Zhang XW. Gold-Catalyzed [4 + 1] Heterocyclization of Hydroxamic Acid and Nonactivated Alkyne: A Protocol to Construct 5-Methyl-1,4,2-dioxazole. J Org Chem 2023; 88:433-441. [PMID: 36485008 DOI: 10.1021/acs.joc.2c02427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel gold-catalyzed [4 + 1] heterocyclization of nonactivated alkyne and hydroxamic acid is developed for the regiospecific synthesis of 5-methyl-1,4,2-dioxazole, which is an important structural motif in various bioactive molecules. The current methodology is characterized by high efficiency, simple operation, mild reaction conditions, and good functional group compatibility. Moreover, gram-scale synthesis and synthetic application toward bioactive molecular skeletons have been realized.
Collapse
Affiliation(s)
- Xiao-Lin He
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Xin-Ran Ma
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Nan Yan
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Xiao-Wei Zhang
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| |
Collapse
|
13
|
Park J, Jang D, Son J, An J, Park Y, Bae H, Kim M, Lee J. Copper(I)-Mediated Decarboxylative N-Arylation of Dioxazolones: Synthesis of N-Aryl Amides. Synlett 2023. [DOI: 10.1055/s-0041-1738431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractDioxazolones, which are potent amide precursors, have been widely explored for the formation of C–N bonds with the help of transition-metal catalysts. Here, we highlight our recent studies on the synthesis of N-aryl amides using dioxazolones and boronic acids in the presence of copper(I) chloride under mild conditions. The versatility of the developed reaction is demonstrated by its wide range of functional-group tolerances as well as the release of nontoxic carbon dioxide. Optimization screenings reveal that a fluorine additive improves the desired reactivity toward the intended transformation. The addition of triphenylphosphine results in an N-acyl iminophosphorane, suggesting the involvement of an N-acyl nitrene intermediate in this transformation.
Collapse
Affiliation(s)
- Jinhwan Park
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University
| | - Dongkyu Jang
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University
| | - Jongwoo Son
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University
- Department of Chemistry, Dong-A University
| | - Jihye An
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University
| | - Yeongmi Park
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University
| | | | | | | |
Collapse
|
14
|
Banjo S, Nakata K, Nakasuji E, Yasui S, Chida N, Sato T. Copper-Catalyzed Electrophilic Enamidation Using Dioxazolones through Hydrozirconation of Alkynes. Org Lett 2022; 24:8662-8666. [DOI: 10.1021/acs.orglett.2c03497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shona Banjo
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| | - Keisuke Nakata
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| | - Eiko Nakasuji
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| | - Soichiro Yasui
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| | - Noritaka Chida
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
15
|
Song JL, Chen SY, Xiao L, Xie XL, Zheng YC, Shang-Shi Z, Shu B. Rh(III)‐Catalyzed N‐Arylation of Alkyl Dioxazolones with Arylboronic Acids for the Synthesis of N‐Aryl Amides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia-Lin Song
- Guangdong Pharmaceutical University School of Pharmacy CHINA
| | - Shao-Yong Chen
- Guangdong Pharmaceutical University Center for Drug Research and Development CHINA
| | - Lin Xiao
- Guangdong Pharmaceutical University Center for Drug Research and Development CHINA
| | - Xiao-Ling Xie
- Guangdong Pharmaceutical University School of Pharmacy CHINA
| | - Yi-Chuan Zheng
- Guangdong Pharmaceutical University Center for Drug Research and Development CHINA
| | - Zhang Shang-Shi
- Guangdong Pharmaceutical University Center for Drug Research and development Higher Education Mega Center 510006 GuangZhou CHINA
| | - Bing Shu
- Guangdong Pharmaceutical University School of Pharmacy CHINA
| |
Collapse
|
16
|
Ravindar L, Hasbullah SA, Hassan NI, Qin HL. Cross‐Coupling of C‐H and N‐H Bonds: a Hydrogen Evolution Strategy for the Construction of C‐N Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lekkala Ravindar
- Universiti Kebangsaan Malaysia Fakulti Teknologi dan Sains Maklumat Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Siti Aishah Hasbullah
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Nurul Izzaty Hassan
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Hua-Li Qin
- Wuhan University of Technology School of Chemistry 430070 Hubei CHINA
| |
Collapse
|
17
|
Han X, Pi C, Hu D, Hu W, Wu Y, Cui X. Cobalt(II)-Catalyzed C-H and N-H Functionalization of 1-Arylpyrazolidinones with Dioxazolones as Bifunctional Synthons. Org Lett 2022; 24:4650-4655. [PMID: 35704765 DOI: 10.1021/acs.orglett.2c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dioxazolone has been attractive as an important synthon for a direct C-H amidation through a nitrene intermediate or Curtius rearrangement to form the isocyanate. However, the combination of two reaction models of dioxazolone has not been reported. Herein, a cobalt-catalyzed C-H and N-H functionalization of 1-arylpyrazolidinones with dioxazolones was developed. The dioxazolones acted as an amidated and carboxamidated reagent. Three C-N bonds were formed in a "one-pot" manner, which promoted the requirement of synthetic diversity.
