1
|
Chen Y, Lang Z, Feng K, Wang K, Li Y, Kang Z, Guo L, Zhong J, Lu J. Practical H 2 supply from ammonia borane enabled by amorphous iron domain. Nat Commun 2024; 15:9113. [PMID: 39438482 PMCID: PMC11496879 DOI: 10.1038/s41467-024-53574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Efficient catalysis of ammonia borane (AB) holds potential for realizing controlled energy release from hydrogen fuel and addressing cost challenges faced by hydrogen storage. Here, we report that amorphous domains on metallic Fe crystal structures (R-Fe2O3 Foam) can achieve AB catalytic performances and stability (turnover frequency (TOF) of 113.6 min-1, about 771 L H2 in 900 h, and 43.27 mL/(min·cm2) for 10×10 cm2 of Foam) that outperform reported benchmarks (most <14 L H2 in 45 h) by at least 20 times. These notable increases are enabled by the stable Fe crystal structure, while defects and unsaturated atoms in the amorphous domains form Fe-B intermediates that significantly lower the dissociation barriers of H2O and AB. Given that the catalyst lifetime is a key determinant for the practical use in fuel cells, our R-Fe2O3 Foam also provides decent H2 supply (180 mL H2/min, AB water solution of 7.5 wt% H2) in a driven commercial car fuel cell at stable power outputs (7.8 V and 1.6 A for at least 5 h). When considered with its facile synthesis method, these materials are potentially very promising for realizing durable high-performance AB catalysts and viable chemical storage in hydrogen powered vehicles.
Collapse
Affiliation(s)
- Yufeng Chen
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Zhongling Lang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, China
| | - Kun Feng
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Kang Wang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing, China.
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China.
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
- Quzhou Institute of Power Battery and Grid Energy Storage, Quzhou, China.
| |
Collapse
|
2
|
Wan C, Li R, Wang J, Cheng DG, Chen F, Xu L, Gao M, Kang Y, Eguchi M, Yamauchi Y. Silica Confinement for Stable and Magnetic Co-Cu Alloy Nanoparticles in Nitrogen-Doped Carbon for Enhanced Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202404505. [PMID: 38598471 DOI: 10.1002/anie.202404505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Ammonia borane (AB) with 19.6 wt % H2 content is widely considered a safe and efficient medium for H2 storage and release. Co-based nanocatalysts present strong contenders for replacing precious metal-based catalysts in AB hydrolysis due to their high activity and cost-effectiveness. However, precisely adjusting the active centers and surface properties of Co-based nanomaterials to enhance their activity, as well as suppressing the migration and loss of metal atoms to improve their stability, presents many challenges. In this study, mesoporous-silica-confined bimetallic Co-Cu nanoparticles embedded in nitrogen-doped carbon (CoxCu1-x@NC@mSiO2) were synthesized using a facile mSiO2-confined thermal pyrolysis strategy. The obtained product, an optimized Co0.8Cu0.2@NC@mSiO2 catalyst, exhibits enhanced performance with a turnover frequency of 240.9 molH2 ⋅ molmetal ⋅ min-1 for AB hydrolysis at 298 K, surpassing most noble-metal-free catalysts. Moreover, Co0.8Cu0.2@NC@mSiO2 demonstrates magnetic recyclability and extraordinary stability, with a negligible decline of only 0.8 % over 30 cycles of use. This enhanced performance was attributed to the synergistic effect between Co and Cu, as well as silica confinement. This work proposes a promising method for constructing noble-metal-free catalysts for AB hydrolysis.
Collapse
Affiliation(s)
- Chao Wan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243002, China
- College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Rong Li
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243002, China
| | - Jiapei Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243002, China
| | - Dang-Guo Cheng
- College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Fengqiu Chen
- College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Lixin Xu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243002, China
| | - Mingbin Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yunqing Kang
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science Zhengzhou, Henan, 451163, China
| | - Miharu Eguchi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
3
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Sun JL, Ren FD, Chen YZ, Li Z. Cu 2+@metal-organic framework-derived amphiphilic sandwich catalysts for enhanced hydrogenation selectivity of ketenes at the oil-water interface. NANOSCALE 2023; 15:15415-15426. [PMID: 37702995 DOI: 10.1039/d3nr02212a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Selective catalysis has always been an essential process for manufacturing various fine chemicals, such as food additives, pharmaceuticals and perfumes. Practically, pure target products are difficult to obtain even after complex purification procedures during industrial production. The development of a cost-effective, highly chemoselective and long-life catalyst may be an attractive solution, but such a catalyst is elusive. Herein, a novel class of amphiphilic N-doped carbon (NC), featuring graphitic carbon (GC) and highly dispersed Cu@Co NPs, was fabricated via simple calcination of a Cu2+-doped bimetallic metal-organic framework (MOF) precusor directly. Compared with monometallic Co@GC/NC, the side reaction of CO bond hydrogenation is obviously restrained, and thus, pure target product can be systematically obtained by Cu@Co@GC/NC, highlighting the high selectivity of Cu. More importantly, an amphiphilic characteristic in Cu@Co@GC/NC is a significant knob to integrate organic substrates with water very well. This amphiphilic material shows great potential as a field-deployable pathway for dispersible metal catalysts in organic systems.
Collapse
Affiliation(s)
- Jia-Lu Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Feng-Di Ren
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Yu-Zhen Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Zhibo Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| |
Collapse
|
5
|
Asim M, Maryam B, Zhang S, Sajid M, Kurbanov A, Pan L, Zou JJ. Synergetic effect of Au nanoparticles and transition metal phosphides for enhanced hydrogen evolution from ammonia-borane. J Colloid Interface Sci 2023; 638:14-25. [PMID: 36731215 DOI: 10.1016/j.jcis.2023.01.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
The hydrogen evolution from ammonia borane is intriguing but challenging due to its sluggish kinetics. In this regard, the gold nanoparticles amalgamation with metal phosphides is speculated to be more efficient catalysts. Here, the catalysts Au/Ni2P and Au/CoP with the high synergetic effect of Au nanoparticles and metal phosphides were synthesized for ammonia borane hydrolysis. The activity of Au/Ni2P increases 4.8-fold (i.e., 0.08 to 0.40 L∙h-1) compared to pristine Ni2P, and the activity of Au/CoP increases 1.7-fold (i.e., 0.74 to 1.27 L∙h-1) compared to pristine CoP. This reveals that the synergetic effect of Auδ+ and (Ni2P) δ- is stronger than Auδ+ and (CoP) δ- which is manifested by XPS analysis. The kinetics exposes that the activation energy of Au/Ni2P (45.28 kJ∙mole-1) is greater than Au/CoP (31.45 kJ∙mole-1) and the TOF of Au/Ni2P is less than Au/CoP. This research work presents an effective approach for producing active sites of Auδ+ and (Ni2P & CoP) δ- for ammonia borane hydrolysis to enhance the H2 evolution rate.
Collapse
Affiliation(s)
- Muhammad Asim
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Bushra Maryam
- School of Environmental Sciences and Engineering, Tianjin University, Tianjin 300072, China
| | - Shuguang Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, Sichuan China
| | - Alibek Kurbanov
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
6
|
Li H, He W, Xu L, Pan Y, Xu R, Sun Z, Wei S. Synergistic interface between metal Cu nanoparticles and CoO for highly efficient hydrogen production from ammonia borane. RSC Adv 2023; 13:11569-11576. [PMID: 37063727 PMCID: PMC10099176 DOI: 10.1039/d3ra01265d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023] Open
Abstract
The development of efficient non-noble metal catalysts for the dehydrogenation of hydrogen (H2) storage materials is highly desirable to enable the global production and storage of H2 energy. In this study, Cu x -(CoO)1-x /TiO2 catalysts with a Cu-CoO interface supported on TiO2 are shown to exhibit high catalytic efficiency for ammonia borane (NH3BH3) hydrolysis to generate H2. The best catalytic activity was observed for a catalyst with a Cu : Co molar ratio of 1 : 1. The highest dehydrogenation turnover frequency (TOF) of 104.0 molH2 molmetal -1 min-1 was observed in 0.2 M NaOH at room temperature, surpassing most of the TOFs reported for non-noble catalysts for NH3BH3 hydrolysis. Detailed characterisation of the catalysts revealed electronic interactions at the Cu-CoO heterostructured interface of the catalysts. This interface provides bifunctional synergetic sites for H2 generation, where activation and adsorption of NH3BH3 and H2O are accelerated on the surface of Cu and CoO, respectively. This study details an effective method of rationally designing non-noble metal catalysts for H2 generation via a metal and transition-metal oxide interface.
