1
|
Nayak MK, Chakraborty S, Mohanty A, Roy S. SnCl 2-catalyzed multicomponent coupling: synthesis of 1,3-oxazolidine derivatives using paraformaldehyde as a C1 feedstock. Org Biomol Chem 2024; 22:5768-5775. [PMID: 38920417 DOI: 10.1039/d4ob00791c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
SnCl2 catalyzed the three-component coupling of aniline, epoxide, and paraformaldehyde, resulting in the synthesis of 1,3-oxazolidine derivatives. The reaction is simple and does not require any additives, bases, or oxidants, and proceeds at moderate temperature with good functional group tolerance. The scope of the utilization of paraformaldehyde as the methylene source was further extended to the synthesis of benzothiazole and 4,4'-methylenebis(N,N-dimethylaniline) using the same catalyst. A catalytic pathway was proposed based on the control experiments.
Collapse
Affiliation(s)
- Mukesh Kumar Nayak
- Organometallics & Catalysis Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Arugul, Jatani, Khurda 752050, Odisha, India.
| | - Swati Chakraborty
- Organometallics & Catalysis Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Arugul, Jatani, Khurda 752050, Odisha, India.
| | - Anuradha Mohanty
- Organometallics & Catalysis Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Arugul, Jatani, Khurda 752050, Odisha, India.
| | - Sujit Roy
- Organometallics & Catalysis Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Arugul, Jatani, Khurda 752050, Odisha, India.
| |
Collapse
|
2
|
Li W, Lin J, Huang S, Liu Q, Wei W, Li X. Cycloaddition of N-arylnitrones with donor-acceptor oxiranes via C-C bond cleavage to construct 1,5,2-dioxazinanes. Org Biomol Chem 2023; 21:6778-6782. [PMID: 37564027 DOI: 10.1039/d3ob00375b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Highly functionalized 1,5,2-dioxazinanes could be smoothly produced via a Sc(OTf)3-catalyzed chemoselective [3 + 3] cycloaddition of various N-arylnitrones with a series of donor-acceptor oxiranes. This reaction involves in situ generation of 1,3-dipoles through Sc(OTf)3-catalyzed C-C bond cleavage of oxiranes and moderate to high yields were obtained for most substrates. This transformation features C-C bond cleavage of donor-acceptor oxiranes, accessible starting materials and mild reaction conditions.
Collapse
Affiliation(s)
- Wenhui Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Jianying Lin
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Shuangping Huang
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Qiang Liu
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Wenlong Wei
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| | - Xing Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, China.
| |
Collapse
|
3
|
Zhou L, Long R, Hu M, Liu N, Feng Y, Qiu L, Li Z, Chen Y, Wang L. Synthesis and Evaluation of 18F-Labeled Boramino Acids as Potential New Positron Emission Tomography Agents for Cancer Management. Mol Pharm 2022; 19:2191-2202. [PMID: 35473312 DOI: 10.1021/acs.molpharmaceut.2c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Boron neutron capture therapy (BNCT) is a promising cancer treatment strategy that utilizes boron-containing ligands. In this report, a series of substituted boramino acids were synthesized and evaluated, aiming to obtain metabolically stable boron-derived agents that could integrate positron emission tomography (PET) with BNCT (a theranostic agent). Based on the phenylalanine (Phe) core structure, the impact of substitution groups on tumor accumulation was studied. The agents were labeled with fluorine-18 in 27.2-66.8% yield via the 18F-19F isotope exchange reaction. In B16-F10 tumor-bearing mice, [18F]-(R)-(1-ammonio-2-(4-methoxyphenyl) ethyl) trifluoroborate (R-[18F]-5a) demonstrated the best tumor uptake (5.54 ± 2.32% ID/g based on ex vivo biodistribution and 3.5 ± 0.04% ID/g based on PET imaging with the tumor-to-muscle ratio up to 2.6) and stability compared with other tested agents. Together, R-[18F]-5a is a promising agent that could potentially integrate PET and BNCT, whose treatment efficacy is worth further evaluation in the future.
