1
|
Ryabukhin SV, Bondarenko DV, Trofymchuk SA, Lega DA, Volochnyuk DM. Aza-Heterocyclic Building Blocks with In-Ring CF 2 -Fragment. CHEM REC 2024; 24:e202300283. [PMID: 37873869 DOI: 10.1002/tcr.202300283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Modern organic chemistry is a titan supporting and reinforcing pharmaceutical, agricultural, food and material science products. Over the past decades, the organic compounds market has been evolving to meet all the research demands. In this regard, medicinal chemistry is especially dependent on available chemical space as subtle tuning of the molecule structure is required to create a drug with relevant physicochemical properties and a remarkable activity profile. The recent rapid evolution of synthetic methodology to deploy fluorine has brought fluorinated compounds to the spotlight of MedChem community. And now unique properties of fluorine still keep fascinating more and more as its justified installation into a molecular framework has a beneficial impact on membrane permeability, lipophilicity, metabolic stability, pharmacokinetic properties, conformation, pKa , etc. The backward influence of medicinal chemistry on organic synthesis has also changed the landscape of the latter towards new fluorinated topologies as well. Such complex relationships create a flexible and ever-changing ecosystem. Given that MedChem investigations strongly lean on the ability to reach suitable building blocks and the existence of reliable synthetic methods in this review we collected advances in the chemistry of respectful, but still enigmatic gem-difluorinated aza-heterocyclic building blocks.
Collapse
Affiliation(s)
- S V Ryabukhin
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01033, Kyiv, Ukraine
- Institute of Organic Chemistry of the, National Academy of Sciences of Ukraine, 5 Akademik Kukhar str., 02094, Kyiv, Ukraine
| | - D V Bondarenko
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01033, Kyiv, Ukraine
| | - S A Trofymchuk
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- Institute of Organic Chemistry of the, National Academy of Sciences of Ukraine, 5 Akademik Kukhar str., 02094, Kyiv, Ukraine
| | - D A Lega
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- National University of Pharmacy of the Ministry of Health of Ukraine, 53 Pushkinska str., 61002, Kharkiv, Ukraine
| | - D M Volochnyuk
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01033, Kyiv, Ukraine
- Institute of Organic Chemistry of the, National Academy of Sciences of Ukraine, 5 Akademik Kukhar str., 02094, Kyiv, Ukraine
| |
Collapse
|
2
|
Xi L, Wang M, Liang Y, Zhao Y, Shi Z. Tunably strained metallacycles enable modular differentiation of aza-arene C-H bonds. Nat Commun 2023; 14:3986. [PMID: 37414774 DOI: 10.1038/s41467-023-39753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
The precise activation of C-H bonds will eventually provide chemists with transformative methods to access complex molecular architectures. Current approaches to selective C-H activation relying on directing groups are effective for the generation of five-membered, six-membered and even larger ring metallacycles but show narrow applicability to generate three- and four-membered rings bearing high ring strain. Furthermore, the identification of distinct small intermediates remains unsolved. Here, we developed a strategy to control the size of strained metallacycles in the rhodium-catalysed C-H activation of aza-arenes and applied this discovery to tunably incorporate the alkynes into their azine and benzene skeletons. By merging the rhodium catalyst with a bipyridine-type ligand, a three-membered metallacycle was obtained in the catalytic cycle, while utilizing an NHC ligand favours the generation of the four-membered metallacycle. The generality of this method was demonstrated with a range of aza-arenes, such as quinoline, benzo[f]quinolone, phenanthridine, 4,7-phenanthroline, 1,7-phenanthroline and acridine. Mechanistic studies revealed the origin of the ligand-controlled regiodivergence in the strained metallacycles.
Collapse
Affiliation(s)
- Longlong Xi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Ni-catalyzed benzylic β-C(sp 3)-H bond activation of formamides. Nat Commun 2022; 13:7892. [PMID: 36550165 PMCID: PMC9780214 DOI: 10.1038/s41467-022-35541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The development of transition metal-catalyzed β-C-H bond activation via highly-strained 4-membered metallacycles has been a formidable task. So far, only scarce examples have been reported to undergo β-C-H bond activation via 4-membered metallacycles, and all of them rely on precious metals. In contrast, earth-abundant and inexpensive 3d transition metal-catalyzed β-C-H bond activation via 4-membered metallacycles still remains an elusive challenge. Herein, we report a phosphine oxide-ligated Ni-Al bimetallic catalyst to activate secondary benzylic C(sp3)-H bonds of formamides via 4-membered nickelacycles, providing a series of α,β-unsaturated γ-lactams in up to 97% yield.