Collapse
Affiliation(s)
- Hongmei Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China Hefei 230029 P. R. China
| | - Wenxue He
- National Synchrotron Radiation Laboratory, University of Science and Technology of China Hefei 230029 P. R. China
| | - Liuxin Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China Hefei 230029 P. R. China
| | - Ya Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China Hefei 230029 P. R. China
| | - Ruichao Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China Hefei 230029 P. R. China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China Hefei 230029 P. R. China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China Hefei 230029 P. R. China
| |
Collapse
|
7
|
Meng Y, Sun Q, Zhang T, Zhang J, Dong Z, Ma Y, Wu Z, Wang H, Bao X, Sun Q, Yu J. Cobalt-Promoted Noble-Metal Catalysts for Efficient Hydrogen Generation from Ammonia Borane Hydrolysis. J Am Chem Soc 2023; 145:5486-5495. [PMID: 36820815 DOI: 10.1021/jacs.3c00047] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Ammonia borane (AB) has been regarded as a promising material for chemical hydrogen storage. However, the development of efficient, cost-effective, and stable catalysts for H2 generation from AB hydrolysis remains a bottleneck for realizing its practical application. Herein, a step-by-step reduction strategy has been developed to synthesize a series of bimetallic species with small sizes and high dispersions onto various metal oxide supports. Superior to other non-noble metal species, the introduction of Co species can remarkably and universally promote the catalytic activity of various noble metals (e.g., Pt, Rh, Ru, and Pd) in AB hydrolysis reactions. The optimized Pt0.1%Co3%/TiO2 catalyst exhibits a superhigh H2 generation rate from AB hydrolysis, showing a turnover frequency (TOF) value of 2250 molH2 molPt-1 min-1 at 298 K. Such a TOF value is about 10 and 15 times higher than that of the monometal Pt/TiO2 and commercial Pt/C catalysts, respectively. The density functional theory (DFT) calculation reveals that the synergy between Pt and CoO species can remarkably promote the chemisorption and dissociation of water molecules, accelerating the H2 evolution from AB hydrolysis. Significantly, the representative Pt0.25%Co3%/TiO2 catalyst exhibits excellent stability, achieving a record-high turnover number of up to 215,236 at room temperature. The excellent catalytic performance, superior stability, and low cost of the designed catalysts create new prospects for their practical application in chemical hydrogen storage.
Collapse
Affiliation(s)
- Yali Meng
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Qinghao Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Tianjun Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry; International Center of Future Science, Jilin University, Changchun 130012, People's Republic of China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Zhuoya Dong
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yanhang Ma
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Zhangxiong Wu
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Huifang Wang
- Department of Chemistry, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199, Ren-Ai Road, Suzhou Industrial Park, Suzhou 215123, People's Republic of China
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiming Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, People's Republic of China
| | - Jihong Yu
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.,State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry; International Center of Future Science, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
8
|
Wei L, Lu Y, Lu R, Cui Y. Waste-biomass-derived activated carbon supported Co-Cu-P nanocatalysts for hydrolytic dehydrogenation of ammonia borane. RSC Adv 2023; 13:7614-7620. [PMID: 36908544 PMCID: PMC9993064 DOI: 10.1039/d3ra00247k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/26/2023] [Indexed: 03/10/2023] Open
Abstract
Hydrolytic dehydrogenation of ammonia borane is a significant and promising approach for on-site hydrogen production at ambient conditions, and developing highly efficient and low-cost catalysts has attracted considerable attention. Herein, waste-biomass-derived activated carbon (AC) was prepared by hydrothermal carbonization and alkali-assisted activation, and non-precious bimetal phosphides (Co-Cu-P) nanocatalysts with a series of different Co/Cu ratios were synthesized on the AC surface through in situ phosphidation method. Owing to the synergetic effects, the optimal Co0.8Cu0.2P/AC presents an outstanding turnover frequency of 26.5 min-1 (25 °C), which is much higher than that of many reported catalysts. The reaction activation energy was measured to be 34.6 kJ mol-1. Benefiting from the ferromagnetic nature of the phosphides, the Co0.8Cu0.2P/AC can be magnetically separated and reused again. After recycling six times, the catalyst still retains 72% of the initial activity, thus indicating great potential for practical applications.
Collapse
Affiliation(s)
- Lei Wei
- College of Chemistry and Materials Science, Langfang Normal University Langfang 065000 P. R. China
| | - Yanhong Lu
- College of Chemistry and Materials Science, Langfang Normal University Langfang 065000 P. R. China
| | - Ruixuan Lu
- College of Chemistry and Materials Science, Langfang Normal University Langfang 065000 P. R. China
| | - Yuxin Cui
- College of Chemistry and Materials Science, Langfang Normal University Langfang 065000 P. R. China
| |
Collapse
|
9
|
Tseng YT, Pelmenschikov V, Iffland-Mühlhaus L, Calabrese D, Chang YC, Laun K, Pao CW, Sergueev I, Yoda Y, Liaw WF, Chen CH, Hsu IJ, Apfel UP, Caserta G, Lauterbach L, Lu TT. Substrate-Gated Transformation of a Pre-Catalyst into an Iron-Hydride Intermediate [(NO) 2(CO)Fe(μ-H)Fe(CO)(NO) 2] - for Catalytic Dehydrogenation of Dimethylamine Borane. Inorg Chem 2023; 62:769-781. [PMID: 36580657 DOI: 10.1021/acs.inorgchem.2c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Continued efforts are made on the development of earth-abundant metal catalysts for dehydrogenation/hydrolysis of amine boranes. In this study, complex [K-18-crown-6-ether][(NO)2Fe(μ-MePyr)(μ-CO)Fe(NO)2] (3-K-crown, MePyr = 3-methylpyrazolate) was explored as a pre-catalyst for the dehydrogenation of dimethylamine borane (DMAB). Upon evolution of H2(g) from DMAB triggered by 3-K-crown, parallel conversion of 3-K-crown into [(NO)2Fe(N,N'-MePyrBH2NMe2)]- (5) and an iron-hydride intermediate [(NO)2(CO)Fe(μ-H)Fe(CO)(NO)2]- (A) was evidenced by X-ray diffraction/nuclear magnetic resonance/infrared/nuclear resonance vibrational spectroscopy experiments and supported by density functional theory calculations. Subsequent transformation of A into complex [(NO)2Fe(μ-CO)2Fe(NO)2]- (6) is synchronized with the deactivated generation of H2(g). Through reaction of complex [Na-18-crown-6-ether][(NO)2Fe(η2-BH4)] (4-Na-crown) with CO(g) as an alternative synthetic route, isolated intermediate [Na-18-crown-6-ether][(NO)2(CO)Fe(μ-H)Fe(CO)(NO)2] (A-Na-crown) featuring catalytic reactivity toward dehydrogenation of DMAB supports a substrate-gated transformation of a pre-catalyst [(NO)2Fe(μ-MePyr)(μ-CO)Fe(NO)2]- (3) into the iron-hydride species A as an intermediate during the generation of H2(g).