Collapse
Affiliation(s)
- Xiliang Han
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Di Hu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Wei Hu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
18
|
Adegboyega AK, Son J. Reaction of Dioxazolones with Boronic Acids: Copper-Mediated Synthesis of N-Aryl Amides via N-Acyl Nitrenes. Org Lett 2022; 24:4925-4929. [PMID: 35776142 DOI: 10.1021/acs.orglett.2c01837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dioxazolones, as direct amide sources, have been used with boronic acids in the presence of copper(I) chloride to access N-aryl amides at room temperature. The versatility of the developed reaction is proven by ample scope having a wide range of functional group tolerance. The reaction optimization conditions revealed that a fluorine additive demonstrated improved reactivity toward the intended transformation. The addition of triphenylphosphine resulted in N-acyl iminophosphorane, suggesting the involvement of an N-acyl nitrene intermediate.
Collapse
Affiliation(s)
| | - Jongwoo Son
- Department of Chemistry, Dong-A University, Busan 49315, South Korea.,Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan 49315, South Korea
| |
Collapse
|
19
|
Jeong J, Jung H, Kim D, Chang S. Multidimensional Screening Accelerates the Discovery of Rhodium Catalyst Systems for Selective Intra- and Intermolecular C–H Amidations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiwoo Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
20
|
Wu D, Liu Z, Chang Y, Chen J, Qi H, Dong Y, Xu H. Cp*Co III-catalyzed formal [4 + 2] cycloaddition of 2-phenyl-1 H-imidazoles to afford imidazo[1,2- c]quinazoline derivatives. Org Biomol Chem 2022; 20:4993-4998. [PMID: 35694953 DOI: 10.1039/d2ob00697a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic protocol based on Cp*CoIII-catalyzed C-H amidation/annulation of 2-aryl-1H-imidazoles with 1,4,2-dioxazol-5-ones was developed to give imidazo[1,2-c]quinazoline derivatives with broad substrate scope in moderate to good yields. The method has good prospects of application in the synthesis of imidazo[1,2-c]quinazoline drugs.
Collapse
Affiliation(s)
- Deyu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhengqiang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yiting Chang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiajing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Haixiang Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medcial University, Guiyang 550014, China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
21
|
Sun L, Zhao Y, Liu B, Chang J, Li X. Rhodium III-catalyzed remote difunctionalization of arenes assisted by a relay directing group. Chem Sci 2022; 13:7347-7354. [PMID: 35799802 PMCID: PMC9214915 DOI: 10.1039/d2sc02205b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022] Open
Abstract
Rhodium-catalyzed diverse tandem twofold C-H bond activation reactions of para-olefin-tethered arenes have been realized, with unsaturated reagents such as internal alkynes, dioxazolones, and isocyanates being the coupling partner as well as a relay directing group which triggers cyclization of the para-olefin group under oxidative or redox-neutral conditions. The reaction proceeded via initial ortho-C-H activation assisted by a built-in directing group in the arene, and the ortho-incorporation of the unsaturated coupling partner simultaneously generated a relay directing group that allows sequential C-H activation at the meta-position and subsequent cyclization of the para-olefins. The overall reaction represents C-C or N-C difunctionalization of the arene with the generation of diverse 2,3-dihydrobenzofuran platforms. The catalytic system proceeded with good efficiency, simple reaction conditions, and broad substrate scope. The diverse transformations of the products demonstrated the synthetic utility of this tandem reaction.
