1
|
Tredup C, Ackloo S, Beck H, Brown PJ, Bullock AN, Ciulli A, Dikic I, Edfeldt K, Edwards AM, Elkins JM, Farin HF, Fon EA, Gstaiger M, Günther J, Gustavsson AL, Häberle S, Isigkeit L, Huber KVM, Kotschy A, Krämer O, Leach AR, Marsden BD, Matsui H, Merk D, Montel F, Mulder MPC, Müller S, Owen DR, Proschak E, Röhm S, Stolz A, Sundström M, von Delft F, Willson TM, Arrowsmith CH, Knapp S. Toward target 2035: EUbOPEN - a public-private partnership to enable & unlock biology in the open. RSC Med Chem 2024:d4md00735b. [PMID: 39618964 PMCID: PMC11605244 DOI: 10.1039/d4md00735b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Target 2035 is a global initiative that seeks to identify a pharmacological modulator of most human proteins by the year 2035. As part of an ongoing series of annual updates of this initiative, we summarise here the efforts of the EUbOPEN project whose objectives and results are making a strong contribution to the goals of Target 2035. EUbOPEN is a public-private partnership with four pillars of activity: (1) chemogenomic library collections, (2) chemical probe discovery and technology development for hit-to-lead chemistry, (3) profiling of bioactive compounds in patient-derived disease assays, and (4) collection, storage and dissemination of project-wide data and reagents. The substantial outputs of this programme include a chemogenomic compound library covering one third of the druggable proteome, as well as 100 chemical probes, both profiled in patient derived assays, as well as hundreds of data sets deposited in existing public data repositories and a project-specific data resource for exploring EUbOPEN outputs.
Collapse
Affiliation(s)
- Claudia Tredup
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt 60438 Germany
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt Frankfurt 60438 Germany
| | - Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto - St George Campus 101 College Street, MaRS Center South Tower 7th Floor Toronto Canada
| | - Hartmut Beck
- Drug Discovery Sciences, Research & Development, Pharmaceuticals, Bayer AG Wuppertal Nordrhein-Westfalen Germany
| | - Peter J Brown
- Structural Genomics Consortium, University of North Carolina at Chapel Hill Campus Box 7356, 120 Mason Farm Road, GMB 1070 Chapel Hill North Carolina USA
| | - Alex N Bullock
- Centre for Medicines Discovery, University of Oxford NDM Research Building, Roosevelt Drive Oxford Oxfordshire UK
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, University of Dundee, School of Life Sciences 1 James Lindsay Place DD1 5JJ Dundee UK
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty Frankfurt am Main Germany
- Buchmann Institute for Molecular Lifesciences, Goethe University Frankfurt Frankfurt am Main Germany
| | - Kristina Edfeldt
- Structural Genomics Consortium, Department of Medicine, Karolinska University Hospital and Karolinska Institutet Stockholm Sweden
| | - Aled M Edwards
- Structural Genomics Consortium, University of Toronto - St George Campus 101 College Street, MaRS Center South Tower 7th Floor Toronto Canada
| | - Jonathan M Elkins
- Centre for Medicines Discovery, University of Oxford NDM Research Building, Roosevelt Drive Oxford Oxfordshire UK
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy Frankfurt am Main Hessen Germany
| | - Edward A Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital (The Neuro), McGill University Montreal Canada
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology ETH Zürich Zurich ZH Switzerland
| | | | - Anna-Lena Gustavsson
- Chemical Biology Consortium Sweden, Department of Medical Biochemistry & Biophysics, Karolinska Institute Stockholm Sweden
| | - Sandra Häberle
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt 60438 Germany
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt Frankfurt 60438 Germany
| | - Laura Isigkeit
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt 60438 Germany
| | - Kilian V M Huber
- Centre for Medicines Discovery, University of Oxford NDM Research Building, Roosevelt Drive Oxford Oxfordshire UK
| | - Andras Kotschy
- Servier Research Institute of Medicinal Chemistry Budapest Hungary
| | - Oliver Krämer
- Discovery Research Coordination, Boehringer Ingelheim International GmbH Binger Straße 173 55216 Ingelheim am Rhein Germany
| | - Andrew R Leach
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus Hinxton Cambridge UK
| | - Brian D Marsden
- Centre for Medicines Discovery, University of Oxford NDM Research Building, Roosevelt Drive Oxford Oxfordshire UK
| | - Hisanori Matsui
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan
| | - Daniel Merk
- Ludwig-Maximilians-Universitat Munchen Munchen Germany
| | - Florian Montel
- Discovery Research Coordination, Boehringer Ingelheim Pharma GmbH & Co. KG Birkendorfer Straße 65 88397 Biberach an der Riss Germany