Collapse
|
4
|
DiPucchio RC, Rosca SC, Schafer LL. Hydroaminoalkylation for the Catalytic Addition of Amines to Alkenes or Alkynes: Diverse Mechanisms Enable Diverse Substrate Scope. J Am Chem Soc 2022; 144:11459-11481. [PMID: 35731810 DOI: 10.1021/jacs.1c10397] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hydroaminoalkylation is a powerful, atom-economic catalytic reaction for the reaction of amines with alkenes and alkynes. This C-H functionalization reaction allows for the atom-economic alkylation of amines using simple alkenes or alkynes as the alkylating agents. This transformation has significant potential for transformative approaches in the pharmaceutical, agrochemical, and fine chemical industries in the preparation of selectively substituted amines and N-heterocycles and shows promise in materials science for the synthesis of functional and responsive aminated materials. Different early transition-metal, late transition-metal, and photoredox catalysts mediate hydroaminoalkylation by distinct mechanistic pathways. These mechanistic insights have resulted in the development of new catalysts and reaction conditions to realize hydroaminoalkylation with a broad range of substrates: activated and unactivated, terminal and internal, C-C double and triple bonds with aryl or alkyl primary, secondary, or tertiary amines, including N-heterocyclic amines. By deploying select catalysts with specific substrate combinations, control over regioselectivity, diastereoselectivity, and enantioselectivity has been realized. Key barriers to widespread adoption of this reaction include air and moisture sensitivity for early transition-metal catalysts as well as a heavy dependence on amine protecting or directing groups for late transition-metal or photocatalytic routes. Advances in improved catalyst robustness, substrate scope, and regio-/stereoselective reactions with early- and late transition-metal catalysts, as well as photoredox catalysis, are highlighted, and opportunities for further catalyst and reaction development are included. This perspective shows that hydroaminoalkylation has the potential to be a disruptive and transformative strategy for the synthesis of selectively substituted amines and N-heterocycles from simple amines and alkenes.
Collapse
Affiliation(s)
- Rebecca C DiPucchio
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada, V6T 1Z1
| | - Sorin-Claudiu Rosca
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada, V6T 1Z1
| | - Laurel L Schafer
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada, V6T 1Z1
| |
Collapse
|
5
|
Babu SA, Aggarwal Y, Patel P, Tomar R. Diastereoselective palladium-catalyzed functionalization of prochiral C(sp 3)-H bonds of aliphatic and alicyclic compounds. Chem Commun (Camb) 2022; 58:2612-2633. [PMID: 35113087 DOI: 10.1039/d1cc05649b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We highlight the reported developments of the palladium-catalyzed C-H activation and functionalization of the inactive/unreactive prochiral C(sp3)-H bonds of aliphatic and alicyclic compounds. There exist numerous classical methods for generating contiguous stereogenic centers in a compound with a high degree of stereocontrol. Along similar lines, the Pd(II)-catalyzed, directing group-aided functionalization of inactive prochiral/diastereotopic C(sp3)-H bonds have been exploited to accomplish the stereoselective construction of stereo-arrays in organic compounds. We present a concise discussion on how specific strategies consisting of Pd(II)-catalyzed, directing group-aided C(sp3)-H functionalization have been utilized to generate two or more stereogenic centers in aliphatic and alicyclic compounds.
Collapse
Affiliation(s)
- Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Yashika Aggarwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Pooja Patel
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Radha Tomar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
6
|
Bhagat KK, Biswas JP, Dutta S, Maiti D. Catalytic C−H Activation
via
Four‐Membered Metallacycle Intermediate. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kanhaiya Kumar Bhagat
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Jyoti Prasad Biswas
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Subhabrata Dutta
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| |
Collapse
|
7
|
Liu B, Romine AM, Rubel CZ, Engle KM, Shi BF. Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp 3)-H Bonds. Chem Rev 2021; 121:14957-15074. [PMID: 34714620 PMCID: PMC8968411 DOI: 10.1021/acs.chemrev.1c00519] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transition-metal-catalyzed, coordination-assisted C(sp3)-H functionalization has revolutionized synthetic planning over the past few decades as the use of these directing groups has allowed for increased access to many strategic positions in organic molecules. Nonetheless, several challenges remain preeminent, such as the requirement for high temperatures, the difficulty in removing or converting directing groups, and, although many metals provide some reactivity, the difficulty in employing metals outside of palladium. This review aims to give a comprehensive overview of coordination-assisted, transition-metal-catalyzed, direct functionalization of nonactivated C(sp3)-H bonds by covering the literature since 2004 in order to demonstrate the current state-of-the-art methods as well as the current limitations. For clarity, this review has been divided into nine sections by the transition metal catalyst with subdivisions by the type of bond formation. Synthetic applications and reaction mechanism are discussed where appropriate.
Collapse
Affiliation(s)
- Bin Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Andrew M. Romine
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Camille Z. Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States.,Corresponding Author- (K. M. E.); (B.-F. S.)