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | - Linda Iffland-Mühlhaus
- Department of Chemistry and Biochemistry, Inorganic Chemistry Ι, Ruhr-Universität Bochum, Bochum 44801, Germany
| | - Donato Calabrese
- Institute of Applied Microbiology, RWTH Aachen University, Aachen 52074, Germany
| | - Yu-Che Chang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Konstantin Laun
- Institut für Chemie, Technische Universität Berlin, Berlin 10623, Germany
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ilya Sergueev
- Deutsches Elektronen-Synchrotron DESY, Hamburg D-22607, Germany
| | | | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Hong Chen
- Department of Medical Applied Chemistry, Chung Shan Medical University and Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - I-Jui Hsu
- Department of Molecular Science and Engineering, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Ulf-Peter Apfel
- Department of Chemistry and Biochemistry, Inorganic Chemistry Ι, Ruhr-Universität Bochum, Bochum 44801, Germany.,Department for Electrosynthesis, Fraunhofer UMSICHT, Oberhausen 46047, Germany
| | - Giorgio Caserta
- Institut für Chemie, Technische Universität Berlin, Berlin 10623, Germany
| | - Lars Lauterbach
- Institute of Applied Microbiology, RWTH Aachen University, Aachen 52074, Germany
| | - Tsai-Te Lu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
10
|
Solid-state mechanochemical synthesis of Rh/Al2O3 catalysts for effective hydrolysis of ammonia borane. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Zhang X, Lu L, Wang J, Cai L, Ling H, Bai X, Wang W. Broadband Plasmonic NbN Photocatalysts for Enhanced Hydrogen Generation from Ammonia Borane under Visible-Near-Infrared Illumination. J Phys Chem Lett 2022; 13:4220-4226. [PMID: 35512403 DOI: 10.1021/acs.jpclett.2c00876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The superior light-harvesting ability of plasmonic metallic nanostructures makes them uniquely suitable for applications in the light-driven chemical transformations relevant to renewable fuels. Here we demonstrate the use of niobium nitride (NbN) nanostructures as a nonprecious plasmonic photocatalyst for the highly efficient H2 generation from the hydrolytic decomposition of ammonia borane (AB). Porous nanostructured NbN with a hierarchical flower-like nanoarchitecture was synthesized to achieve strong broadband plasmonic absorption in the visible and near-infrared (NIR) regions. The plasmonic NbN absorbers, when loaded with an optimized amount (∼2 wt %) of nanoparticulate Ni as the catalytic centers, show notably enhanced activity toward AB decomposition for H2 evolution under both visible and NIR illumination, with the reaction rates being 4.6 (>420 nm) and 2.7 (>780 nm) times higher than that of the dark reaction. Further kinetic measurements and mechanistic investigations reveal that the photocatalytic activity originates from the plasmonic hot-carrier contributions.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State Key Laboratory for Surface Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Lisha Lu
- State Key Laboratory for Surface Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianlin Wang
- State Key Laboratory for Surface Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lejuan Cai
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Hao Ling
- State Key Laboratory for Surface Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuedong Bai
- State Key Laboratory for Surface Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenlong Wang
- State Key Laboratory for Surface Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
12
|
Covalent Triazine Framework Encapsulated Pd Nanoclusters for Efficient Hydrogen Production via Ammonia Borane Hydrolysis. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Bhattacharjee I, Sultana M, Bhunya S, Paul A. The curious saga of dehydrogenation/hydrogenation for chemical hydrogen storage: a mechanistic perspective. Chem Commun (Camb) 2022; 58:1672-1684. [PMID: 35024699 DOI: 10.1039/d1cc06238g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen storage is an indispensable component of hydrogen-based fuel economy. Chemical hydrogen storage relies on the development of lightweight compounds which can deliver high weight percentage of H2 at moderate temperatures through dehydrogenation and can be recovered from the dehydrogenated mass by hydrogenation for reuse. In this feature article we primarily discuss the mechanistic underpinnings of the catalytic dehydrogenation of ammonia-borane, a potential candidate for hydrogen storage and the challenges associated with its regeneration from the dehydrogenated mass. Moreover, we highlight the mechanistic intricacies, viability, sustainability and unresolved issues of allied chemical hydrogen storage avenues such as the CH3OH-CO2 cycle.
Collapse
Affiliation(s)
| | - Munia Sultana
- Indian Association for the Cultivation of Science, Kolkata, India.
| | - Sourav Bhunya
- Indian Association for the Cultivation of Science, Kolkata, India.
| | - Ankan Paul
- Indian Association for the Cultivation of Science, Kolkata, India.
| |
Collapse
|
14
|
Mao Q, Li D, Dong Y. Ni xP and Mn 3O 4 dual co-catalysts separately deposited on a g-C 3N 4/red phosphorus hybrid photocatalyst for an efficient hydrogen evolution. NEW J CHEM 2022. [DOI: 10.1039/d2nj00395c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through a two-step photo-deposition, reductive and oxidative non-noble co-catalysts separately deposited and facilitated a HER enhancement of 12.4.
Collapse
Affiliation(s)
- Qinyi Mao
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Dandan Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yuming Dong
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
15
|
Li M, Zhang S, Zhao J, Wang H. Maximizing Metal-Support Interactions in Pt/Co 3O 4 Nanocages to Simultaneously Boost Hydrogen Production Activity and Durability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57362-57371. [PMID: 34817150 DOI: 10.1021/acsami.1c18403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Catalytic hydrolysis of ammonia borane (AB) provides an effective way to generate pure H2 at ambient temperature for fuel cells. Pt-based catalysts usually exhibit great initial activity toward this reaction but deactivate quickly. Here, we report that the metal-support interactions in Pt/Co3O4 nanocages can simultaneously accelerate the H2 generation and enhance the catalyst's stability. The Pt/Co3O4 catalyst is made for the first time by embedding Pt clusters (∼1.2 nm) in a high-surface-area Co3O4 nanocage to maximize the metal-support interface. The turnover frequency of the Pt/Co3O4 catalyst is about nine times higher than that of commercial Pt/C and outperforms almost all other Pt-based catalysts. X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, in situ spectroscopy, and density functional theory calculations suggest that the Co3O4 nanocages with rich oxygen vacancies facilitate the adsorption and dissociation of H2O to give electropositive H (Hδ+), while the in situ embedded Pt clusters can accelerate the formation of electronegative H (Hδ-) from AB. Subsequently, the Hδ+ and Hδ- spill over to the abundant interfacial sites and bond into H2. In addition to this dual-function synergy effect, the strong metal-support electronic interactions between Co3O4 and Pt benefit the desorption of poisonous B-containing byproducts from Pt sites. This effect together with cluster anchoring leads to a fivefold enhancement in durability compared to commercial Pt/C. The metal-support interactions revealed in this study provide more options for catalyst design toward facile H2 production from chemical hydrogen storage materials.
Collapse
Affiliation(s)
- Mei Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Shengbo Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiankang Zhao
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 Anhui, P. R. China
| | - Hua Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
16
|
Enhanced catalytic performance of cobalt ferrite by a facile reductive treatment for H2 release from ammonia borane. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Xu H, Yu W, Zhang J, Zhou Z, Zhang H, Ge H, Wang G, Qin Y. Rhodium nanoparticles confined in titania nanotubes for efficient Hydrogen evolution from Ammonia Borane. J Colloid Interface Sci 2021; 609:755-763. [PMID: 34823851 DOI: 10.1016/j.jcis.2021.11.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
Designing efficient catalysts for hydrogen evolution from hydrolysis of ammonia borane (AB) have attracted considerable attention. Rhodium (Rh) based catalysts with rational design present remarkable catalytic performance for the reaction. Herein, we report the confined Rh@TiO2 catalysts synthesized by atomic layer deposition combining with the sacrificial template approach, in which the Rh nanoparticles are uniformly confined on the inner surface of the porous titania nanotubes. The optimized catalysts show high catalytic activity with a turnover frequency value of 334.1 molH2·molRh-1·min-1 and better durability. Mechanistic investigation demonstrates that the cleavage of OH bands in water should be the rate determining step, and the appropriate concentration of NaOH can further enhance the hydrogen evolution activity. The catalysts can also achieve the hydrogenation of various organic substrates using AB as the hydrogen source. In addition, our present strategy is general and can be extended to the synthesis of other confined catalysts for various catalytic reactions.
Collapse
Affiliation(s)
- Hao Xu
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenlong Yu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiankang Zhang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Hongxia Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huibin Ge
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guangjian Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yong Qin
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
18
|
Han Y, Meng Y, Guo Y, Jia P, Huang G, Gu X. MOF-Directed Construction of Cu-Carbon and Cu@N-Doped Carbon as Superior Supports of Metal Nanoparticles toward Efficient Hydrogen Generation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52921-52930. [PMID: 34714623 DOI: 10.1021/acsami.1c15117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The modulation of electronic behavior of metal-based catalysts is vital to optimize their catalytic performance. Herein, metal-organic frameworks (MOFs) are pyrolyzed to afford a series of different-structured Cu-carbon composites and Cu@N-doped carbon composites. Then a series of CO-resistant catalysts, namely, Co or Ni nanoparticles supported by the Cu-based composites, are synthesized for the hydrogen generation from aqueous NH3BH3. Their catalytic activities are boosted under light irradiation and regulated by the compositions and the fine structures of doped N species with pyridine, pyrrole, and graphitic configurations in the composite supports. Particularly, the optimized Co-based catalyst with the highest graphitic N content exhibits a high activity, achieving a total turnover frequency (TOF) value of 210 min-1, which is higher than all the reported unprecious catalysts. Further investigations verify that the light-driven synergistic electron effect of plasmonic Cu-based composites and Co nanoparticles accounts for the high-performance hydrogen generation.