Collapse
Affiliation(s)
- Liu Zhou
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan, Luzhou 646099, China.,Academician (Expert) Workstation of Sichuan, Luzhou 646099, China.,School of Pharmacy, Southwest Medical University, Luzhou 646608, China
| | - Ruiling Long
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan, Luzhou 646099, China.,Academician (Expert) Workstation of Sichuan, Luzhou 646099, China.,School of Pharmacy, Southwest Medical University, Luzhou 646608, China
| | - Mei Hu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan, Luzhou 646099, China.,Academician (Expert) Workstation of Sichuan, Luzhou 646099, China.,School of Pharmacy, Southwest Medical University, Luzhou 646608, China
| | - Nan Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan, Luzhou 646099, China.,Academician (Expert) Workstation of Sichuan, Luzhou 646099, China
| | - Yue Feng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan, Luzhou 646099, China.,Academician (Expert) Workstation of Sichuan, Luzhou 646099, China
| | - Lin Qiu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan, Luzhou 646099, China.,Academician (Expert) Workstation of Sichuan, Luzhou 646099, China
| | - Zibo Li
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan, Luzhou 646099, China.,Academician (Expert) Workstation of Sichuan, Luzhou 646099, China
| | - Li Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan, Luzhou 646099, China.,Academician (Expert) Workstation of Sichuan, Luzhou 646099, China
| |
Collapse
|
4
|
Sheng C, Ling Z, Luo Y, Zhang W. Cu-catalyzed asymmetric addition of alcohols to β,γ-alkynyl-α-imino esters for the construction of linear chiral N,O-ketals. Nat Commun 2022; 13:400. [PMID: 35058446 PMCID: PMC8776757 DOI: 10.1038/s41467-022-28002-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/19/2021] [Indexed: 12/01/2022] Open
Abstract
N,O-acetals are part of many synthetic intermediates and important skeletons of numerous natural products and pharmaceutical drugs. The most straightforward method of the synthesis of N,O-acetals is the enantioselective addition of O-nucleophiles to imines. However, using this method for the synthesis of linear chiral N,O-ketals still remains challenging due to the instability of raw materials under acidic or basic conditions. Herein, we developed a Cu-catalyzed asymmetric addition of alcohols to β,γ-alkynyl-α-imino esters under mild conditions, providing the corresponding linear chiral N,O-ketals with up to 96% ee. The method tolerates some variation in the β,γ-alkynyl-α-imino ester and alcohol scope, including some glucose and natural amino acid derivatives. Computational results indicate that the Boc group of the substrates assist in the extraction of hydrogen atoms from the alcohols to promote the addition reactions. These products could be synthesized on a gram-scale and can be used in several transformations. This asymmetric addition system provides an efficient, mild, gram-scale, and transition-metal-catalyzed synthesis of linear chiral N,O-ketals. N,O-acetals are part of many synthetic intermediates and important skeletons of numerous natural products and pharmaceutical drugs. Here the authors show a Cu-catalyzed asymmetric addition of alcohols to β,γ-alkynyl-α-imino esters, providing the corresponding linear chiral N,O-ketals with up to 96% ee.