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China,Corresponding Author- (K. M. E.); (B.-F. S.)
| |
Collapse
|
8
|
Hao W, Bay KL, Harris CF, King DS, Guzei IA, Aristov MM, Zhuang Z, Plata RE, Hill DE, Houk KN, Berry JF, Yu JQ, Blackmond DG. Probing Catalyst Speciation in Pd-MPAAM-Catalyzed Enantioselective C(sp 3)–H Arylation: Catalyst Improvement via Destabilization of Off-Cycle Species. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wei Hao
- Department of Chemistry, Scripps Research, La Jolla, California 92037 United States
| | - Katherine L. Bay
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Caleb F. Harris
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Daniel S. King
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Michael M. Aristov
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Zhe Zhuang
- Department of Chemistry, Scripps Research, La Jolla, California 92037 United States
| | - R. Erik Plata
- Department of Chemistry, Scripps Research, La Jolla, California 92037 United States
| | - David E. Hill
- Department of Chemistry, Scripps Research, La Jolla, California 92037 United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - John F. Berry
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Jin-Quan Yu
- Department of Chemistry, Scripps Research, La Jolla, California 92037 United States
| | - Donna G. Blackmond
- Department of Chemistry, Scripps Research, La Jolla, California 92037 United States
| |
Collapse
|
9
|
Tian S, Wang C, Xia J, Wan J, Liu Y. Transition Metal‐Free, Free‐Radical Sulfenylation of the α‐C(
sp
3
)−H Bond in Arylacetamides and Its Application Toward 2‐Thiomethyl Benzoxazoles Synthesis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shanghui Tian
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Chaoli Wang
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Jianhui Xia
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| |
Collapse
|
10
|
DiPucchio RC, Lenzen KE, Daneshmand P, Ezhova MB, Schafer LL. Direct, Catalytic α-Alkylation of N-Heterocycles by Hydroaminoalkylation: Substrate Effects for Regiodivergent Product Formation. J Am Chem Soc 2021; 143:11243-11250. [PMID: 34278789 DOI: 10.1021/jacs.1c05498] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Saturated N-heterocycles are prevalent in pharmaceutical and agrochemical industries, yet remain challenging to catalytically alkylate. Most strategies for C-H activation of these challenging substrates use protected amines or high loadings of precious metal catalysts. We report an early transition-metal system for the broad, robust, and direct alkylation of unprotected amine heterocycles with simple alkenes. Short reaction times are achieved using an in situ generated tantalum catalyst that avoids the use of bases, excess substrate, or additives. In most cases, this catalyst system is selective for the branched reaction product, including examples of products that are generated with excellent diastereoselectivity. Alkene electronic properties can be exploited for substrate-modified regioselectivity to access the alternative linear amine alkylation product with a group 5 catalyst. This method allows for the facile isolation of unprotected N-heterocyclic products, as useful substrates for further reactivity.
Collapse
Affiliation(s)
- Rebecca C DiPucchio
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| | - Karst E Lenzen
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| | - Pargol Daneshmand
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| | - Maria B Ezhova
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| | - Laurel L Schafer
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| |
Collapse
|
11
|
Hao HY, Lou SJ, Wang S, Zhou K, Wu QZ, Mao YJ, Xu ZY, Xu DQ. Pd-catalysed β-selective C(sp 3)-H arylation of simple amides. Chem Commun (Camb) 2021; 57:8055-8058. [PMID: 34291778 DOI: 10.1039/d1cc02261j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An efficient Pd-catalysed β-C(sp3)-H arylation of diverse native amides with aryl iodides was developed. This protocol overcomes the necessity of the Thorpe-Ingold effect and features broad substrate scope and good functional group tolerance. The potential application of this protocol is collectively demonstrated by gram-scale synthesis and the synthesis of several bioactive molecules.
Collapse
Affiliation(s)
- Hong-Yan Hao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Yamazaki K, Rej S, Ano Y, Chatani N. Mechanism and Origins of Regiochemical Control in Rh(III)-Catalyzed Oxidative C–H Alkenylation and Coupling Sequence of Unprotected 1-Naphthylamines with α,β-Unsaturated Esters. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ken Yamazaki
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Wang HW, Qiao YH, Wu JX, Wang QP, Tian MX, Li YF, Yao QX, Li DC, Dou JM, Lu Y. Rh III-Catalyzed C-H (Het)arylation/Vinylation of N-2,6-Difluoroaryl Acrylamides. Org Lett 2021; 23:656-662. [PMID: 33443430 DOI: 10.1021/acs.orglett.0c03688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RhIII-catalyzed sp2 C-H cross-coupling of acrylamides with organoboron reactants has been accomplished using a commercially available N-2,6-difluoroaryl acrylamide auxiliary. A broad range of aryl and vinyl boronates as well as a variety of heterocyclic boronates with strong coordinating ability can serve as the coupling partners. This transformation proceeds under moderate reaction conditions with excellent functional group tolerance and high regioselectivity.