Collapse
Affiliation(s)
- Lincong Sun
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Yuyao Zhao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Bingxian Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Xingwei Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 250100 China
| |
Collapse
|
22
|
Dahiya P, Sarkar A, Sundararaju B. Well‐defined [Cp*Co(N,O)I]‐Catalysts for Site‐selective Intramolecular C‐H Amidation. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Choi H, Lyu X, Kim D, Seo S, Chang S. Endo-Selective Intramolecular Alkyne Hydroamidation Enabled by NiH Catalysis Incorporating Alkenylnickel Isomerization. J Am Chem Soc 2022; 144:10064-10074. [PMID: 35621341 DOI: 10.1021/jacs.2c03777] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Intramolecular alkyne hydroamidation represents a straightforward approach for the access to synthetically valuable cyclic enamides. Despite some advances made in this realm, the ability to attain a precise regiocontrol still remains challenging, especially for endo cyclization that leads to six-membered and larger azacyclic rings. Herein, we report a NiH-catalyzed intramolecular hydroamidation of alkynyl dioxazolones that allows for an excellent endo selectivity, thus affording a range of six- to eight-membered endocyclic enamides with a broad scope. Mechanistic investigations revealed that Ni(I) catalysis is operative in the current system, proceeding via regioselective syn-hydronickelation, alkenylnickel E/Z isomerization, and Ni-centered inner-sphere nitrenoid transfer. In particular, the key alkenylnickel isomerization step, which previously lacked mechanistic understandings, was found to take place through the η2-vinyl transition state. The synthetic value of this protocol was demonstrated by diastereoselective modifications of the obtained endocyclic enamides to highly functionalized δ-lactam scaffolds.
Collapse
Affiliation(s)
- Hoonchul Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Xiang Lyu
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sangwon Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
24
|
Mahato SK, Chatani N. Carboxylate-Assisted Iridium (III)-Catalyzed C(sp 2)-H Amidation of 2-Aroylimidazoles With Dioxazolones. J Org Chem 2022; 87:8183-8193. [PMID: 35666267 DOI: 10.1021/acs.joc.2c00949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Ir(III)-catalyzed ortho C-H amidation of 2-aroylimidazoles with 3-aryldioxazolones as an amidating reagent is reported. The method provides a broad substrate scope with wide functional group compatibility. Mechanistic studies indicate that C-H bond cleavage is reversible and appears not to be the rate-determining step. The presence of an electron-donating group in the 2-aroylimidazoles and an electron-withdrawing group in the 3-aryldioxazoles significantly accelerates the reaction, suggesting that nitrene insertion is the rate-determining step.
Collapse
Affiliation(s)
- Sanjit K Mahato
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Zhou Z, Kweon J, Jung H, Kim D, Seo S, Chang S. Photoinduced Transition-Metal-Free Chan-Evans-Lam-Type Coupling: Dual Photoexcitation Mode with Halide Anion Effect. J Am Chem Soc 2022; 144:9161-9171. [PMID: 35549253 DOI: 10.1021/jacs.2c03343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report a photoinduced transition-metal-free C(aryl)-N bond formation between 2,4,6-tri(aryl)boroxines or arylboronic acids as an aryl source and 1,4,2-dioxazol-5-ones (dioxazolones) as an amide coupling partner. Chloride anion, either generated in situ by photodissociation of chlorinated solvent molecules or added separately as an additive, was found to play a critical cooperative role, thereby giving convenient access to a wide range of synthetically versatile N-arylamides under mild photo conditions. The synthetic virtue of this transition-metal-free Chan-Evans-Lam-type coupling was demonstrated by large-scale reactions, synthesis of 15N-labeled arylamides, and applicability toward biologically relevant compounds. On the basis of mechanistic investigations, two distinctive photoexcitations are proposed to function in the current process, in which the first excitation involving chloro-boron adduct facilitates the transition-metal-free activation of dioxazolones by single electron transfer (SET), and the second one enables the otherwise-inoperative 1,2-aryl migration of the thus-formed N-chloroamido-borate adduct.
Collapse
Affiliation(s)
- Zijun Zhou
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Jeonguk Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Sangwon Seo
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
26
|
Tao Y, Hu R, Xie Z, Lin P, Su W. Cobalt-Catalyzed Regioselective para-Amination of Azobenzenes via Nucleophilic Aromatic Substitution of Hydrogen. J Org Chem 2022; 87:4724-4731. [PMID: 35290054 DOI: 10.1021/acs.joc.2c00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metal-catalyzed nucleophilic aromatic substitution of hydrogen (SNArH) via coordination of the substituent on the aromatic ring to the metal catalyst, in terms of reactivity, substrate type, and reaction selectivity, complements the transition metal-catalyzed C-H functionalization that proceeds via C-H metalation but remains an elusive target. Described herein is the development of an unprecedented cobalt-catalyzed para-selective amination of azobenzenes, which is essentially a metal-promoted SNArH process as revealed by Hammett analysis, thus illustrating the concept that coordination of the substituent on the arene ring to the metal catalyst may result in electrophilic activation of the arene ring toward SNArH. This cobalt-catalyzed protocol allows the use of a variety of both aliphatic amines and anilines as aminating reagents, tolerates electronically diverse substituents of azobenzene, and furnishes the corresponding products in good yields with a regiospecific selectivity for para-amination.