Collapse
|
5
|
Matsuoka J, Terashita M, Miyawaki A, Tomioka K, Yamamoto Y. Phosphazene base-catalyzed hydroamination of aminoalkenes for the construction of isoindoline scaffolds: Application to the total synthesis of aristocularine. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Halogen bonding catalysis for the [3+2] cycloaddition reactions of epoxides with CO2, and other heterocumulenes. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Zhan F, Wang Z, Wu G, Shi Z, Zhang X, Zuo Q, Lin J, Jiang Y. Highly
Z
‐Selective Synthesis of Highly Substituted 1,3‐Oxathiolane‐2‐imines
via
TfOH‐Catalyzed Formal [3+2] Cycloaddition of Donor‐Acceptor Oxiranes and Isothiocyanates. ChemistrySelect 2021. [DOI: 10.1002/slct.202100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Feng Zhan
- Department of Chemistry Tsinghua University Beijing 100084 China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| | - Zhe Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| | - Guan‐Zheng Wu
- Department of Chemistry Tsinghua University Beijing 100084 China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| | - Zhichao Shi
- Department of Chemistry Tsinghua University Beijing 100084 China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| | - Xun Zhang
- Department of Chemistry Tsinghua University Beijing 100084 China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| | - Qinglu Zuo
- Department of Chemistry Tsinghua University Beijing 100084 China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| | - Jin‐Shun Lin
- Department of Chemistry Tsinghua University Beijing 100084 China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| | - Yuyang Jiang
- Department of Chemistry Tsinghua University Beijing 100084 China
- The State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Biology Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
- Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Bay Laboratory Shenzhen 518055 China
- School of Pharmaceutical Sciences Tsinghua University Beijing 100084 China
| |
Collapse
|
8
|
Kondoh A, Terada M. Development of Molecular Transformations on the Basis of Catalytic Generation of Anionic Species by Organosuperbase. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
9
|
Claraz A, Djian A, Masson G. Electrochemical tandem trifluoromethylation of allylamines/formal (3 + 2)-cycloaddition for the rapid access to CF3-containing imidazolines and oxazolidines. Org Chem Front 2021. [DOI: 10.1039/d0qo01307b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A straightforward and environmentally friendly synthesis of CF3-containing imidazolines and oxazolidines has been developed through an electrochemical three-component reaction among allylamines, the Langlois reagent, and nitrile or carbonyl compounds.
Collapse
Affiliation(s)
- Aurélie Claraz
- Institut de Chimie des Substances Naturelles
- Université Paris Saclay
- CNRS
- UPR2301
- 91198 Gif-sur-Yvette cedex
| | - Aurélie Djian
- Institut de Chimie des Substances Naturelles
- Université Paris Saclay
- CNRS
- UPR2301
- 91198 Gif-sur-Yvette cedex
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles
- Université Paris Saclay
- CNRS
- UPR2301
- 91198 Gif-sur-Yvette cedex
| |
Collapse
|
10
|
Tarannum S, Sk S, Das S, Wani IA, Ghorai MK. Stereoselective Syntheses of Highly Functionalized Imidazolidines and Oxazolidines via Ring-Opening Cyclization of Activated Aziridines and Epoxides with Amines and Aldehydes. J Org Chem 2020; 85:367-379. [PMID: 31782305 DOI: 10.1021/acs.joc.9b02278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A mild one-pot stereospecific synthetic route to highly functionalized imidazolidines and oxazolidines via SN2-type ring-opening of the corresponding activated aziridines and epoxides with amines followed by p-toluenesulfonic acid (PTSA)-catalyzed intramolecular cyclization with aldehydes has been developed. The methodology tolerates a variety of functional groups and furnishes the desired products in high yields (up to 92%) with excellent stereoselectivities (de, ee > 99%). Interestingly, imidazolidines were formed as the cis-isomers, whereas oxazolidines were produced as trans-isomers exclusively.
Collapse
Affiliation(s)
- Saima Tarannum
- Department of Chemistry , Indian Institute of Technology , 208016 Kanpur , Uttar Pradesh , India
| | - Sahid Sk
- Department of Chemistry , Indian Institute of Technology , 208016 Kanpur , Uttar Pradesh , India
| | - Subhomoy Das
- Department of Chemistry , Indian Institute of Technology , 208016 Kanpur , Uttar Pradesh , India
| | - Imtiyaz Ahmad Wani
- Department of Chemistry , Indian Institute of Technology , 208016 Kanpur , Uttar Pradesh , India
| | - Manas K Ghorai
- Department of Chemistry , Indian Institute of Technology , 208016 Kanpur , Uttar Pradesh , India
| |
Collapse
|
11
|
Yang S, Chen Y, Yuan Z, Bu F, Jiang C, Ding Z. Divergent synthesis of oxazolidines and morpholines via PhI(OAc)2-mediated difunctionalization of alkenes. Org Biomol Chem 2020; 18:9873-9882. [DOI: 10.1039/d0ob01987a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe the PhI(OAc)2-mediated 1,1- and 1,2-difunctionalization of alkenes with N-tosyl amino alcohols to form oxazolidine and morpholine derivatives.