Collapse
Affiliation(s)
- Yali Han
- Inner Mongolia Key Laboratory of Coal Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Yuan Meng
- Inner Mongolia Key Laboratory of Coal Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Yan Guo
- Inner Mongolia Key Laboratory of Coal Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Peilin Jia
- Inner Mongolia Key Laboratory of Coal Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Guofang Huang
- Inner Mongolia Key Laboratory of Coal Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Xiaojun Gu
- Inner Mongolia Key Laboratory of Coal Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
19
|
Mboyi CD, Poinsot D, Roger J, Fajerwerg K, Kahn ML, Hierso JC. The Hydrogen-Storage Challenge: Nanoparticles for Metal-Catalyzed Ammonia Borane Dehydrogenation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102759. [PMID: 34411437 DOI: 10.1002/smll.202102759] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Dihydrogen is one of the sustainable energy vectors envisioned for the future. However, the rapidly reversible and secure storage of large quantities of hydrogen is still a technological and scientific challenge. In this context, this review proposes a recent state-of-the-art on H2 production capacities from the dehydrogenation reaction of ammonia borane (and selected related amine-boranes) as a safer solid source of H2 by hydrolysis (or solvolysis), catalyzed by nanoparticle-based systems. The review groups the results according to the transition metals constituting the catalyst with a mention to their current cost and availability. This includes the noble metals Rh, Pd, Pt, Ru, Ag, as well as cheaper Co, Ni, Cu, and Fe. For each element, the monometallic and polymetallic structures are presented and the performances are described in terms of turnover frequency and recyclability. The structure-property links are highlighted whenever possible. It appears from all these works that the mastery of the preparation of catalysts remains a crucial point both in terms of process, and control and understanding of the electronic structures of the elaborated nanomaterials. A particular effort of the scientific community remains to be made in this multidisciplinary field with major societal stakes.
Collapse
Affiliation(s)
- Clève D Mboyi
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR-CNRS 6302 Université Bourgogne-Franche-Comté (UBFC), 9 avenue Alain Savary, Dijon, 21078, France
| | - Didier Poinsot
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR-CNRS 6302 Université Bourgogne-Franche-Comté (UBFC), 9 avenue Alain Savary, Dijon, 21078, France
| | - Julien Roger
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR-CNRS 6302 Université Bourgogne-Franche-Comté (UBFC), 9 avenue Alain Savary, Dijon, 21078, France
| | - Katia Fajerwerg
- Laboratoire de Chimie de Coordination (LCC-CNRS), Université de Toulouse, INPT, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Myrtil L Kahn
- Laboratoire de Chimie de Coordination (LCC-CNRS), Université de Toulouse, INPT, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Jean-Cyrille Hierso
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR-CNRS 6302 Université Bourgogne-Franche-Comté (UBFC), 9 avenue Alain Savary, Dijon, 21078, France
| |
Collapse
|
20
|
Li Y, Zou Y, Bai Y, Zhang X, Wang G, Huang X, Chen D. A novel worm-like micelles@MOFs precursor for constructing hierarchically porous CoP/N-doped carbon networks towards efficient hydrogen evolution reaction. J Colloid Interface Sci 2021; 600:872-881. [PMID: 34052536 DOI: 10.1016/j.jcis.2021.05.094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/08/2021] [Accepted: 05/16/2021] [Indexed: 11/18/2022]
Abstract
Constructing electrocatalysts with plentiful active sites, great mass transfer ability, and high electrical conductivity is critical to realize efficient hydrogen evolution reaction (HER). Hierarchically porous cobalt phosphide/N-doped nanotubular carbon networks (CoP/NCNs) that have all the features were fabricated in this work. For the fabrication, the polymeric worm-like micelles (PWs) with a large aspect ratio were coated by a uniform nanolayer of Zn-Co zeolitic imidazolate frameworks (Zn-Co-ZIFs) on their surface, resulting in the hybrid nanofibers PWs@Zn-Co-ZIFs (HPWs). Inheriting the randomly curved and entanglement properity of PWs, the rigid HPWs formed hybrid networks with the packing voids sized tens to 200 nm. Then, the hybrid networks were treated by pyrolysis-oxidation-phosphidation and ZnO-removal processes, leading to the hierarchically porous CoP/NCNs. In the CoP/NCNs, there are plentiful CoP nanoparticles embedded on the surface of conductive carbon network and fully exposed. When used for HER electrocatalyst, the CoP/NCNs only need small overpotentials (98 and 118 mV in acid and alkaline electrolyte) at 10 mA cm-2. This novel strategy is instructive for tailoring hierarchically porous transition metal phosphide/carbon nanocomposites as promising electrocatalysts.
Collapse
Affiliation(s)
- Yanran Li
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Yunlong Zou
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Yuanjuan Bai
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Xucheng Zhang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Gang Wang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Xiayun Huang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Daoyong Chen
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| |
Collapse
|
21
|
Fang MH, Wu SY, Chang YH, Narwane M, Chen BH, Liu WL, Kurniawan D, Chiang WH, Lin CH, Chuang YC, Hsu IJ, Chen HT, Lu TT. Mechanistic Insight into the Synergetic Interaction of Ammonia Borane and Water on ZIF-67-Derived Co@Porous Carbon for Controlled Generation of Dihydrogen. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47465-47477. [PMID: 34592812 DOI: 10.1021/acsami.1c11521] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Regarding dihydrogen as a clean and renewable energy source, ammonia borane (NH3BH3, AB) was considered as a chemical H2-storage and H2-delivery material due to its high storage capacity of dihydrogen (19.6 wt %) and stability at room temperature. To advance the development of efficient and recyclable catalysts for hydrolytic dehydrogenation of AB with parallel insight into the reaction mechanism, herein, ZIF-67-derived fcc-Co@porous carbon nano/microparticles (cZIF-67_nm/cZIF-67_μm) were explored to promote catalytic dehydrogenation of AB and generation of H2(g). According to kinetic and computational studies, zero-order dependence on the concentration of AB, first-order dependence on the concentration of cZIF-67_nm (or cZIF-67_μm), and a kinetic isotope effect value of 2.45 (or 2.64) for H2O/D2O identify the Co-catalyzed cleavage of the H-OH bond, instead of the H-BH2NH3 bond, as the rate-determining step in the hydrolytic dehydrogenation of AB. Despite the absent evolution of H2(g) in the reaction of cZIF-67 and AB in the organic solvents (i.e., THF or CH3OH) or in the reaction of cZIF-67 and water, Co-mediated activation of AB and formation of a Co-H intermediate were evidenced by theoretical calculation, infrared spectroscopy in combination with an isotope-labeling experiment, and reactivity study toward CO2-to-formate/H2O-to-H2 conversion. Moreover, the computational study discovers a synergistic interaction between AB and the water cluster (H2O)9 on fcc-Co, which shifts the splitting of water into an exergonic process and lowers the thermodynamic barrier for the generation and desorption of H2(g) from the Co-H intermediates. With the kinetic and mechanistic study of ZIF-67-derived Co@porous carbon for catalytic hydrolysis of AB, the spatiotemporal control on the generation of H2(g) for the treatment of inflammatory diseases will be further investigated in the near future.
Collapse
Affiliation(s)
- Min-Hsuan Fang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shiuan-Yau Wu
- Department of Chemistry and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Yu-Hsiang Chang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Manmath Narwane
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bo-Hao Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Wei-Ling Liu
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yu-Chun Chuang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - I-Jui Hsu
- Department of Molecular Science and Engineering, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Hsin-Tsung Chen
- Department of Chemistry and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
22
|
|
23
|
Bustos I, Freixa Z, Pazos A, Mendicute‐Fierro C, Garralda MA. Efficient Homogeneous Hydridoirida‐β‐Diketone‐Catalyzed Methanolysis of Ammonia‐Borane for Hydrogen Release in Air. Mechanistic Insights. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Itxaso Bustos
- Facultad de Química de San Sebastián Universidad del País Vasco (UPV/EHU) Apdo. 1072 20080 San Sebastián Spain
| | - Zoraida Freixa
- Facultad de Química de San Sebastián Universidad del País Vasco (UPV/EHU) Apdo. 1072 20080 San Sebastián Spain
- Ikerbasque Basque Foundation for Science 48011 Bilbao Spain
| | - Ariadna Pazos
- Facultad de Química de San Sebastián Universidad del País Vasco (UPV/EHU) Apdo. 1072 20080 San Sebastián Spain
| | - Claudio Mendicute‐Fierro
- Facultad de Química de San Sebastián Universidad del País Vasco (UPV/EHU) Apdo. 1072 20080 San Sebastián Spain
| | - María A. Garralda
- Facultad de Química de San Sebastián Universidad del País Vasco (UPV/EHU) Apdo. 1072 20080 San Sebastián Spain
| |
Collapse
|
24
|
Lau S, Gasperini D, Webster RL. Amine-Boranes as Transfer Hydrogenation and Hydrogenation Reagents: A Mechanistic Perspective. Angew Chem Int Ed Engl 2021; 60:14272-14294. [PMID: 32935898 PMCID: PMC8248159 DOI: 10.1002/anie.202010835] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 11/10/2022]
Abstract
Transfer hydrogenation (TH) has historically been dominated by Meerwein-Ponndorf-Verley (MPV) reactions. However, with growing interest in amine-boranes, not least ammonia-borane (H3 N⋅BH3 ), as potential hydrogen storage materials, these compounds have also started to emerge as an alternative reagent in TH reactions. In this Review we discuss TH chemistry using H3 N⋅BH3 and their analogues (amine-boranes and metal amidoboranes) as sacrificial hydrogen donors. Three distinct pathways were considered: 1) classical TH, 2) nonclassical TH, and 3) hydrogenation. Simple experimental mechanistic probes can be employed to distinguish which pathway is operating and computational analysis can corroborate or discount mechanisms. We find that the pathway in operation can be perturbed by changing the temperature, solvent, amine-borane, or even the substrate used in the system, and subsequently assignment of the mechanism can become nontrivial.