Collapse
Affiliation(s)
- Huai-Wei Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yu-Han Qiao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Jia-Xue Wu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Qiu-Ping Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Meng-Xin Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yong-Fei Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Qing-Xia Yao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Da-Cheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yi Lu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
He C, Zu B, Guo Y, Ke J. Transient- and Native-Directing-Group-Enabled Enantioselective C–H Functionalization. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1372-6627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AbstractIn recent years, transition-metal-catalyzed enantioselective C–H bond functionalization using chiral transient directing groups (cTDGs) or native directing groups (NDGs) has emerged as a powerful and attractive synthetic approach to streamline the synthesis of chiral molecules. This short review focuses on recent advances on imine-based cTDGs strategies and native amine and carboxylic acid directed strategies for the asymmetric functionalization of various C–H bonds. We have endeavored to highlight the great potential of this methodology and hope that this review will inspire further research in this area.1 Introduction2 Transient-Directing-Group-Enabled Enantioselective C–H Functionalization2.1 Generation of Central Chirality2.2 Generation of Axial Chirality2.3 Generation of Planar Chirality3 Native-Directing-Group-Enabled Enantioselective C–H Functionalization3.1 Native Amines as Directing Groups3.2 Native Carboxylic Acids as Directing Groups4 Conclusions and Outlook
Collapse
Affiliation(s)
- Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology
| | - Bing Zu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology
| | - Yonghong Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology
| | - Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology
| |
Collapse
|
15
|
Xin L, Wan W, Yu Y, Wan Q, Ma L, Huang X. Construction of Protoberberine Alkaloid Core through Palladium Carbene Bridging C–H Bond Functionalization and Pyridine Dearomatization. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05156] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Luoting Xin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Wan Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Qiuling Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Liyao Ma
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Salazar CA, Flesch KN, Haines BE, Zhou PS, Musaev DG, Stahl SS. Tailored quinones support high-turnover Pd catalysts for oxidative C-H arylation with O 2. Science 2020; 370:1454-1460. [PMID: 33214286 DOI: 10.1126/science.abd1085] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 02/04/2023]
Abstract
Palladium(II)-catalyzed carbon-hydrogen (C-H) oxidation reactions could streamline the synthesis of pharmaceuticals, agrochemicals, and other complex organic molecules. Existing methods, however, commonly exhibit poor catalyst performance with high palladium (Pd) loading (e.g., 10 mole %) and a need for (super)stoichiometric quantities of undesirable oxidants, such as benzoquinone and silver(I) salts. The present study probes the mechanism of a representative Pd-catalyzed oxidative C-H arylation reaction and elucidates mechanistic features that undermine catalyst performance, including substrate-consuming side reactions and sequestration of the catalyst as an inactive species. Systematic tuning of the quinone cocatalyst overcomes these deleterious features. Use of 2,5-di-tert-butyl-p-benzoquinone enables efficient use of molecular oxygen as the oxidant, high reaction yields, and >1900 turnovers by the Pd catalyst.
Collapse
Affiliation(s)
- Chase A Salazar
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Kaylin N Flesch
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Brandon E Haines
- Cherry L. Emerson Center for Scientific Computation, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | - Philip S Zhou
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
17
|
Wang S, Yu B, Liu HM. Pd(II)-Catalyzed Intramolecular C(sp2)–H Arylation of Tryptamines Using the Nonsteric NH2 as a Directing Group. Org Lett 2020; 23:42-48. [DOI: 10.1021/acs.orglett.0c03668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sixi Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
18
|
Kapoor M, Singh A, Sharma K, Hua Hsu M. Site‐Selective C(
sp
3
)−H and C(
sp
2
)−H Functionalization of Amines Using a Directing‐Group‐Guided Strategy. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000689] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Mohit Kapoor
- Chitkara University Institute of Engineering and Technology Chitkara University Punjab India 140401
| | - Adhish Singh
- Chitkara University Institute of Engineering and Technology Chitkara University Punjab India 140401
| | - Kirti Sharma
- Chitkara University Institute of Engineering and Technology Chitkara University Punjab India 140401
| | - Ming Hua Hsu
- Department of Chemistry National Changhua University of Education Taiwan 500, R.O.C Changhua
| |
Collapse
|
19
|