Collapse
Affiliation(s)
- Shuang Yang
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Yuhang Chen
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Zidan Yuan
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Feiyu Bu
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Zhenhua Ding
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| |
Collapse
|
12
|
Zhu WR, Su Q, Lin N, Chen Q, Zhang ZW, Weng J, Lu G. Organocatalytic synthesis of chiral CF3-containing oxazolidines and 1,2-amino alcohols: asymmetric oxa-1,3-dipolar cycloaddition of trifluoroethylamine-derived azomethine ylides. Org Chem Front 2020. [DOI: 10.1039/d0qo00990c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of CF3-containing oxazolidines were constructed via organocatalytic asymmetric oxa-1,3-dipolar cycloaddition. These oxazolidines could undergo facile conversion to CF3-containing 1,2-amino alcohols with vicinal stereogenic centers.
Collapse
Affiliation(s)
- Wen-Run Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Qiong Su
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Ning Lin
- College of Pharmacy
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology
- Guangxi University of Chinese Medicine
- Guangxi University of Chinese Medicine
- Nanning
| | - Qing Chen
- College of Pharmacy
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology
- Guangxi University of Chinese Medicine
- Guangxi University of Chinese Medicine
- Nanning
| | - Zhen-Wei Zhang
- College of Pharmacy
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology
- Guangxi University of Chinese Medicine
- Guangxi University of Chinese Medicine
- Nanning
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| |
Collapse
|
13
|
Singh N, Dar AA, Kumar A. A Simple and Efficient Approach for the Synthesis of 1,3-Oxazolidines from β-Amino Alcohols Using Grinding Technique. ChemistrySelect 2018. [DOI: 10.1002/slct.201802369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nasseb Singh
- Synthetic Organic Chemistry Laboratory; Faculty of Sciences; Shri Mata Vaishno Devi University Katra; Jammu and Kashmir - 182320 India
| | - Alamgir A. Dar
- Bioorganic Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road, Jammu Tawi, J & K 180 001 India
- Research Centre for Residue and Quality Analysis; Sher-e-Kashmir University of Agricultural Sciences & Technology Kashmir; Srinagar - 190025, J & K India
| | - Anil Kumar
- Synthetic Organic Chemistry Laboratory; Faculty of Sciences; Shri Mata Vaishno Devi University Katra; Jammu and Kashmir - 182320 India
| |
Collapse
|
14
|
Reyes Loya D, De Paolis M. Nucleophilic‐Addition‐Initiated Ring Expansion and Selectivity in Anionic Fragmentation. Chemistry 2018; 25:1842-1847. [DOI: 10.1002/chem.201802862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 11/06/2022]
Affiliation(s)
- David Reyes Loya
- Normandie UniversitéUNIROUEN, INSA de RouenCNRS, Laboratoire COBRA(UMR 6014 & FR 3038) 76000 Rouen France
| | - Michaël De Paolis
- Normandie UniversitéUNIROUEN, INSA de RouenCNRS, Laboratoire COBRA(UMR 6014 & FR 3038) 76000 Rouen France
| |
Collapse
|
15
|
Wang J, Zhang QY, Xie MS, Wang DC, Qu GR, Guo HM. Cyclization Reaction of Donor-Acceptor Oxiranes with N,N'-Disubstituted Thioureas: A Domino Process to trans-Dihydropyrimidines. Org Lett 2018; 20:6578-6582. [PMID: 30295493 DOI: 10.1021/acs.orglett.8b02930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An unprecedented cyclization reaction of donor-acceptor oxiranes with N,N'-disubstituted thioureas to construct trans-dihydropyrimidines is presented. Preliminary reaction mechanism studies demonstrated that the reaction underwent sequential cycloaddition/amine ester exchange/oxygen-sulfur exchange/desulfuration/Michael addition process. A wide range of trans-dihydropyrimidines were produced with high yields up to 94% by using this method.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Qi-Ying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Dong-Chao Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| |
Collapse
|
16
|