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center Leiden The Netherlands
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt 60438 Germany
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt Frankfurt 60438 Germany
| | | | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt 60438 Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP Theodor-Stern-Kai 7 60596 Frankfurt am Main Germany
| | - Sandra Röhm
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt 60438 Germany
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt Frankfurt 60438 Germany
| | - Alexandra Stolz
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty Frankfurt am Main Germany
- Buchmann Institute for Molecular Lifesciences, Goethe University Frankfurt Frankfurt am Main Germany
| | - Michael Sundström
- Structural Genomics Consortium, Department of Medicine, Karolinska University Hospital and Karolinska Institutet Stockholm Sweden
| | - Frank von Delft
- Centre for Medicines Discovery, University of Oxford NDM Research Building, Roosevelt Drive Oxford Oxfordshire UK
- Diamond Light Source, Harwell Science and Innovation Campus Didcot OX11 0DE UK
| | - Timothy M Willson
- Structural Genomics Consortium, University of North Carolina at Chapel Hill Campus Box 7356, 120 Mason Farm Road, GMB 1070 Chapel Hill North Carolina USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto - St George Campus 101 College Street, MaRS Center South Tower 7th Floor Toronto Canada
- Princess Margaret Cancer Centre Toronto Ontario M5G 1L7 Canada
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt Frankfurt 60438 Germany
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt Frankfurt 60438 Germany
| |
Collapse
|
2
|
Bonfield H, Edge CM, Reid M, Kennedy AR, Pascoe DD, Lindsay DM, Valette D. Synthesis of 2,6- trans-Tetrahydropyrans Using a Palladium-Catalyzed Oxidative Heck Redox-Relay Strategy. Org Lett 2024; 26:2857-2861. [PMID: 38198695 PMCID: PMC11020158 DOI: 10.1021/acs.orglett.3c03866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
The C-aryl-tetrahydropyran motif is prevalent in nature in a number of natural products with biological activity; however, this challenging architecture still requires novel synthetic approaches. We demonstrate the application of a stereoselective Heck redox-relay strategy for the synthesis of functionalized 2,6-trans-tetrahydropyrans in excellent selectivity in a single step from an enantiopure dihydropyranyl alcohol, proceeding through a novel exo-cyclic migration. The strategy has also been applied to the total synthesis of a trans-epimer of the natural product centrolobine in excellent yield and stereoselectivity.
Collapse
Affiliation(s)
- Holly
E. Bonfield
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, U.K.
- Drug
Substance Development, GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Colin M. Edge
- Drug
Substance Development, GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Marc Reid
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, U.K.
| | - Alan R. Kennedy
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, U.K.
| | - David D. Pascoe
- Drug
Substance Development, GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - David M. Lindsay
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, U.K.
| | - Damien Valette
- Drug
Substance Development, GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| |
Collapse
|
3
|
Francis D, Farooque S, Meager A, Derks D, Leggott A, Warriner S, O'Neill AJ, Nelson A. Algorithm-driven activity-directed expansion of a series of antibacterial quinazolinones. Org Biomol Chem 2022; 20:9672-9678. [PMID: 36448404 DOI: 10.1039/d2ob01404a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Activity-directed synthesis (ADS) is a structure-blind, function driven approach that can drive the discovery of bioactive small molecules. In ADS, arrays of reactions are designed and executed, and the crude product mixtures are then directly screened to identify reactions that yield bioactive products. The design of subsequent reaction arrays is then informed by the hit reactions that are discovered. In this study, algorithms for reaction array design were developed in which the reactions to be executed were selected from a large set of virtual reactions; the reactions were selected on the basis of similarity to reactions known to yield bioactive products. The algorithms were harnessed to design arrays of photoredox-catalysed alkylation reactions whose crude products were then screened for inhibition of growth of S. aureus ATCC29213. It was demonstrated that the approach enabled expansion of a series of antibacterial quinazolinones. It is envisaged that such algorithms could ultimately enable fully autonomous activity-directed molecular discovery.