Collapse
Affiliation(s)
- Samantha Lau
- Department of ChemistryUniversity of BathClaverton DownBathUK
| | | | - Ruth L. Webster
- Department of ChemistryUniversity of BathClaverton DownBathUK
| |
Collapse
|
25
|
Wei R, Chen Z, Lv H, Zheng X, Ge X, Sun L, Song K, Kong C, Zhang W, Liu B. Ultrafine RhNi Nanocatalysts Confined in Hollow Mesoporous Carbons for a Highly Efficient Hydrogen Production from Ammonia Borane. Inorg Chem 2021; 60:6820-6828. [PMID: 33844546 DOI: 10.1021/acs.inorgchem.1c00721] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ammonia borane (AB) has received growing research interest as one of the most promising hydrogen-storage carrier materials. However, fast dehydrogenation of AB is still limited by sluggish catalytic kinetics over current catalysts. Herein, highly uniform and ultrafine bimetallic RhNi alloy nanoclusters encapsulated within nitrogen-functionalized hollow mesoporous carbons (defined as RhNi@NHMCs) are developed as highly active, durable, and selective nanocatalysts for fast hydrolysis of AB under mild conditions. Remarkable activity with a high turnover frequency (TOF) of 1294 molH2 molRh-1 min-1 and low activation energy (Ea) of 18.6 kJ mol-1 is observed at room temperature, surpassing the previous Rh-based catalysts. The detailed mechanism studies reveal that when catalyzed by RhNi@NHMCs, a covalently stable O-H bond by H2O first cleaves in electropositive H* and further attacks B-H bond of AB to stoichiometrically produce 3 equiv of H2, whose catalytic kinetics is restricted by the oxidation cleavage of the O-H bond. Compositional and structural features of RhNi@NHMCs result in synergic electronic, functional, and support add-in advantages, kinetically accelerating the cleavage of the attacked H2O (O-H bond) and remarkably promoting the catalytic hydrolysis of AB accordingly. This present work represents a new and effective strategy for exploring high-performance supported metal-based alloy nanoclusters for (electro)catalysis.
Collapse
Affiliation(s)
- Ren Wei
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhichao Chen
- Shenzhen RELX Technology Co., Ltd., Shenzhen 518108 China
| | - Hao Lv
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xuecheng Zheng
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin Ge
- Key Laboratory of Automobile Materials MOE, and Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Lizhi Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Chuncai Kong
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wei Zhang
- Key Laboratory of Automobile Materials MOE, and Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Ben Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
26
|
Hydrolytic Dehydrogenation of Ammonia Borane Attained by Ru-Based Catalysts: An Auspicious Option to Produce Hydrogen from a Solid Hydrogen Carrier Molecule. ENERGIES 2021. [DOI: 10.3390/en14082199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chemical hydrogen storage stands as a promising option to conventional storage methods. There are numerous hydrogen carrier molecules that afford satisfactory hydrogen capacity. Among them, ammonia borane has attracted great interest due to its high hydrogen capacity. Great efforts have been devoted to design and develop suitable catalysts to boost the production of hydrogen from ammonia borane, which is preferably attained by Ru catalysts. The present review summarizes some of the recent Ru-based heterogeneous catalysts applied in the hydrolytic dehydrogenation of ammonia borane, paying particular attention to those supported on carbon materials and oxides.
Collapse
|
27
|
Lau S, Gasperini D, Webster RL. Amine–Boranes as Transfer Hydrogenation and Hydrogenation Reagents: A Mechanistic Perspective. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Samantha Lau
- Department of Chemistry University of Bath Claverton Down Bath UK
| | - Danila Gasperini
- Department of Chemistry University of Bath Claverton Down Bath UK
| | - Ruth L. Webster
- Department of Chemistry University of Bath Claverton Down Bath UK
| |
Collapse
|
28
|
Li SH, Qi MY, Tang ZR, Xu YJ. Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis. Chem Soc Rev 2021; 50:7539-7586. [PMID: 34002737 DOI: 10.1039/d1cs00323b] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal phosphides (MPs) with unique and desirable physicochemical properties provide promising potential in practical applications, such as the catalysis, gas/humidity sensor, environmental remediation, and energy storage fields, especially for transition metal phosphides (TMPs) and MPs consisting of group IIIA and IVA metal elements. Most studies, however, on the synthesis of MP nanomaterials still face intractable challenges, encompassing the need for a more thorough understanding of the growth mechanism, strategies for large-scale synthesis of targeted high-quality MPs, and practical achievement of functional applications. This review aims at providing a comprehensive update on the controllable synthetic strategies for MPs from various metal sources. Additionally, different passivation strategies for engineering the structural and electronic properties of MP nanostructures are scrutinized. Then, we showcase the implementable applications of MP-based materials in emerging sustainable catalytic fields including electrocatalysis, photocatalysis, mild thermocatalysis, and related hybrid systems. Finally, we offer a rational perspective on future opportunities and remaining challenges for the development of MPs in the materials science and sustainable catalysis fields.
Collapse
Affiliation(s)
- Shao-Hai Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| |
Collapse
|
29
|
Wang C, Astruc D. Recent developments of nanocatalyzed liquid-phase hydrogen generation. Chem Soc Rev 2021; 50:3437-3484. [PMID: 33492311 DOI: 10.1039/d0cs00515k] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hydrogen is the most effective and sustainable carrier of clean energy, and liquid-phase hydrogen storage materials with high hydrogen content, reversibility and good dehydrogenation kinetics are promising in view of "hydrogen economy". Efficient, low-cost, safe and selective hydrogen generation from chemical storage materials remains challenging, however. In this Review article, an overview of the recent achievements is provided, addressing the topic of nanocatalysis of hydrogen production from liquid-phase hydrogen storage materials including metal-boron hydrides, borane-nitrogen compounds, and liquid organic hydrides. The state-of-the-art catalysts range from high-performance nanocatalysts based on noble and non-noble metal nanoparticles (NPs) to emerging single-atom catalysts. Key aspects that are discussed include insights into the dehydrogenation mechanisms, regenerations from the spent liquid chemical hydrides, and tandem reactions using the in situ generated hydrogen. Finally, challenges, perspectives, and research directions for this area are envisaged.
Collapse
Affiliation(s)
- Changlong Wang
- Univ. Bordeaux, ISM, UMR CNRS 5255, 351 Cours de la Libération, 33405 Talence Cedex, France.
| | - Didier Astruc
- Univ. Bordeaux, ISM, UMR CNRS 5255, 351 Cours de la Libération, 33405 Talence Cedex, France.
| |
Collapse
|
30
|
Xu SH, Wang JF, Valério A, Zhang WY, Sun JL, He DN. Activating Co nanoparticles on graphitic carbon nitride by tuning the Schottky barrier via P doping for the efficient dehydrogenation of ammonia-borane. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00659a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A highly active Mott–Schottky nanocatalyst for the efficient dehydrogenation of ammonia-borane was constructed by rationally tuning the Schottky barrier of Co/PxCN (P-doped g-C3N4) via simply varying the doping amount of P atoms.