Chai Y, Zhou J, Wu Y, Feng Y, Wang P, Chen Y, Wang X, Zhao B, Zhang Q. Organo-Catalyzed Regio- and Geometry-Specific Construction of β-Hydroxyl-α-vinyl Carboxylic Esters: Substrate Scope, Mechanistic Insights, and Applications. J Org Chem 2018; 83:10476-10486. [PMID: 30088930 DOI: 10.1021/acs.joc.8b01510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A green protocol has been developed for the synthesis of β-hydroxyl-α-vinyl carboxylic esters using aldehydes and α,β-unsaturated esters bearing an activated γ proton as starting materials under Morita-Baylis-Hillman (MBH) reaction conditions. Diverse β-hydroxyl-α-vinyl carboxylic esters have been synthesized regiospecifically in moderate to good yields with only E geometric selectivity. Other remarkable features include atom efficiency, environmental benignancy, and mild reaction conditions. Furthermore, the reaction products could be readily converted into tetrahydrofuran, dihydrofuran, and furan derivatives.
Collapse
Affiliation(s)
- Yonghai Chai
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P.R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P.R. China
| | - JinJin Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P.R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P.R. China
| | - Yanbin Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P.R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P.R. China
| | - Yingle Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P.R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P.R. China
| | - Panru Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P.R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P.R. China
| | - Yange Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P.R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P.R. China
| | - Xinying Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P.R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P.R. China
| | - Beibei Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P.R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P.R. China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P.R. China
| |
Collapse
|
17
|
Kondoh A, Terada M. Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl α-Iminoesters through Auto-Tandem Catalysis. Org Lett 2018; 20:5309-5313. [DOI: 10.1021/acs.orglett.8b02236] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
18
|
Kondoh A, Akahira S, Oishi M, Terada M. Enantioselective Formal [3+2] Cycloaddition of Epoxides with Imines under Brønsted Base Catalysis: Synthesis of 1,3‐Oxazolidines with Quaternary Stereogenic Center. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Shiori Akahira
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masafumi Oishi
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masahiro Terada
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
19
|
Kondoh A, Akahira S, Oishi M, Terada M. Enantioselective Formal [3+2] Cycloaddition of Epoxides with Imines under Brønsted Base Catalysis: Synthesis of 1,3‐Oxazolidines with Quaternary Stereogenic Center. Angew Chem Int Ed Engl 2018; 57:6299-6303. [DOI: 10.1002/anie.201802468] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/04/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Shiori Akahira
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masafumi Oishi
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masahiro Terada
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
20
|
Satheesh V, Vivek Kumar S, Punniyamurthy T. Expedient stereospecific Co-catalyzed tandem C–N and C–O bond formation of N-methylanilines with styrene oxides. Chem Commun (Camb) 2018; 54:11813-11816. [DOI: 10.1039/c8cc06223d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Co(ii)-catalyzed stereospecific sequential C–N and C–O bond formation of styrene oxides with N-methylanilines has been developed. Optically active epoxides can be coupled with high enantiomeric purity.
Collapse
Affiliation(s)
- Vanaparthi Satheesh
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | | | | |
Collapse
|
21
|
Liu JJ, Cheng L, Huang HY, Wei F, Wang D, Liu L. Unprecedented formation of 3-(tetrahydrofuran-2-yl)-4H-chromen-4-one in a reaction between 3,3a-dihydro-9H-furo[3,4-b]chromen-9-one and malononitrile. Org Biomol Chem 2017; 15:5078-5088. [PMID: 28580978 DOI: 10.1039/c7ob00904f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chromone skeletons are widespread among natural products as well as bioactive molecules. Here, we describe an unprecedented reaction of furo[3,4-b]chromen-9-one with malononitrile to afford 3-(tetrahydrofuran-2-yl)-4H-chromen-4-ones. Experimental data suggest that a sequence of Michael/retro-Michael/nucleophilic addition is involved in this unprecedented transformation.