Collapse
Affiliation(s)
- Yigao Tao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Rong Hu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zeyu Xie
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ping Lin
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
27
|
Borah G, Dam B, Patel BK. Ortho
‐Functionalization of Benzimidates and Benzamidines. ChemistrySelect 2022. [DOI: 10.1002/slct.202104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gongutri Borah
- Department of Chemistry Indian Institute of Technology Guwahati, North Guwahati Guwahati 781039 Assam India
| | - Binoyargha Dam
- Department of Chemistry Indian Institute of Technology Guwahati, North Guwahati Guwahati 781039 Assam India
| | - Bhisma K. Patel
- Department of Chemistry Indian Institute of Technology Guwahati, North Guwahati Guwahati 781039 Assam India
| |
Collapse
|
28
|
Mandal R, Garai B, Sundararaju B. Weak-Coordination in C–H Bond Functionalizations Catalyzed by 3d Metals. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05267] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rajib Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| | - Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| |
Collapse
|
29
|
Liu X, Li W, Jiang W, Lu H, Liu J, Lin Y, Cao H. Cu(II)-Catalyzed C-H Amidation/Cyclization of Azomethine Imines with Dioxazolones via Acyl Nitrenes: A Direct Access to Diverse 1,2,4-Triazole Derivatives. Org Lett 2022; 24:613-618. [PMID: 34978440 DOI: 10.1021/acs.orglett.1c04044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report a Cu(II)-catalyzed C-H amidation/cyclization of azomethine imines with dioxazolones as acyl nitrene transfer reagents under additive- and ligand-free conditions. An array of 1,2,4-triazolo[1,5-a]pyridine derivatives were afforded in moderate to good yields with excellent functional group tolerance. In addition, scale-up reaction and photoluminescence properties were discussed.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. of China
| | - Wen Li
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. of China
| | - Wenxuan Jiang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. of China
| | - Hao Lu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. of China
| | - Jiali Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. of China
| | - Yijun Lin
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. of China
| |
Collapse
|
30
|
Van Emelen L, Henrion M, Lemmens R, De Vos D. C–N coupling reactions with arenes through C–H activation: the state-of-the-art versus the principles of green chemistry. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01827b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we discuss the state-of-the-art in arene C–N coupling through C–H activation and to what extent it complies with the principles of green chemistry, with a focus on heterogeneously catalysed systems.
Collapse
Affiliation(s)
- Lisa Van Emelen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Mickaël Henrion
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Robin Lemmens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Dirk De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| |
Collapse
|
31
|
Atkin L, Priebbenow DL. Cobalt-catalysed acyl silane directed ortho C–H functionalisation of benzoyl silanes. Chem Commun (Camb) 2022; 58:12604-12607. [DOI: 10.1039/d2cc05350k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acyl silanes can be engaged as weakly coordinating directing groups in cobalt catalysed C–H functionalisation reactions to prepare benzoyl silanes that are highly amenable to subsequent synthetic manipulations yet inaccessible via existing methods.
Collapse
Affiliation(s)
- Liselle Atkin
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Daniel L. Priebbenow
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
- School of Chemistry, University of Melbourne, Parkville, 3010, Victoria, Australia
| |
Collapse
|
32
|
Gao P, Zhang X, Zheng QZ. Cobalt(III)-catalyzed C-H amidation of N, N-dialkyl thiobenzamides by sulfur coordination. Org Biomol Chem 2021; 19:10332-10336. [PMID: 34817486 DOI: 10.1039/d1ob02034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient inexpensive cobalt(III)-catalyzed intermolecular amidation of N,N-dialkyl thiobenzamides with 1,4,2-dioxazol-5-ones via C-H bond activation is described. The reaction proceeds with high functional group tolerance under external oxidant free conditions, providing a straightforward approach for the direct modification of thioamide derivatives, which are prevalent organic motifs found in vital biological and pharmaceutical molecules.