Collapse
Affiliation(s)
- Daniel Francis
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sannia Farooque
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Archie Meager
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Didi Derks
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | - Abbie Leggott
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Stuart Warriner
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Alex J O'Neill
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Adam Nelson
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
4
|
Lenci E, Trabocchi A. Diversity‐Oriented Synthesis and Chemoinformatics: A Fruitful Synergy towards Better Chemical Libraries. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elena Lenci
- Universita degli Studi di Firenze Department of Chemistry Via della Lastruccia 1350019Italia 50019 Sesto Fiorentino ITALY
| | - Andrea Trabocchi
- University of Florence: Universita degli Studi di Firenze Department of Chemistry "Ugo Schiff" ITALY
| |
Collapse
|
5
|
Facile access to fused 2D/3D rings via intermolecular cascade dearomative [2 + 2] cycloaddition/rearrangement reactions of quinolines with alkenes. Nat Catal 2022. [DOI: 10.1038/s41929-022-00784-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AbstractHybrid fused two-dimensional/three-dimensional (2D/3D) rings are important pharmacophores in drugs owing to their unique structural and physicochemical properties. Preparation of these strained ring systems often requires elaborate synthetic effort and exhibits low efficiency, thus representing a limiting factor in drug discovery. Here, we report two types of energy-transfer-mediated cascade dearomative [2 + 2] cycloaddition/rearrangement reactions of quinoline derivatives with alkenes, which provide a straightforward avenue to 2D/3D pyridine-fused 6−5−4−3- and 6−4−6-membered ring systems. Notably, this energy-transfer-mediated strategy features excellent diastereoselectivity that bypasses the general reactivity and selectivity issues of photochemical [2 + 2] cycloaddition of various other aromatics. Tuning the aza-arene substitutions enabled selective diversion of the iridium photocatalysed energy transfer manifold towards either cyclopropanation or cyclobutane-rearrangement products. Density functional theory calculations revealed a cascade energy transfer scenario to be operative.
Collapse
|
6
|
Zhang C, Wu J, Chen Q, Tan H, Huang F, Guo J, Zhang X, Yu H, Shi W. Allosteric binding on nuclear receptors: Insights on screening of non-competitive endocrine-disrupting chemicals. ENVIRONMENT INTERNATIONAL 2022; 159:107009. [PMID: 34883459 DOI: 10.1016/j.envint.2021.107009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can compete with endogenous hormones and bind to the orthosteric site of nuclear receptors (NRs), affecting normal endocrine system function and causing severe symptoms. Recently, a series of pharmaceuticals and personal care products (PPCPs) have been discovered to bind to the allosteric sites of NRs and induce similar effects. However, it remains unclear how diverse EDCs work in this new way. Therefore, we have systematically summarized the allosteric sites and underlying mechanisms based on existing studies, mainly regarding drugs belonging to the PPCP class. Advanced methods, classified as structural biology, biochemistry and computational simulation, together with their advantages and hurdles for allosteric site recognition and mechanism insight have also been described. Furthermore, we have highlighted two available strategies for virtual screening of numerous EDCs, relying on the structural features of allosteric sites and lead compounds, respectively. We aim to provide reliable theoretical and technical support for a broader view of various allosteric interactions between EDCs and NRs, and to drive high-throughput and accurate screening of potential EDCs with non-competitive effects.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jinqiu Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Qinchang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Haoyue Tan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Fuyan Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
7
|
Yüce I, Morlock GE. Nanomole-scaled high-throughput chemistry plus direct bioautography on the same chromatography plate for drug discovery. Anal Chim Acta 2021; 1182:338950. [PMID: 34602191 DOI: 10.1016/j.aca.2021.338950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022]
Abstract
The powerful fusion of on-surface synthesis and effect-directed analysis was introduced as novel tool for synthetic drug discovery, all on the same high-performance thin-layer chromatography plate. Precise automated sample application allowed both, high-throughput chemistry of 60 reactions at once and reaction miniaturization down to the 15-nmol scale. The antibiotic activity of all on-surface synthesized compounds was evaluated on the same surface via the Gram-positive Bacillus subtilis bioassay. For one product, synthesis (reaction, purification and identification) took 5.3 min and semi-quantitative biological evaluation took 2.8 min. Out of 60 on-surface reactions 10 products (17%) were identified to be more active than a well-known antibiotic reference. The concept was transferred to the Gram-negative Aliivibrio fischeri bioassay. For the first time, a new analytical platform was shown for a streamlined workflow at the most miniaturized scale from synthesis, purification, identification and quantification to semi-quantitative biological activity evaluation (all on the same chromatography plate).