Rej S, Chatani N. Rh III -Catalyzed Double Dehydrogenative Coupling of Free 1-Naphthylamines with α,β-Unsaturated Esters. Chemistry 2020; 26:11093-11098. [PMID: 32239540 DOI: 10.1002/chem.202000706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 11/08/2022]
Abstract
The RhIII -catalyzed, consecutive double C-H oxidative coupling of free 1-naphthylamine and α,β-unsaturated esters through C-H/C-H and C-H/N-H bonds is reported. The one step reaction leads to the formation of biologically important alkylidene-1,2-dihydrobenzo[cd]indoles scaffolds. This efficient process is much more synthetically convenient and useful than others because the starting materials, such as 1-naphthylamine derivatives are readily available and the free amine serves as a directing group.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
20
|
Yu Y, Ma L, Xia J, Xin L, Zhu L, Huang X. A Modular Approach to Dibenzo‐fused ϵ‐Lactams: Palladium‐Catalyzed Bridging‐C−H Activation. Angew Chem Int Ed Engl 2020; 59:18261-18266. [DOI: 10.1002/anie.202007799] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Liyao Ma
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiajin Xia
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Luoting Xin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
21
|
Yu Y, Ma L, Xia J, Xin L, Zhu L, Huang X. A Modular Approach to Dibenzo‐fused ϵ‐Lactams: Palladium‐Catalyzed Bridging‐C−H Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Liyao Ma
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiajin Xia
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Luoting Xin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Fujian College Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
22
|
Clemenceau A, Thesmar P, Gicquel M, Le Flohic A, Baudoin O. Direct Synthesis of Cyclopropanes from gem-Dialkyl Groups through Double C–H Activation. J Am Chem Soc 2020; 142:15355-15361. [DOI: 10.1021/jacs.0c05887] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Antonin Clemenceau
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Pierre Thesmar
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Maxime Gicquel
- Oril Industrie, 13 rue Auguste Desgenétais, CS60125, 76210 Bolbec, France
| | | | - Olivier Baudoin
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| |
Collapse
|
23
|
Artault M, Mokhtari N, Cantin T, Martin-Mingot A, Thibaudeau S. Superelectrophilic Csp 3-H bond fluorination of aliphatic amines in superacid: the striking role of ammonium-carbenium dications. Chem Commun (Camb) 2020; 56:5905-5908. [PMID: 32342071 DOI: 10.1039/d0cc02081h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The superacid-promoted electrophilic Csp3-H bond activation of aliphatic amines generates superelectrophilic species that can be subsequently fluorinated. Demonstrated by low-temperature in situ NMR experiments, the ammonium-carbenium dications, crucial for this reaction, can also react with C-H bonds opening future synthesis perspectives for this mode of activation.
Collapse
Affiliation(s)
- M Artault
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, Superacid Group in Organic Synthesis Team, F-86073 Poitiers, France.
| | - N Mokhtari
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, Superacid Group in Organic Synthesis Team, F-86073 Poitiers, France.
| | - T Cantin
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, Superacid Group in Organic Synthesis Team, F-86073 Poitiers, France.
| | - A Martin-Mingot
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, Superacid Group in Organic Synthesis Team, F-86073 Poitiers, France.
| | - S Thibaudeau
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, Superacid Group in Organic Synthesis Team, F-86073 Poitiers, France.
| |
Collapse
|
24
|
Native amine-directed site-selective C(sp3)-H arylation of primary aliphatic amines with aryl iodides. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Su B, Bunescu A, Qiu Y, Zuend SJ, Ernst M, Hartwig JF. Palladium-Catalyzed Oxidation of β-C(sp 3)-H Bonds of Primary Alkylamines through a Rare Four-Membered Palladacycle Intermediate. J Am Chem Soc 2020; 142:7912-7919. [PMID: 32216373 DOI: 10.1021/jacs.0c01629] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Site-selective functionalizations of C-H bonds are often achieved with a directing group that leads to five- or six-membered metallacyclic intermediates. Analogous reactions that occur through four-membered metallacycles are rare. We report a challenging palladium-catalyzed oxidation of primary C-H bonds β to nitrogen in an imine of an aliphatic amine, a process that occurs through a four-membered palladacyclc intermediate. The success of the reaction relies on the identification, by H/D exchange, of a simple directing group (salicylaldehyde) capable of inducing the formation of this small ring. To gain insight into the steps of the catalytic cycle of this unusual oxidation reaction, a series of mechanistic experiments and density functional theory (DFT) calculations were conducted. The experimental studies showed that cleavage of the C-H bond is rate-limiting and formation of the strained four-membered palladacycle is thermodynamically uphill. DFT calculations corroborated these conclusions and suggested that the presence of an intramolecular hydrogen bond between the oxygen of the directing group and hydroxyl group of the ligating acetic acid is crucial for stabilization of the palladacyclic intermediate.