Collapse
Affiliation(s)
- Pengpeng Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Xiaohui Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Qing-Zhong Zheng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. .,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, China
| |
Collapse
|
33
|
Abstract
Classical amination methods involve the reaction of a nitrogen nucleophile with an electrophilic carbon center; however, in recent years, umpoled strategies have gained traction where the nitrogen source acts as an electrophile. A wide range of electrophilic aminating agents are now available, and these underpin a range of powerful C-N bond-forming processes. In this Review, we highlight the strategic use of electrophilic aminating agents in total synthesis.
Collapse
Affiliation(s)
- Lauren G. O'Neil
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - John F. Bower
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
34
|
Affiliation(s)
- Lauren G. O'Neil
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - John F. Bower
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
35
|
Tang JJ, Yu X, Yamamoto Y, Bao M. Visible-Light-Promoted Iron-Catalyzed N-Arylation of Dioxazolones with Arylboronic Acids. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04538] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jing-Jing Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
36
|
|
37
|
Ghosh P, Das S. The C-H functionalization of N-alkoxycarbamoyl indoles by transition metal catalysis. Org Biomol Chem 2021; 19:7949-7969. [PMID: 34490862 DOI: 10.1039/d1ob01121a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Indole and its congeners are ubiquitous nitrogen-containing organic scaffolds present in a plethora of natural products, marketed drugs, and other organic functional molecules. Recent years have witnessed tremendous advances in the diversification of this motif and its biological applications via transition-metal-catalyzed auxiliary assisted site-selective inert C-H functionalization. In this burgeoning field, N-methoxy/ethoxy/pivaloxy amide functionality has emerged as a most potent auxiliary/DG (directing group) for a wide range of C-C and C-heteroatom bond formations, providing a new advance for forging structurally fabricated polycyclic indole frameworks. This review aims to highlight evolved transformations, like arylation, alkylation, alkenylation, allylation, amidation, difluorovinylation, deuteration, hydroarylation, etc., and the applications of N-alkoxycarbamoyl indole derivatives made within the period of 2014-August 2021. Additionally, explicit mechanistic underpinnings have also been provided in the appropriate places.
Collapse
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry, University of North Bengal, Darjeeling - 734013, India.
| | - Sajal Das
- Department of Chemistry, University of North Bengal, Darjeeling - 734013, India.
| |
Collapse
|
38
|
Banjare SK, Nanda T, Pati BV, Adhikari GKD, Dutta J, Ravikumar PC. Breaking the Trend: Insight into Unforeseen Reactivity of Alkynes in Cobalt-Catalyzed Weak Chelation-Assisted Regioselective C(4)–H Functionalization of 3-Pivaloyl Indole. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02689] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Gopal Krushna Das Adhikari
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Ponneri C. Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
39
|
Murali K, Machado LA, Carvalho RL, Pedrosa LF, Mukherjee R, Da Silva Júnior EN, Maiti D. Decoding Directing Groups and Their Pivotal Role in C-H Activation. Chemistry 2021; 27:12453-12508. [PMID: 34038596 DOI: 10.1002/chem.202101004] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Synthetic organic chemistry has witnessed a plethora of functionalization and defunctionalization strategies. In this regard, C-H functionalization has been at the forefront due to the multifarious applications in the development of simple to complex molecular architectures and holds a brilliant prospect in drug development and discovery. Despite been explored tremendously by chemists, this functionalization strategy still enjoys the employment of novel metal catalysts as well metal-free organic ligands. Moreover, the switch to photo- and electrochemistry has widened our understanding of the alternative pathways via which a reaction can proceed and these strategies have garnered prominence when applied to C-H activation. Synthetic chemists have been foraging for new directing groups and templates for the selective activation of C-H bonds from a myriad of carbon-hydrogen bonds in aromatic as well as aliphatic systems. As a matter of fact, by varying the templates and directing groups, scientists found the answer to the challenge of distal C-H bond activation which remained an obstacle for a very long time. These templates have been frequently harnessed for selectively activating C-H bonds of natural products, drugs, and macromolecules decorated with multiple C-H bonds. This itself was a challenge before the commencement of this field as functionalization of a site other than the targeted site could modify and hamper the biological activity of the pharmacophore. Total synthesis and pharmacophore development often faces the difficulty of superfluous reaction steps towards selective functionalization. This obstacle has been solved by late-stage functionalization simply by harnessing C-H bond activation. Moreover, green chemistry and metal-free reaction conditions have seen light in the past few decades due to the rising concern about environmental issues. Therefore, metal-free catalysts or the usage of non-toxic metals have been recently showcased in a number of elegant works. Also, research groups across the world are developing rational strategies for directing group free or non-directed protocols that are just guided by ligands. This review encapsulates the research works pertinent to C-H bond activation and discusses the science devoted to it at the fundamental level. This review gives the readers a broad understanding of how these strategies work, the execution of various metal catalysts, and directing groups. This not only helps a budding scientist towards the commencement of his/her research but also helps a matured mind searching out for selective functionalization. A detailed picture of this field and its progress with time has been portrayed in lucid scientific language with a motive to inculcate and educate scientific minds about this beautiful strategy with an overview of the most relevant and significant works of this era. The unique trait of this review is the detailed description and classification of various directing groups and their utility over a wide substrate scope. This allows an experimental chemist to understand the applicability of this domain and employ it over any targeted substrate.