Collapse
Affiliation(s)
- Shao-Hong Xu
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jing-Feng Wang
- National Engineering Research Center for Nanotechnology
- Shanghai 200241
- P. R. China
- Shanghai University of Medicine & Health Sciences
- Shanghai
| | - Alexsandra Valério
- Department of Chemical Engineering and Food Engineering
- Federal University of Santa Catarina
- 88040-900 Florianópolis
- Brazil
| | - Wen-Yu Zhang
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jia-Lun Sun
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Dan-Nong He
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
- National Engineering Research Center for Nanotechnology
| |
Collapse
|
31
|
Ge Y, Qin X, Li A, Deng Y, Lin L, Zhang M, Yu Q, Li S, Peng M, Xu Y, Zhao X, Xu M, Zhou W, Yao S, Ma D. Maximizing the Synergistic Effect of CoNi Catalyst on α-MoC for Robust Hydrogen Production. J Am Chem Soc 2020; 143:628-633. [DOI: 10.1021/jacs.0c11285] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yuzhen Ge
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, College of Engineering and BIC-ESAT, Peking University, Beijing 100871, China
| | - Xuetao Qin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, College of Engineering and BIC-ESAT, Peking University, Beijing 100871, China
| | - Aowen Li
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, College of Engineering and BIC-ESAT, Peking University, Beijing 100871, China
| | - Lili Lin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, College of Engineering and BIC-ESAT, Peking University, Beijing 100871, China
| | - Mengtao Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, College of Engineering and BIC-ESAT, Peking University, Beijing 100871, China
| | - Qiaolin Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, College of Engineering and BIC-ESAT, Peking University, Beijing 100871, China
| | - Siwei Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, College of Engineering and BIC-ESAT, Peking University, Beijing 100871, China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, College of Engineering and BIC-ESAT, Peking University, Beijing 100871, China
| | - Yao Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, College of Engineering and BIC-ESAT, Peking University, Beijing 100871, China
| | - Xueyao Zhao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, College of Engineering and BIC-ESAT, Peking University, Beijing 100871, China
| | - Mingquan Xu
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wu Zhou
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, College of Engineering and BIC-ESAT, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Zhang L, Yuan G, Bai J, Ren L. MoP@C Supported on Absorbent Cotton as a Highly Efficient Catalyst towards Hydrodechlorination Reaction. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lu Zhang
- School of Chemistry and Chemical Engineering Southeast University Southeast University Road 2nd 211189 Nanjing Jiangning District P. R. China
| | - Guojun Yuan
- School of Chemistry and Chemical Engineering Southeast University Southeast University Road 2nd 211189 Nanjing Jiangning District P. R. China
| | - Jianliang Bai
- School of Chemistry and Chemical Engineering Southeast University Southeast University Road 2nd 211189 Nanjing Jiangning District P. R. China
| | - Lili Ren
- School of Chemistry and Chemical Engineering Southeast University Southeast University Road 2nd 211189 Nanjing Jiangning District P. R. China
| |
Collapse
|
33
|
Liu Y, Gao M, Yang W, Yu Y. In Situ Growth of Ultrafine PtPd Nanoparticles on Bifunctional NH
2
‐N‐rGO with Remarkable Catalytic Activity for Ammonia Borane Dehydrogenation. ChemistrySelect 2020. [DOI: 10.1002/slct.202002116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yuan Liu
- National Graphene Products Quality Supervision and Inspection Center Wuxi, Jiangsu 214174 China
- Special Equipment Safety Supervision and Inspection Institute of Jiangsu Province Nanjing, Jiangsu 210000 China
| | - Manyi Gao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin Heilongjiang 150001 China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin Heilongjiang 150001 China
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin Heilongjiang 150001 China
| |
Collapse
|
34
|
Li J, Ren X, Lv H, Wang Y, Li Y, Liu B. Highly efficient hydrogen production from hydrolysis of ammonia borane over nanostructured Cu@CuCoO x supported on graphene oxide. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122199. [PMID: 32045803 DOI: 10.1016/j.jhazmat.2020.122199] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/18/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Designing highly efficient and cheap nanocatalysts for room-temperature hydrolysis of ammonia borane (AB) is of great significance for their real application in hydrogen (H2)-based fuel cells. Here, we report a kind of noble metal (NM)-free hybrid nanocatalysts composed of heterostructured Cu@CuCoOx nanoparticles and a graphene oxide support (denoted as Cu@CuCoOx@GO) and demonstrate their high catalytic performance toward the hydrolysis of AB. By rationally controlling synthetic parameters, we find that optimum Cu0.3@Cu0.7CoOx@GO achieves a superior catalytic activity with a turnover frequency of 44.6 molH2 molM-1 min-1 in H2O and 98.2 molH2 molM-1 min-1 in 0.2 M NaOH, better than most of previously reported NM-free nanocatalysts. This catalyst also discloses a very low activation energy (Ea) of 35.4 kJ mol-1. The studies on catalytic kinetics and isotopic experiments attribute the high activity to synergistically structural and compositional advantages of Cu0.3@Cu0.7CoOx@GO, which kinetically accelerates the oxidative cleavage of OH bond in attacked H2O (the rate-determining step of the hydrolysis of AB). This study thus provides an opportunity for rational design of cheap NM-free nanocatalysts for H2 production from chemical H2-storage materials.
Collapse
Affiliation(s)
- Jinlong Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xueying Ren
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Hao Lv
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yingying Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ben Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
35
|
Masuda S, Shun K, Mori K, Kuwahara Y, Yamashita H. Synthesis of a binary alloy nanoparticle catalyst with an immiscible combination of Rh and Cu assisted by hydrogen spillover on a TiO 2 support. Chem Sci 2020; 11:4194-4203. [PMID: 34122882 PMCID: PMC8152661 DOI: 10.1039/c9sc05612b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/27/2020] [Indexed: 01/08/2023] Open
Abstract
This work demonstrated the use of TiO2 as a promising platform for the synthesis of non-equilibrium RhCu binary alloy nanoparticles (NPs). These metals are regarded as immiscible based on their phase diagram but form NPs with the aid of the significant hydrogen spillover on TiO2 with concurrent proton-electron transfer. The resulting RhCu/TiO2 exhibited 2.6 times higher catalytic activity than Rh/TiO2 during hydrogen production from the hydrolysis of ammonia borane (AB), due to a synergistic effect. Theoretical simulations showed a higher energy value for the adsorption of AB on the RhCu alloy and a lower activation energy for the rate determining N-B bond dissociation by the attack of H2O during AB hydrolysis compared to monometallic Rh. High-angle annular dark-field scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the formation of RhCu alloy NPs with a mean diameter of 2.0 nm on the TiO2. H2-temperature programmed reduction and in situ X-ray absorption fine structure analyses at elevated temperature under H2 demonstrated that Rh3+ and Cu2+ precursors were simultaneously reduced only on the TiO2 support. This effect resulted from the improved and limited reducibility of Cu2+ and Rh3+, respectively. The rate of hydrogen spillover of TiO2 is faster as compared to γ-Al2O3 and MgO as evidenced by sequential H2/D2 exchanges during in situ Fourier transform infrared analyses. Density functional theory calculations also showed that the migration of H atoms on TiO2 proceeds with a lower energy barrier than that on Al2O3, and the reduction of Cu2+ species is facilitated by H spillover on the support rather than by direct reduction by H2. These results confirm the vital role of TiO2 in the formation of the alloy and may represent a new strategy for the synthesis of different non-equilibrium solid solution alloys.
Collapse
Affiliation(s)
- Shinya Masuda
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan +81-6-6879-7457 +81-6-6879-7457
| | - Kazuki Shun
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan +81-6-6879-7457 +81-6-6879-7457
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan +81-6-6879-7457 +81-6-6879-7457
- Unit of Elements Strategy Initiative for Catalysts Batteries (ESICB), Kyoto University Katsura Kyoto 615-8520 Japan
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan +81-6-6879-7457 +81-6-6879-7457
- Unit of Elements Strategy Initiative for Catalysts Batteries (ESICB), Kyoto University Katsura Kyoto 615-8520 Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan +81-6-6879-7457 +81-6-6879-7457
- Unit of Elements Strategy Initiative for Catalysts Batteries (ESICB), Kyoto University Katsura Kyoto 615-8520 Japan
| |
Collapse
|
36
|
Song J, Gu X, Zhang H. Electrons and Hydroxyl Radicals Synergistically Boost the Catalytic Hydrogen Evolution from Ammonia Borane over Single Nickel Phosphides under Visible Light Irradiation. ChemistryOpen 2020; 9:366-373. [PMID: 32211281 PMCID: PMC7083169 DOI: 10.1002/open.201900335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/02/2020] [Indexed: 11/12/2022] Open
Abstract
From the perspective of tailoring the reaction pathways of photogenerated charge carriers and intermediates to remarkably enhance the solar‐to‐hydrogen energy conversion efficiency, we synthesized the three low‐cost semiconducting nickel phosphides Ni2P, Ni12P5 and Ni3P, which singly catalyzed the hydrogen evolution from ammonia borane (NH3BH3) in the alkaline aqueous solution under visible light irradiation at 298 K. The systematic investigations showed that all the catalysts had higher activities under visible light irradiation than in the dark and Ni2P had the highest photocatalytic activity with the initial turnover frequency (TOF) value of 82.7 min−1, which exceeded the values of reported metal phosphides at 298 K. The enhanced activities of nickel phosphides were attributed to the visible‐light‐driven synergistic effect of photogenerated electrons (e−) and hydroxyl radicals (.OH), which came from the oxidation of hydroxide anions by photogenerated holes. This was verified by the fluorescent spectra and the capture experiments of photogenerated electrons and holes as well as hydroxyl radicals in the catalytic hydrogen evolution process.