Collapse
Affiliation(s)
- Bo Su
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ala Bunescu
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Yehao Qiu
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Stephan J Zuend
- BASF Corporation, 46820 Fremont Boulevard, Fremont, California 94538, United States
| | - Martin Ernst
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Shao Q, Wu K, Zhuang Z, Qian S, Yu JQ. From Pd(OAc) 2 to Chiral Catalysts: The Discovery and Development of Bifunctional Mono-N-Protected Amino Acid Ligands for Diverse C-H Functionalization Reactions. Acc Chem Res 2020; 53:833-851. [PMID: 32227915 DOI: 10.1021/acs.accounts.9b00621] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The functionalization of unactivated carbon-hydrogen bonds is a transformative strategy for the rapid construction of molecular complexity given the ubiquitous presence of C-H bonds in organic molecules. It represents a powerful tool for accelerating the synthesis of natural products and bioactive compounds while reducing the environmental and economic costs of synthesis. At the same time, the ubiquity and strength of C-H bonds also present major challenges toward the realization of transformations that are both highly selective and efficient. The development of practical C-H functionalization reactions has thus remained a compelling yet elusive goal in organic chemistry for over a century.Specifically, the capability to form useful new C-C, C-N, C-O, and C-X bonds via direct C-H functionalization would have wide-ranging impacts in organic synthesis. Palladium is especially attractive as a catalyst for such C-H functionalizations because of the diverse reactivity of intermediate palladium-carbon bonds. Early efforts using cyclopalladation with Pd(OAc)2 and related salts led to the development of many Pd-catalyzed C-H functionalization reactions. However, Pd(OAc)2 and other simple Pd salts perform only racemic transformations, which prompted a long search for effective chiral catalysts dating back to the 1970s. Pd salts also have low reactivity with synthetically useful substrates. To address these issues, effective and reliable ligands capable of accelerating and improving the selectivity of Pd-catalyzed C-H functionalizations are needed.In this Account, we highlight the discovery and development of bifunctional mono-N-protected amino acid (MPAA) ligands, which make great strides toward addressing these two challenges. MPAAs enable numerous Pd(II)-catalyzed C(sp2)-H and C(sp3)-H functionalization reactions of synthetically relevant substrates under operationally practical conditions with excellent stereoselectivity when applicable. Mechanistic studies indicate that MPAAs operate as unique bifunctional ligands for C-H activation in which both the carboxylate and amide are coordinated to Pd. The N-acyl group plays an active role in the C-H cleavage step, greatly accelerating C-H activation. The rigid MPAA chelation also results in a predictable transfer of chiral information from a single chiral center on the ligand to the substrate and permits the development of a rational stereomodel to predict the stereochemical outcome of enantioselective reactions.We also describe the application of MPAA-enabled C-H functionalization in total synthesis and provide an outlook for future development in this area. We anticipate that MPAAs and related next-generation ligands will continue to stimulate development in the field of Pd-catalyzed C-H functionalization.
Collapse
Affiliation(s)
- Qian Shao
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kevin Wu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shaoqun Qian
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
27
|
Nagaoka K, Mei H, Guo Y, Han J, Konno H, Moriwaki H, Soloshonok VA. Michael addition reactions of chiral glycine Schiff base Ni (II)‐complex with 1‐(1‐phenylsulfonyl)benzene. Chirality 2020; 32:885-893. [DOI: 10.1002/chir.23203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Keita Nagaoka
- School of Chemistry and Chemical Engineering, State of Key Laboratory of CoordinationNanjing University Nanjing China
- Department of Biological Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| | - Haibo Mei
- School of Chemistry and Chemical Engineering, State of Key Laboratory of CoordinationNanjing University Nanjing China
| | - Yunjie Guo
- School of Chemistry and Chemical Engineering, State of Key Laboratory of CoordinationNanjing University Nanjing China
| | - Jianlin Han
- School of Chemistry and Chemical Engineering, State of Key Laboratory of CoordinationNanjing University Nanjing China
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| | | | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of ChemistryUniversity of the Basque Country UPV/EHU San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| |
Collapse
|
28
|
Trowbridge A, Walton SM, Gaunt MJ. New Strategies for the Transition-Metal Catalyzed Synthesis of Aliphatic Amines. Chem Rev 2020; 120:2613-2692. [DOI: 10.1021/acs.chemrev.9b00462] [Citation(s) in RCA: 310] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Aaron Trowbridge
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Scarlett M. Walton
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Oncology
- IMED Biotech Unit, AstraZeneca, Darwin Building, Unit 310, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, United Kingdom
| | - Matthew J. Gaunt
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
29
|
Kaur M, Van Humbeck JF. Recent trends in catalytic sp 3 C-H functionalization of heterocycles. Org Biomol Chem 2020; 18:606-617. [PMID: 31912069 DOI: 10.1039/c9ob01559k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterocycles are a ubiquitous substructure in organic small molecules designed for use in materials and medicines. Recent work in catalysis has focused on enabling access to new heterocycle structures by sp3 C-H functionalization on alkyl side-chain substituents-especially at the heterobenzylic position-with more than two hundred manuscripts published just within the last ten years. Rather than describing in detail each of these reports, in this mini-review we attempt to highlight gaps in existing techniques. A semi-quantitative overview of ongoing work strongly suggests that several specific heterocycle types and bond formations outside of C-C, C-N, and C-O have been almost completely overlooked.