Collapse
Affiliation(s)
- Karunanidhi Murali
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Luana A Machado
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.,Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Renato L Carvalho
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Leandro F Pedrosa
- Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Rishav Mukherjee
- Department of Chemistry IIT Bombay, Powai, Mumbai, 400076, India
| | | | - Debabrata Maiti
- Department of Chemistry IIT Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
40
|
Devkota S, Kim S, Yoo SY, Mohandoss S, Baik MH, Lee YR. Ruthenium(ii)-catalyzed regioselective direct C4- and C5-diamidation of indoles and mechanistic studies. Chem Sci 2021; 12:11427-11437. [PMID: 34567497 PMCID: PMC8409494 DOI: 10.1039/d1sc02138a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
A ruthenium(ii)-catalyzed regioselective direct diamidation of 3-carbonylindoles at the C4- and C5-positions using various dioxazolones is described. This novel protocol allows for the effective installation of two amide groups on the benzene ring in indole. A remarkably broad substrate scope, excellent functional group tolerance, and mild reaction conditions are notable features of this protocol. Further explorations reveal that benzo[b]thiophene-3-carboxaldehyde is a viable substrate and affords its corresponding diamidation products. The diamido indoles are further converted into various functionalized products and used as sensors for metal ion detection. Density functional theory studies are also conducted to propose a reaction mechanism and provide a detailed understanding of the regioselectivity observed in the reaction. Ruthenium(ii)-catalyzed regioselective C4-/C5-diamidation of 3-carbonylindoles is described and a DFT study is conducted to understand the observed regioselectivity and the mechanism.![]()
Collapse
Affiliation(s)
- Shreedhar Devkota
- School of Chemical Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Suyeon Kim
- Department of Chemistry, Korea Advanced Institute of Technology (KAIST) Daejeon 34141 Republic of Korea .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seok Yeol Yoo
- Department of Chemistry, Korea Advanced Institute of Technology (KAIST) Daejeon 34141 Republic of Korea .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|
41
|
Sunny S, Karvembu R. Recent Advances in Cobalt‐Catalyzed, Directing‐Group‐Assisted C−H Bond Amidation Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sereena Sunny
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| |
Collapse
|
42
|
Tang J, Yu X, Wang Y, Yamamoto Y, Bao M. Interweaving Visible‐Light and Iron Catalysis for Nitrene Formation and Transformation with Dioxazolones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jing‐Jing Tang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 China
| | - Yi Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 China
- WPI-Advanced Institute for Materials Research Tohoku University Sendai 980-8577 Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 China
| |
Collapse
|
43
|
Tang JJ, Yu X, Wang Y, Yamamoto Y, Bao M. Interweaving Visible-Light and Iron Catalysis for Nitrene Formation and Transformation with Dioxazolones. Angew Chem Int Ed Engl 2021; 60:16426-16435. [PMID: 33843125 DOI: 10.1002/anie.202016234] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Indexed: 02/02/2023]
Abstract
Herein, visible-light-driven iron-catalyzed nitrene transfer reactions with dioxazolones for intermolecular C(sp3 )-N, N=S, and N=P bond formation are described. These reactions occur with exogenous-ligand-free process and feature satisfactory to excellent yields (up to 99 %), an ample substrate scope (109 examples) under mild reaction conditions. In contrast to intramolecular C-H amidations strategies, an intermolecular regioselective C-H amidation via visible-light-induced nitrene transfer reactions is devised. Mechanistic studies indicate that the reaction proceeds via a radical pathway. Computational studies show that the decarboxylation of dioxazolone depends on the conversion of ground sextet state dioxazolone-bounding iron species to quartet spin state via visible-light irradiation.