Collapse
Affiliation(s)
- Jin Song
- Inner Mongolia Key Laboratory of Coal Chemistry School of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021, Inner Mongolia China.,Academician Expert Workstation of Ecological Governance and Green Development of Bayan Nur Department of Ecology and Resource Engineering College of Hetao Bayan Nur 015000, Inner Mongolia China
| | - Xiaojun Gu
- Inner Mongolia Key Laboratory of Coal Chemistry School of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021, Inner Mongolia China
| | - Hao Zhang
- Inner Mongolia Key Laboratory of Coal Chemistry School of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021, Inner Mongolia China
| |
Collapse
|
37
|
Yang X, Wei J, Wang Q, Shuai M, Yue G, Li P, Huang D, Astruc D, Zhao P. Pd-Ru nanocatalysts derived from a Pd-induced aerogel for dramatic boosting of hydrogen release. NANOSCALE 2020; 12:2345-2349. [PMID: 31916555 DOI: 10.1039/c9nr09307a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alloyed bimetallic Pd-Ru nanocatalysts prepared by in situ reduction of a mixture of a Ru(iii) source and a Pd(ii)@alkyne-PVA aerogel and characterized by TEM and XPS exhibit very highly catalytic activity towards hydrogen release from ammonia borane hydrolysis with a TOF value of 578.2 molH2 molcat-1 min-1.
Collapse
Affiliation(s)
- Xiaojiao Yang
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou City, Sichuan Province 621908, P.R. China.
| | - Jianyu Wei
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou City, Sichuan Province 621908, P.R. China. and ISM, UMR CNRS No. 5255, Univ. Bordeaux, 33405 Talence Cedex, France
| | - Qi Wang
- ISM, UMR CNRS No. 5255, Univ. Bordeaux, 33405 Talence Cedex, France
| | - Maobing Shuai
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou City, Sichuan Province 621908, P.R. China.
| | - Guozong Yue
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou City, Sichuan Province 621908, P.R. China.
| | - Peilong Li
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou City, Sichuan Province 621908, P.R. China.
| | - Deshun Huang
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou City, Sichuan Province 621908, P.R. China.
| | - Didier Astruc
- ISM, UMR CNRS No. 5255, Univ. Bordeaux, 33405 Talence Cedex, France
| | - Pengxiang Zhao
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou City, Sichuan Province 621908, P.R. China.
| |
Collapse
|
38
|
Li X, Zhang C, Luo M, Yao Q, Lu ZH. Ultrafine Rh nanoparticles confined by nitrogen-rich covalent organic frameworks for methanolysis of ammonia borane. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00073f] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An Rh/PC-COF was synthesized using a metal–nitrogen coordination reduction strategy and was applied as a highly efficient catalyst for methanolysis of ammonia borane.
Collapse
Affiliation(s)
- Xiugang Li
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Chunling Zhang
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Minghong Luo
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Qilu Yao
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Zhang-Hui Lu
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- China
| |
Collapse
|
39
|
Yao Q, Ding Y, Lu ZH. Noble-metal-free nanocatalysts for hydrogen generation from boron- and nitrogen-based hydrides. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00766h] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We focus on the recent advances in non-noble metal catalyst design, synthesis and applications in dehydrogenation of chemical hydrides (e.g. NaBH4, NH3BH3, NH3, N2H4, N2H4BH3) due to their high hydrogen contents and CO-free H2 production.
Collapse
Affiliation(s)
- Qilu Yao
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P.R. China
| | - Yiyue Ding
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P.R. China
| | - Zhang-Hui Lu
- Institute of Advanced Materials (IAM)
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P.R. China
| |
Collapse
|
40
|
The effect of crystal facet (3 1 2) exposure intensity of Ni12P5 nanoparticle on its hydrodechlorination catalytic activity. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Acyl(furfurylamine)iridium(III) complexes from irida-β-diketones. Characterisation and catalytic activity in amine-borane hydrolysis. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Slot TK, Shiju NR, Rothenberg G. A Simple and Efficient Device and Method for Measuring the Kinetics of Gas‐Producing Reactions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thierry K. Slot
- Van't Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904 Amsterdam 1098 XH The Netherlands
| | - N. Raveendran Shiju
- Van't Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904 Amsterdam 1098 XH The Netherlands
| | - Gadi Rothenberg
- Van't Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904 Amsterdam 1098 XH The Netherlands
| |
Collapse
|
43
|
Muzzio M, Li J, Yin Z, Delahunty IM, Xie J, Sun S. Monodisperse nanoparticles for catalysis and nanomedicine. NANOSCALE 2019; 11:18946-18967. [PMID: 31454005 DOI: 10.1039/c9nr06080d] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The growth and breadth of nanoparticle (NP) research now encompasses many scientific and technologic fields, which has driven the want to control NP dimensions, structures and properties. Recent advances in NP synthesis, especially in solution phase synthesis, and characterization have made it possible to tune NP sizes and shapes to optimize NP properties for various applications. In this review, we summarize the general concepts of using solution phase chemistry to control NP nucleation and growth for the formation of monodisperse NPs with polyhedral, cubic, octahedral, rod, or wire shapes and complex multicomponent heterostructures. Using some representative examples, we demonstrate how to use these monodisperse NPs to tune and optimize NP catalysis of some important energy conversion reactions, such as the oxygen reduction reaction, electrochemical carbon dioxide reduction, and cascade dehydrogenation/hydrogenation for the formation of functional organic compounds under greener chemical reaction conditions. Monodisperse NPs with controlled surface chemistry, morphologies and magnetic properties also show great potential for use in biomedicine. We highlight how monodisperse iron oxide NPs are made biocompatible and target-specific for biomedical imaging, sensing and therapeutic applications. We intend to provide readers some concrete evidence that monodisperse NPs have been established to serve as successful model systems for understanding structure-property relationships at the nanoscale and further to show great potential for advanced nanotechnological applications.
Collapse
Affiliation(s)
- Michelle Muzzio
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Junrui Li
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Zhouyang Yin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | | | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| |
Collapse
|
44
|
Slot TK, Shiju NR, Rothenberg G. A Simple and Efficient Device and Method for Measuring the Kinetics of Gas-Producing Reactions. Angew Chem Int Ed Engl 2019; 58:17273-17276. [PMID: 31536672 PMCID: PMC6899998 DOI: 10.1002/anie.201911005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 11/22/2022]
Abstract
We present a new device for quantifying gases or gas mixtures based on the simple principle of bubble counting. With this device, we can follow reaction kinetics down to volume step sizes of 8–12 μL. This enables the accurate determination of both time and size of these gas quanta, giving a very detailed kinetic analysis. We demonstrate this method and device using ammonia borane hydrolysis as a model reaction, obtaining Arrhenius plots with over 300 data points from a single experiment. Our device not only saves time and avoids frustration, but also offers more insight into reaction kinetics and mechanistic studies. Moreover, its simplicity and low cost open opportunities for many lab applications.