Collapse
Affiliation(s)
- Milanpreet Kaur
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
| | - Jeffrey F Van Humbeck
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
| |
Collapse
|
30
|
Rej S, Ano Y, Chatani N. Bidentate Directing Groups: An Efficient Tool in C-H Bond Functionalization Chemistry for the Expedient Construction of C-C Bonds. Chem Rev 2020; 120:1788-1887. [PMID: 31904219 DOI: 10.1021/acs.chemrev.9b00495] [Citation(s) in RCA: 587] [Impact Index Per Article: 146.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decades, synthetic organic chemistry discovered that directing group assisted C-H activation is a key tool for the expedient and siteselective construction of C-C bonds. Among the various directing group strategies, bidentate directing groups are now recognized as one of the most efficient devices for the selective functionalization of certain positions due to fact that its metal center permits fine, tunable, and reversible coordination. The family of bidentate directing groups permit various types of assistance to be achieved, such as N,N-dentate, N,O-dentate, and N,S-dentate auxiliaries, which are categorized based on the coordination site. In this review, we broadly discuss various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| |
Collapse
|
31
|
Zhan BB, Jiang MX, Shi BF. Late-stage functionalization of peptides via a palladium-catalyzed C(sp3)–H activation strategy. Chem Commun (Camb) 2020; 56:13950-13958. [DOI: 10.1039/d0cc06133f] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in the late-stage modification of peptides via palladium-catalyzed C(sp3)–H functionalization are summarized.
Collapse
Affiliation(s)
- Bei-Bei Zhan
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| | - Meng-Xue Jiang
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- Guangdong 529020
- China
| | - Bing-Feng Shi
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
- College of Chemistry and Molecular Engineering
| |
Collapse
|
32
|
Debnath S, Das T, Gayen S, Ghosh T, Maiti DK. Iodine-Catalyzed Functionalization of Primary Aliphatic Amines to Oxazoles, 1,4-Oxazines, and Oxazinones. ACS OMEGA 2019; 4:20410-20422. [PMID: 31815245 PMCID: PMC6894181 DOI: 10.1021/acsomega.9b03501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 05/10/2023]
Abstract
Unprecedented I2-catalyzed α,α-C(sp3)-H, decarboxylative α-C(sp3)-H, lactonized α-C(sp3)-H, and α,β-C(sp3)-H functionalized 5- and 6-annulation as well as α-C(sp3)-H activated 6-lactonization of primary aliphatic amines are devised under aerobic conditions. The metal-free sustainable strategy was employed for the diverse construction of valuable five-and six-membered polycyclic N,O-heteroaromatics such as oxazoles, 1,4-oxazines, and oxazin-2-one with a rapid reaction rate and high yield. The viability of this mild nonmetallic catalysis is successfully verified through syntheses of labile chiral heterocyclic analogues. In contrast to the common practice, this method is not limited to use of prefunctionalized amines, directing groups (DGs) and/or transient DGs, metal catalysts, and traditional oxidants. The possible mechanistic pathway of the annulation reaction is investigated by control experiments and ESI-MS data collected for a reaction mixture of the ongoing reaction. The synthesized new compounds are potent organic nanobuilding blocks to achieve valuable organic nanomaterials of different sizes, shapes, and dimensions, which are under investigation for the discovery of high-tech devices of innovative organic nanoelectronics and photophysical properties.
Collapse
Affiliation(s)
- Sudipto Debnath
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Tuluma Das
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Subrata Gayen
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Tapas Ghosh
- Department
of Applied Sciences, Maulana Abul Kalam
Azad University of Technology, Haringhata 741249, West Bengal, India
| | - Dilip K. Maiti
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
- E-mail:
| |
Collapse
|
33
|
Yuan F, Hou ZL, Pramanick PK, Yao B. Site-Selective Modification of α-Amino Acids and Oligopeptides via Native Amine-Directed γ-C(sp3)-H Arylation. Org Lett 2019; 21:9381-9385. [DOI: 10.1021/acs.orglett.9b03607] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Feipeng Yuan
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zhen-Lin Hou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Pranab K. Pramanick
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
34
|
Kim HS, Lee S. Electrochemical Coupling of Arylsulfonyl Hydrazides and Tertiary Amines for the Synthesis of β-Amidovinyl Sulfones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Han-Sung Kim
- Department of Chemistry; Chonnam National University; 61186 Gwangju Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry; Chonnam National University; 61186 Gwangju Republic of Korea
| |
Collapse
|
35
|
Le KKA, Nguyen H, Daugulis O. 1-Aminopyridinium Ylides as Monodentate Directing Groups for sp 3 C-H Bond Functionalization. J Am Chem Soc 2019; 141:14728-14735. [PMID: 31529954 DOI: 10.1021/jacs.9b06643] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1-Aminopyridinium ylides are efficient directing groups for palladium-catalyzed β-arylation and alkylation of sp3 C-H bonds in carboxylic acid derivatives. The efficiency of these directing groups depends on the substitution at the pyridine moiety. The unsubstituted pyridine-derived ylides allow functionalization of primary C-H bonds, while methylene groups are unreactive in the absence of external ligands. 4-Pyrrolidinopyridine-containing ylides are capable of C-H functionalization in acyclic methylene groups in the absence of external ligands, thus rivaling the efficiency of the aminoquinoline directing group. Preliminary mechanistic studies have been performed. A cyclopalladated intermediate has been isolated and characterized by X-ray crystallography, and its reactivity was studied.