Collapse
Affiliation(s)
- Jing-Jing Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Yi Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China.,WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| |
Collapse
|
44
|
Gillespie JE, Morrill C, Phipps RJ. Regioselective Radical Arene Amination for the Concise Synthesis of ortho-Phenylenediamines. J Am Chem Soc 2021; 143:9355-9360. [PMID: 34128670 PMCID: PMC8251697 DOI: 10.1021/jacs.1c05531] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The
formation of arene C–N bonds directly from C–H
bonds is of great importance and there has been rapid recent development
of methods for achieving this through radical mechanisms, often involving
reactive N-centered radicals. A major challenge associated
with these advances is that of regiocontrol, with mixtures of regioisomeric
products obtained in most protocols, limiting broader utility. We
have designed a system that utilizes attractive noncovalent interactions
between an anionic substrate and an incoming radical cation in order
to guide the latter to the arene ortho position.
The anionic substrate takes the form of a sulfamate-protected aniline
and telescoped cleavage of the sulfamate group after amination leads
directly to ortho-phenylenediamines, key building
blocks for a range of medicinally relevant diazoles. Our method can
deliver both free amines and monoalkyl amines allowing access to unsymmetrical,
selectively monoalkylated benzimidazoles and benzotriazoles. As well
as providing concise access to valuable ortho-phenylenediamines,
this work demonstrates the potential for utilizing noncovalent interactions
to control positional selectivity in radical reactions.
Collapse
Affiliation(s)
- James E Gillespie
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Charlotte Morrill
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
45
|
Hong SY, Hwang Y, Lee M, Chang S. Mechanism-Guided Development of Transition-Metal-Catalyzed C-N Bond-Forming Reactions Using Dioxazolones as the Versatile Amidating Source. Acc Chem Res 2021; 54:2683-2700. [PMID: 33979133 DOI: 10.1021/acs.accounts.1c00198] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Catalytic reactions that construct carbon-nitrogen bonds are one of central themes in both synthetic and medicinal chemistry since the obtainable nitrogen-containing motifs are commonly encountered in natural products and have also seen a growing prominence as key structural features in marketed drugs and preclinical candidates. Pd-catalyzed cross-couplings, such as Buchwald-Hartwig amination, are at the forefront of such synthetic methods in practical settings. However, they require prefunctionalized substrates such as (hetero)aryl halides that must be prepared independently, often by multiple operations. One emerging way to circumvent these preparatory steps and directly convert ubiquitous C-H bonds into valuable C-N bonds is catalytic C-H amination, which allows synthetic chemists to devise shorter and more efficient retrosynthetic schemes. The past two decades have witnessed considerable progress in expanding the repertoire of this strategy, especially by identifying effective amino group precursors. In this context, dioxazolones have experienced a dramatic resurgence in recent years as a versatile nitrogen source in combination with transition-metal catalyst systems that facilitate decarboxylation to access key metal-acylnitrenoid intermediates. In addition to their high robustness and easy accessibility from abundant carboxylic acids, the unique reactivity of the transient intermediates in the amido group transfer has led to a fruitful journey for mild and efficient C-H amidation reactions.This Account summarizes our recent contributions to the development of C-N bond-forming reactions using dioxazolones as effective nitrenoid precursors, which are categorized into two subsets according to their mechanistic differences: inner- versus outer-sphere pathways. The first section describes how we could unveil the synthetic potential of dioxazolones in the realm of the inner-sphere C-H amidation, where we demonstrated that dioxazolones serve not only as manageable alternatives to acyl azides but also as highly efficient reagents to significantly reduce the catalyst loading and temperature. Taking advantage of the mild conditions in combination with group 9 Cp*M complexes (M = Rh, Ir, Co) or isoelectronic Ru species, we have dramatically expanded the accessible synthetic scope. Mechanistic investigations revealed that the putative metal-nitrenoid species is involved as a key intermediate during catalysis, which leads to facile C-N bond formation. On the basis of the mechanistic underpinning, we have succeeded in developing novel catalytic platforms that harness the intermediacy of metal-nitrenoids to explore C-H insertion chemistry via an outer-sphere pathway. Indeed, the tailored catalysts were capable of suppressing the competitive Curtius-type decomposition, thus granting access to versatile lactam products. We have further repurposed the catalytic systems upon modification of chelating ligands and also the identity of the transition metal to achieve three goals: (i) addressing selectivity issues to control the regio-, chemo-, and enantioselectivities, (ii) developing sustainable catalysis by first-low metals, and (iii) navigating chemical space for (di)functionalization of alkenes/alkynes. Together with our own research efforts, highlighted herein are some important relevant advances by other groups. We finally conclude with a brief overview with an eye toward further developments.