Collapse
Affiliation(s)
- Imanuel Yüce
- Interdisciplinary Research Center, and Institute of Nutritional Science, Food Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; TransMIT Center for Effect-Directed Analysis, Kerkrader Straße 3, 35394, Giessen, Germany
| | - Gertrud E Morlock
- Interdisciplinary Research Center, and Institute of Nutritional Science, Food Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; TransMIT Center for Effect-Directed Analysis, Kerkrader Straße 3, 35394, Giessen, Germany.
| |
Collapse
|
8
|
Lenci E, Baldini L, Trabocchi A. Diversity-oriented synthesis as a tool to expand the chemical space of DNA-encoded libraries. Bioorg Med Chem 2021; 41:116218. [PMID: 34030087 DOI: 10.1016/j.bmc.2021.116218] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
DNA-encoded libraries (DEL) represent a powerful technology for generating compound collections for drug discovery campaigns, that have allowed for the selection of many hit compounds over last three decades. However, the application of split-and-pool combinatorial methodologies, as well as the limitation imposed by DNA-compatible chemistry, has often brought to a limited exploration of the chemical space, with an over-representation of flat aromatic or peptide-like structures, whereas a higher scaffold complexity is generally associated with a more successful biological activity of the library. In this context, the application of Diversity-Oriented Synthesis, capable of creating sp3-rich molecular entities even starting from simple flat building blocks, can represent an efficient strategy to significantly broaden the chemical space explored by DELs. In this review, we present selected examples of DNA-compatible complexity-generating reactions that can be applied for the generation of DNA-encoded DOS libraries, including: (i) multicomponent reactions; (ii) C-H/C-X functionalization; (iii) tandem approaches; (iv) cycloadditions; (v) reactions introducing privileged elements. Also, selected case studies on the generation of DELs with high scaffold diversity are discussed, reporting their application in drug discovery programs.
Collapse
Affiliation(s)
- Elena Lenci
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Baldini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM), University of Florence, Viale Morgagni 85, 50134 Florence, Italy.
| |
Collapse
|
9
|
Nelson A, Karageorgis G. Natural product-informed exploration of chemical space to enable bioactive molecular discovery. RSC Med Chem 2021; 12:353-362. [PMID: 34046620 PMCID: PMC8130614 DOI: 10.1039/d0md00376j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022] Open
Abstract
The search for new bioactive molecules remains an open challenge limiting our ability to discover new drugs to treat disease and chemical probes to comprehensively study biological processes. The vastness of chemical space renders its exploration unfeasible by synthesis alone. Historically, chemists have tended to explore chemical space unevenly without committing to systematic frameworks for navigation. This minireview covers a range of approaches that take inspiration from the structure or origin of natural products, and help focus molecular discovery on biologically-relevant regions of chemical space. All these approaches have enabled the discovery of distinctive and novel bioactive small molecules such as useful chemical probes of biological mechanisms. This minireview comments on how such approaches may be developed into more general frameworks for the systematic identification of currently unexplored regions of biologically-relevant chemical space, a challenge that is central to both chemical biology and medicinal chemistry.