Collapse
Affiliation(s)
- Jie-Jie Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | |
Collapse
|
22
|
Ghrab S, Aroua L, Beji M. One-pot Three Component Synthesis of ω-(oxathiolan-2-thion-5-yl)-α-oxazolidin-2-ones. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Saad Ghrab
- Laboratory of Structural Organic Chemistry, Department of Chemistry, Faculty of Sciences of Tunis; Tunis El-Manar University; El Manar I 2092 Tunis Tunisia
| | - Lotfi Aroua
- Laboratory of Structural Organic Chemistry, Department of Chemistry, Faculty of Sciences of Tunis; Tunis El-Manar University; El Manar I 2092 Tunis Tunisia
- Department of Chemistry; College of Sciences, Qassim University; Buraida Qassim Saudi Arabia
| | - Mohamed Beji
- Laboratory of Structural Organic Chemistry, Department of Chemistry, Faculty of Sciences of Tunis; Tunis El-Manar University; El Manar I 2092 Tunis Tunisia
- Preparatory Institute for Engineering Studies of Tunis; Tunis University, Montfleury; Tunis Tunisia
| |
Collapse
|
23
|
Satheesh V, Sengoden M, Punniyamurthy T. “On Water” C(sp3)–H Functionalization/C–O/C–N Bonds Formations: Synthesis of Functionalized Oxazolidines and Imidazolidines. J Org Chem 2016; 81:9792-9801. [DOI: 10.1021/acs.joc.6b01850] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vanaparthi Satheesh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Mani Sengoden
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
24
|
Ma J, Yuan ZZ, Kong XW, Wang H, Li YM, Xiao H, Zhao G. Reagent-Controlled Tandem Reactions of Vinyl Epoxides: Access to Functionalized γ-Butenolides. Org Lett 2016; 18:1450-3. [DOI: 10.1021/acs.orglett.6b00392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Juan Ma
- Department
of Pharmaceutical Engineering, Hefei University of Technology, 193 Tunxi
Road, Hefei 230009, P. R. China
| | - Zhe-zhe Yuan
- Department
of Pharmaceutical Engineering, Hefei University of Technology, 193 Tunxi
Road, Hefei 230009, P. R. China
| | - Xiang-wen Kong
- Department
of Pharmaceutical Engineering, Hefei University of Technology, 193 Tunxi
Road, Hefei 230009, P. R. China
| | - Huai Wang
- Department
of Pharmaceutical Engineering, Hefei University of Technology, 193 Tunxi
Road, Hefei 230009, P. R. China
| | - Yi-ming Li
- Department
of Pharmaceutical Engineering, Hefei University of Technology, 193 Tunxi
Road, Hefei 230009, P. R. China
| | - Hua Xiao
- Department
of Pharmaceutical Engineering, Hefei University of Technology, 193 Tunxi
Road, Hefei 230009, P. R. China
- Key
Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Lu, Shanghai 200032, P. R. China
| | - Gang Zhao
- Key
Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Lu, Shanghai 200032, P. R. China
| |
Collapse
|
25
|
Pablo Ortiz, Collados JF, Harutyunyan SR. Direct Synthesis of EnolizableN-Sulfonyl Ketimines Under Microwave Irradiation. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Lauridsen VH, Ibsen L, Blom J, Jørgensen KA. Asymmetric Brønsted Base Catalyzed and Directed [3+2] Cycloaddition of 2-Acyl Cycloheptatrienes with Azomethine Ylides. Chemistry 2016; 22:3259-3263. [DOI: 10.1002/chem.201600255] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Vibeke H. Lauridsen
- Chemistry Department; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Lise Ibsen
- Chemistry Department; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Jakob Blom
- Chemistry Department; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| | - Karl Anker Jørgensen
- Chemistry Department; Aarhus University; Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|