Collapse
Affiliation(s)
- Seung Youn Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Yeongyu Hwang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Minhan Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
46
|
Yoshino T, Matsunaga S. Chiral Carboxylic Acid Assisted Enantioselective C–H Activation with Achiral CpxMIII (M = Co, Rh, Ir) Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01351] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tatsuhiko Yoshino
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
47
|
Ma N, Liu Z, Huang J, Dang Y. Mechanistic studies of Cp*Ir(III)/Cp*Rh(III)-catalyzed branch-selective allylic C-H amidation: why is Cp*Ir(III) superior to Cp*Rh(III)? Org Biomol Chem 2021; 19:3850-3858. [PMID: 33949601 DOI: 10.1039/d1ob00446h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations have revealed the mechanism and origins of the reactivity and regioselectivity of the Cp*Ir(iii)/Cp*Rh(iii)-catalyzed allylic C-H amidation of alkenes and dioxazolones. Generally, the catalytic cycle consists of alkene coordination, C(sp3)-H activation, dioxazolone oxidative addition, reductive elimination and proto-demetallation to give the final amidation product. The C-H activation is found to be the rate-determining step, and it controls the reactivity of the reaction. For the Cp*Ir(iii)-catalyzed system, the C-H activation undergoes an Ir(iii)-assisted proton transfer process with a low energy barrier, elucidating its high reactivity. In contrast, the C-H activation step is more like a direct deprotonation in the Cp*Rh(iii)-catalyzed system, which is responsible for its higher barrier and lower reactivity. The branched-selectivity arises from the electronic effect of the alkyl group on the charge distribution over the allylic moiety. Herein, iridium(v) polarizes the allylic group greater than that of the rhodium(v) system, which accounts for its good regioselectivity. The mechanistic insights will be useful for the further development of transition metal-catalyzed selective C-H amination reactions.
Collapse
Affiliation(s)
- Nan Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China. and School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zheyuan Liu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Jianhui Huang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yanfeng Dang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
48
|
Yao T, Wang B, Ren B, Qin X, Li T. Palladium-catalyzed Ugi-type reaction of 2-iodoanilines with isocyanides and carboxylic acids affording N-acyl anthranilamides. Chem Commun (Camb) 2021; 57:4247-4250. [PMID: 33913976 DOI: 10.1039/d1cc01226f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first palladium-catalyzed Ugi-type multicomponent reaction for the synthesis of N-acyl anthranilamides from isocyanides, 2-iodoanilines and carboxylic acids has been developed. This method provides expeditious and highly efficient access to structurally diverse N-acyl anthranilamides from readily available starting materials with good functional group compatibility. The utility of this method has been demonstrated by the late stage functionalization of two commercial drugs: Flurbiprofen and Loxoprofen.
Collapse
Affiliation(s)
- Tuanli Yao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Bo Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Beige Ren
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Xiangyang Qin
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue RD, Minhang District, Shanghai, 200241, China.
| |
Collapse
|
49
|
Lyu X, Zhang J, Kim D, Seo S, Chang S. Merging NiH Catalysis and Inner-Sphere Metal-Nitrenoid Transfer for Hydroamidation of Alkynes. J Am Chem Soc 2021; 143:5867-5877. [DOI: 10.1021/jacs.1c01138] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiang Lyu
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jianbo Zhang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sangwon Seo
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
50
|
Abstract
The crucial role played by compounds bearing amide functions, not only in biological processes but also in several fields of chemistry, life polymers and material sciences, has brought about many significant discoveries and innovative approaches for their chemical synthesis. Indeed, a plethora of strategies has been developed to reach such moieties. Amides within chiral molecules are often associated with biological activity especially in life sciences and medicinal chemistry. In most of these cases, their synthesis requires extensive rethinking methodologies. In the very last years (2019–2020), enantioselective C-H functionalization has appeared as a straightforward alternative to reach chiral amides. Therein, an overview on these transformations within this timeframe is going to be given.
Collapse
|