Collapse
Affiliation(s)
- Adam Nelson
- School of Chemistry, University of Leeds Woodhouse Lane LS2 9JT UK
- Astbury Centre for Structural and Molecular Biology, University of Leeds Woodhouse Lane LS2 9JT UK
| | - George Karageorgis
- School of Chemistry, University of Leeds Woodhouse Lane LS2 9JT UK
- Astbury Centre for Structural and Molecular Biology, University of Leeds Woodhouse Lane LS2 9JT UK
| |
Collapse
|
10
|
Green AI, Tinworth CP, Warriner S, Nelson A, Fey N. Computational Mapping of Dirhodium(II) Catalysts. Chemistry 2021; 27:2402-2409. [PMID: 32964545 PMCID: PMC7898874 DOI: 10.1002/chem.202003801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/09/2020] [Indexed: 12/31/2022]
Abstract
The chemistry of dirhodium(II) catalysts is highly diverse, and can enable the synthesis of many different molecular classes. A tool to aid in catalyst selection, independent of mechanism and reactivity, would therefore be highly desirable. Here, we describe the development of a database for dirhodium(II) catalysts that is based on the principal component analysis of DFT-calculated parameters capturing their steric and electronic properties. This database maps the relevant catalyst space, and may facilitate exploration of the reactivity landscape for any process catalysed by dirhodium(II) complexes. We have shown that one of the principal components of these catalysts correlates with the outcome (e.g. yield, selectivity) of a transformation used in a molecular discovery project. Furthermore, we envisage that this approach will assist the selection of more effective catalyst screening sets, and, hence, the data-led optimisation of a wide range of rhodium-catalysed transformations.
Collapse
Affiliation(s)
- Adam I. Green
- School of Chemistry and Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS29JTUK
| | | | - Stuart Warriner
- School of Chemistry and Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS29JTUK
| | - Adam Nelson
- School of Chemistry and Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS29JTUK
| | - Natalie Fey
- School of ChemistryUniversity of BristolCantock's CloseBristolBS81TSUK
| |
Collapse
|
11
|
Karageorgis G, Liver S, Nelson A. Activity-Directed Synthesis: A Flexible Approach for Lead Generation. ChemMedChem 2020; 15:1776-1782. [PMID: 32734671 PMCID: PMC7589241 DOI: 10.1002/cmdc.202000524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 11/06/2022]
Abstract
Activity-directed synthesis (ADS) is a structure-blind, functional-driven molecular discovery approach. In this Concept, four case studies highlight the general applicability of ADS and showcase its flexibility to support different medicinal chemistry strategies. ADS deliberately harnesses reactions with multiple possible outcomes, and allows many chemotypes to be evaluated in parallel. Resources are focused on bioactive molecules, which emerge in tandem with associated synthetic routes. Some of the future challenges for ADS are highlighted, including the realisation of an autonomous molecular discovery platform. The prospects for ADS to become a mainstream lead generation approach are discussed.
Collapse
Affiliation(s)
- George Karageorgis
- School of Chemistry and Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Samuel Liver
- School of Chemistry and Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- Rosalind Franklin InstituteHarwell CampusDidcotOX11 0FAUK
| | - Adam Nelson
- School of Chemistry and Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- Rosalind Franklin InstituteHarwell CampusDidcotOX11 0FAUK
| |
Collapse
|
12
|
Green AI, Hobor F, Tinworth CP, Warriner S, Wilson AJ, Nelson A. Activity-Directed Synthesis of Inhibitors of the p53/hDM2 Protein-Protein Interaction. Chemistry 2020; 26:10682-10689. [PMID: 32458465 PMCID: PMC7496268 DOI: 10.1002/chem.202002153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 01/10/2023]
Abstract
Protein-protein interactions (PPIs) provide a rich source of potential targets for drug discovery and biomedical science research. However, the identification of structural-diverse starting points for discovery of PPI inhibitors remains a significant challenge. Activity-directed synthesis (ADS), a function-driven discovery approach, was harnessed in the discovery of the p53/hDM2 PPI. Over two rounds of ADS, 346 microscale reactions were performed, with prioritisation on the basis of the activity of the resulting product mixtures. Four distinct and novel series of PPI inhibitors were discovered that, through biophysical characterisation, were shown to have promising ligand efficiencies. It was thus shown that ADS can facilitate ligand discovery for a target that does not have a defined small-molecule binding site, and can provide distinctive starting points for the discovery of PPI inhibitors.
Collapse
Affiliation(s)
- Adam I. Green
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Fruzsina Hobor
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | | | - Stuart Warriner
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Andrew J. Wilson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Adam Nelson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
13
|
Hu X, Chai X, Wang X, Duan M, Pang J, Fu W, Li D, Hou T. Advances in the computational development of androgen receptor antagonists. Drug Discov Today 2020; 25:1453-1461. [PMID: 32439609 DOI: 10.1016/j.drudis.2020.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/16/2020] [Accepted: 04/04/2020] [Indexed: 12/18/2022]
Abstract
The androgen receptor is a ligand-dependent transcriptional factor and an essential therapeutic target for prostate cancer. Competitive binding of antagonists to the androgen receptor can alleviate aberrant activation of the androgen receptor in prostate cancer. In recent years, computer-aided drug design has played an essential part in the discovery of novel androgen receptor antagonists. This review summarizes the recent advances in the discovery of novel androgen receptor antagonists through computer-aided drug design approaches; and discusses the applications of molecular modeling techniques to understand the resistance mechanisms of androgen receptor antagonists at the molecular level.