Collapse
Affiliation(s)
- Thierry K Slot
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098, XH, The Netherlands
| | - N Raveendran Shiju
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098, XH, The Netherlands
| | - Gadi Rothenberg
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098, XH, The Netherlands
| |
Collapse
|
45
|
Li X, Yan Y, Jiang Y, Wu X, Li S, Huang J, Li J, Lin Y, Yang D, Zhang H. Ultra-small Rh nanoparticles supported on WO 3-x nanowires as efficient catalysts for visible-light-enhanced hydrogen evolution from ammonia borane. NANOSCALE ADVANCES 2019; 1:3941-3947. [PMID: 36132115 PMCID: PMC9416929 DOI: 10.1039/c9na00424f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/21/2019] [Indexed: 06/15/2023]
Abstract
Hydrolysis of ammonia borane (AB) is a safe and convenient means of H2 production when efficient catalysts are used. Here we report a facile one-pot solvothermal method to synthesize Rh/WO3-x hybrid nanowires. Ultra-small Rh nanoparticles with an average size of ∼1.7 nm were tightly anchored on WO3-x nanowires. Rh/WO3-x catalysts exhibited substantially enhanced activity for hydrolytic dehydrogenation of AB under both dark and visible light irradiation conditions relative to mixed Rh nanoparticles and WO3-x nanowires (Rh + WO3-x ), and Rh/C and WO3-x nanowires. X-ray photoelectron spectroscopy (XPS) analysis indicated that the synergistic effect between Rh nanoparticles and WO3-x nanowires was responsible for such an enhancement in activity. Specifically, Rh/WO3-x achieved the highest turnover frequency (TOF) with a value of 805.0 molH2 molRh -1 min-1 at room temperature under visible light irradiation. The H2 release rate as a function of reaction time exhibited a volcano plot under visible light irradiation, indicating that a self-activation process occurred in the hydrolytic dehydrogenation of AB due to additional oxygen vacancies arising from in situ reduction of WO3-x nanowires by AB, and thus an enhanced localized surface plasmon resonance (LSPR). Such a self-activation process was responsible for the enhanced catalytic activity under visible light irradiation relative to that under dark conditions, which was supported by the lower activation energy (45.2 vs. 50.5 kJ mol-1). In addition, Rh/WO3-x catalysts were relatively stable with only little loss in activity after five cycles due to the tight attachment between two components.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Yucong Yan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Yi Jiang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Xingqiao Wu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Shi Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Jingbo Huang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Junjie Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Yangfan Lin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Deren Yang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| |
Collapse
|
46
|
Ni 0.5Cu 0.5Co 2O 4 Nanocomposites, Morphology, Controlled Synthesis, and Catalytic Performance in the Hydrolysis of Ammonia Borane for Hydrogen Production. NANOMATERIALS 2019; 9:nano9091334. [PMID: 31540373 PMCID: PMC6781025 DOI: 10.3390/nano9091334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/16/2022]
Abstract
The catalytic hydrolysis of ammonia borane (AB) is a promising route to produce hydrogen for mobile hydrogen‒oxygen fuel cells. In this study, we have successfully synthesized a variety of Ni0.5Cu0.5Co2O4 nanocomposites with different morphology, including nanoplatelets, nanoparticles, and urchin-like microspheres. The catalytic performance of those Ni0.5Cu0.5Co2O4 composites in AB hydrolysis is investigated. The Ni0.5Cu0.5Co2O4 nanoplatelets show the best catalytic performance despite having the smallest specific surface area, with a turnover frequency (TOF) of 80.2 molhydrogen·min-1·mol-1cat. The results reveal that, in contrast to the Ni0.5Cu0.5Co2O4 nanoparticles and microspheres, the Ni0.5Cu0.5Co2O4 nanoplatelets are more readily reduced, leading to the fast formation of active species for AB hydrolysis. These findings provide some insight into the design of high-performance oxide-based catalysts for AB hydrolysis. Considering their low cost and high catalytic activity, Ni0.5Cu0.5Co2O4 nanoplatelets are a strong candidate catalyst for the production of hydrogen through AB hydrolysis in practical applications.
Collapse
|
47
|
Cu0.4Co0.6MoO4 Nanorods Supported on Graphitic Carbon Nitride as a Highly Active Catalyst for the Hydrolytic Dehydrogenation of Ammonia Borane. Catalysts 2019. [DOI: 10.3390/catal9090714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
As a typical chemical hydride, ammonia borane (AB) has received extensive attention because of its safety and high hydrogen storage capacity. The aim of this work was to develop a cost-efficient and highly reactive catalyst for hydrolyzing AB. Herein, we synthesized a series of CuxCo1–xMoO4 dispersed on graphitic carbon nitride (g-C3N4) to dehydrogenate AB. Among those CuxCo1–xMoO4/g-C3N4 catalysts, Cu0.4Co0.6MoO4/g-C3N4 exhibited the highest site time yield (STY) value of 75.7 m o l H 2 m o l c a t − 1 m i n − 1 with a low activation energy of 14.46 kJ mol−1. The STY value for Cu0.4Co0.6MoO4/g-C3N4 was about 4.3 times as high as that for the unsupported Cu0.4Co0.6MoO4, indicating that the g-C3N4 support plays a crucial role in improving the catalytic activity. Considering its low cost and high catalytic activity, our Cu0.4Co0.6MoO4/g-C3N4 catalyst is a strong candidate for AB hydrolysis for hydrogen production in practical applications.
Collapse
|
48
|
Qi B, Du L, Yao F, Xu S, Deng X, Zheng M, He S, Zhang H, Zhou X. Shape-Controlled Dodecaborate Supramolecular Organic-Framework-Supported Ultrafine Trimetallic PtCoNi for Catalytic Hydrolysis of Ammonia Borane. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23445-23453. [PMID: 31252463 DOI: 10.1021/acsami.9b02963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
On the basis of the unique chaotropic supramolecular assembly of cucurbit[5]uril (CB5) and dodecahydro- closo-dodecaborate anion [ closo-B12H12]2-, we have developed an efficient and universal platform to fabricate shape-controlled dodecaborate-based supramolecular organic frameworks (BOFs) decorated with ultrafine monodispersed trimetallic alloys. Simply by regulating the molar ratio of CB5 and [ closo-B12H12]2-, a series of fascinating morphologies, such as flowerlike structures, nanorods, nanocubes, and nanosheets, were successfully constructed. These obtained BOFs were proved to be good substrate supports for in situ synthesis of trimetallic PtCoNi nanoalloys, where the final PtCoNi-BOFs materials were obtained efficiently as a precipitate from aqueous solutions, and showed excellent catalytic performance in ammonia borane hydrolysis with a high turnover frequency of 1490 molH2 molPt-1 min-1 and a low activation energy of 15.79 kJ mol-1.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Suhang He
- Department of Life Sciences and Chemistry , Jacobs University Bremen , Campus Ring 1 , Bremen 28759 , Germany
| | | | | |
Collapse
|
49
|
Yu L, Zhang J, Dang Y, He J, Tobin Z, Kerns P, Dou Y, Jiang Y, He Y, Suib SL. In Situ Growth of Ni2P–Cu3P Bimetallic Phosphide with Bicontinuous Structure on Self-Supported NiCuC Substrate as an Efficient Hydrogen Evolution Reaction Electrocatalyst. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00494] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Linping Yu
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
- Department of Chemistry, University of Connecticut, U-3060, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jian Zhang
- College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yanliu Dang
- Department of Chemistry, University of Connecticut, U-3060, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Junkai He
- Department of Chemistry, University of Connecticut, U-3060, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Zachary Tobin
- Department of Chemistry, University of Connecticut, U-3060, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Peter Kerns
- Department of Chemistry, University of Connecticut, U-3060, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Yuhai Dou
- Centre for Clean Environment and Energy, Griffith University, Gold Coast 4222, Australia
| | - Yao Jiang
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China
| | - Yuehui He
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China
| | - Steven L. Suib
- Department of Chemistry, University of Connecticut, U-3060, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
50
|
Sun Q, Wang N, Bai R, Hui Y, Zhang T, Do DA, Zhang P, Song L, Miao S, Yu J. Synergetic Effect of Ultrasmall Metal Clusters and Zeolites Promoting Hydrogen Generation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802350. [PMID: 31131197 PMCID: PMC6524121 DOI: 10.1002/advs.201802350] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/31/2019] [Indexed: 05/26/2023]
Abstract
Taking advantage of the synergetic effect of confined ultrasmall metal clusters and zeolite frameworks is an efficient strategy for improving the catalytic performance of metal nanocatalysts. Herein, it is demonstrated that the synergetic effect of ultrasmall ruthenium (Ru) clusters and intrinsic Brønsted acidity of zeolite frameworks can significantly promote the hydrogen generation of ammonia borane (AB) hydrolysis. Ultrasmall Ru clusters are embedded onto the silicoaluminophosphate SAPO-34 (CHA) and various aluminosilicate zeolites (MFI, *BEA, and FAU) with tunable acidities by a facile incipient wetness impregnation method. Evidenced by high-resolution scanning transmission electron microscopy, the sub-nanometric Ru clusters are uniformly distributed throughout the zeolite crystals. The X-ray absorption spectroscopy measurements reveal the existence of Ru-H species between Ru clusters and adjacent Brønsted acid sites of zeolites, which could synergistically activate AB and water molecules, significantly enhancing the hydrogen evolution rate of AB hydrolysis. Notably, the Ru/SAPO-34-0.8Si (Si/Al = 0.8) and Ru/FAU (Si/Al = 30) catalysts with strong acidities afford high turnover frequency values up to 490 and 627 min-1, respectively. These values are more than a 13-fold enhancement than that of the commercial Ru/C catalyst, and among the top level over other heterogeneous catalysts tested under similar conditions.
Collapse
Affiliation(s)
- Qiming Sun
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Risheng Bai
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Yu Hui
- Key Laboratory of Petrochemical Catalytic Science and TechnologyLiaoning ProvinceLiaoning Shihua UniversityFushun113001China
| | - Tianjun Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - David A. Do
- Department of ChemistryDalhousie UniversityHalifaxNova ScotiaB3H 4R2Canada
| | - Peng Zhang
- Department of ChemistryDalhousie UniversityHalifaxNova ScotiaB3H 4R2Canada
| | - Lijuan Song
- Key Laboratory of Petrochemical Catalytic Science and TechnologyLiaoning ProvinceLiaoning Shihua UniversityFushun113001China
| | - Shu Miao
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
- International Center of Future ScienceJilin University2699 Qianjin StreetChangchun130012P. R. China
| |
Collapse
|