Collapse
Affiliation(s)
- Xueping Hu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin Chai
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuwen Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mojie Duan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jinping Pang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weitao Fu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dan Li
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
14
|
Yuan X, Wu L, Xu C, Pan Z, Shi L, Yang G, Wang C, Fan S. A consecutive one-pot two-step approach to novel trifluoromethyl-substituted bis(indolyl)methane derivatives promoted by Sc(OTf)3 and p-TSA. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Sridhar PR, Rao BU, Reddy GM. Synthesis of Carbon-Branched Sugars Involving an Unprecedented 1,5- or 1,6-Alkyl Transposition Reaction. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Perali Ramu Sridhar
- School of Chemistry; University of Hyderabad; Gachi Bowli 500 046 Hyderabad - India
| | | | | |
Collapse
|
16
|
Boström J, Brown DG, Young RJ, Keserü GM. Expanding the medicinal chemistry synthetic toolbox. Nat Rev Drug Discov 2018; 17:709-727. [DOI: 10.1038/nrd.2018.116] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Li D, Zhou Y, Zhao Y, Zhang C, Li J, Zhao J, Qu J. Synthesis of 2-trifluoromethyl-2-hydroxy-2H-chromenes via cyclization of (Z)-trifluoromethyl alkenyl triflates and salicylaldehydes. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
|
19
|
|
20
|
Davis AM, Plowright AT, Valeur E. Directing evolution: the next revolution in drug discovery? Nat Rev Drug Discov 2017; 16:681-698. [PMID: 28935911 DOI: 10.1038/nrd.2017.146] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The strong biological rationale to pursue challenging drug targets such as protein-protein interactions has stimulated the development of novel screening strategies, such as DNA-encoded libraries, to allow broader areas of chemical space to be searched. There has also been renewed interest in screening natural products, which are the result of evolutionary selection for a function, such as interference with a key signalling pathway of a competing organism. However, recent advances in several areas, such as understanding of the biosynthetic pathways for natural products, synthetic biology and the development of biosensors to detect target molecules, are now providing new opportunities to directly harness evolutionary pressure to identify and optimize compounds with desired bioactivities. Here, we describe innovations in the key components of such strategies and highlight pioneering examples that indicate the potential of the directed-evolution concept. We also discuss the scientific gaps and challenges that remain to be addressed to realize this potential more broadly in drug discovery.
Collapse
Affiliation(s)
- Andrew M Davis
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal, 43150, Sweden
| | - Alleyn T Plowright
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Eric Valeur
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal, 43150, Sweden
| |
Collapse
|
21
|
Affiliation(s)
- Shiao Y. Chow
- School of Chemistry
and Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, U.K
| | - Adam Nelson
- School of Chemistry
and Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, U.K
| |
Collapse
|
22
|
Garcia-Castro M, Zimmermann S, Sankar MG, Kumar K. Gerüstdiversitätsbasierte Synthese und ihre Anwendung bei der Sonden- und Wirkstoffsuche. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201508818] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Miguel Garcia-Castro
- Abteilung Chemische Biologie; Max-Planck-Institut für molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| | - Stefan Zimmermann
- Abteilung Chemische Biologie; Max-Planck-Institut für molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| | - Muthukumar G. Sankar
- Abteilung Chemische Biologie; Max-Planck-Institut für molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| | - Kamal Kumar
- Abteilung Chemische Biologie; Max-Planck-Institut für molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| |
Collapse
|
23
|
Garcia-Castro M, Zimmermann S, Sankar MG, Kumar K. Scaffold Diversity Synthesis and Its Application in Probe and Drug Discovery. Angew Chem Int Ed Engl 2016; 55:7586-605. [DOI: 10.1002/anie.201508818] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/19/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Miguel Garcia-Castro
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Stefan Zimmermann
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Muthukumar G. Sankar
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Kamal Kumar
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| |
Collapse
|