Collapse
Affiliation(s)
- Ky Khac Anh Le
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Hanh Nguyen
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Olafs Daugulis
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| |
Collapse
|
36
|
Gupta A, Rahaman A, Bhadra S. Direct α-Chalcogenation of Aliphatic Carboxylic Acid Equivalents. Org Lett 2019; 21:6164-6168. [DOI: 10.1021/acs.orglett.9b02424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Aniket Gupta
- Inorganic Materials and Catalysis Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Ajijur Rahaman
- Inorganic Materials and Catalysis Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Sukalyan Bhadra
- Inorganic Materials and Catalysis Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
| |
Collapse
|
37
|
Carrera C, Denisi A, Cativiela C, Urriolabeitia EP. Functionalized 1,3‐Diaminotruxillic Acids by Pd‐Mediated C–H Activation and [2+2]‐Photocycloaddition of 5(4
H
)‐Oxazolones. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Clara Carrera
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC‐Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Antonio Denisi
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC‐Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Carlos Cativiela
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC‐Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Esteban P. Urriolabeitia
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC‐Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
38
|
Niu B, Yang K, Lawrence B, Ge H. Transient Ligand-Enabled Transition Metal-Catalyzed C-H Functionalization. CHEMSUSCHEM 2019; 12:2955-2969. [PMID: 30958921 DOI: 10.1002/cssc.201900151] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/03/2019] [Indexed: 05/20/2023]
Abstract
Transition metal-catalyzed C-H bond functionalization is among the most efficient and powerful strategies in synthetic organic chemistry to derivatize otherwise inert sites of organic molecules for the construction of C-C and C-heteroatom bonds. However, additional steps are often required to install the directing groups to realize selective C-H bond functionalization of the substrates. These tedious steps run counter to the step-economical nature of the C-H activation. In contrast, direct functionalization of the substrate by using transient ligands avoids the unnecessary steps for the pre-functionalization of the substrates. This Minireview provides a short overview of the major progress made in this field for C-H functionalization at sp2 and sp3 carbon centers with different transient working modes, including covalent, hydrogen, and ionic bonds.
Collapse
Affiliation(s)
- Ben Niu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, Changzhou, Jiangsu, 213164, China
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
| | - Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, Changzhou, Jiangsu, 213164, China
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
| | - Brianna Lawrence
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
| | - Haibo Ge
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
39
|
Li Y, Chen H, Qu LB, Houk KN, Lan Y. Origin of Regiochemical Control in Rh(III)/Rh(V)-Catalyzed Reactions of Unsaturated Oximes and Alkenes to Form Pyrdines. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02085] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yingzi Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California 90095-1569, United States
| | - Haohua Chen
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California 90095-1569, United States
| | - Yu Lan
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| |
Collapse
|
40
|
Han JL, Qin Y, Zhao D. C(sp3)–H Bond Arylation and Amidation of Si-Bound Methyl Group via Directing Group Strategy. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jie-Lian Han
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ying Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
41
|
|
42
|
Lin H, Pan X, Barsamian AL, Kamenecka TM, Bannister TD. Native Directed Site-Selective δ-C(sp3)–H and δ-C(sp2)–H Arylation of Primary Amines. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04927] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Xiaohong Pan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | | | | | | |
Collapse
|
43
|
Pramanick PK, Zhou Z, Hou ZL, Yao B. Free Amino Group-Directed γ-C(sp3)–H Arylation of α-Amino Esters with Diaryliodonium Triflates by Palladium Catalysis. J Org Chem 2019; 84:5684-5694. [DOI: 10.1021/acs.joc.9b00605] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pranab K. Pramanick
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zhibing Zhou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zhen-Lin Hou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
44
|
Rej S, Chatani N. Rhodiumkatalysierte sp 2‐ und sp 3‐C‐H‐Funktionalisierungen mit entfernbaren dirigierenden Gruppen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201808159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Supriya Rej
- Department of Applied ChemistryFaculty of EngineeringOsaka University, Suita Osaka 565-0871 Japan
| | - Naoto Chatani
- Department of Applied ChemistryFaculty of EngineeringOsaka University, Suita Osaka 565-0871 Japan
| |
Collapse
|
45
|
Rej S, Chatani N. Rhodium-Catalyzed C(sp 2 )- or C(sp 3 )-H Bond Functionalization Assisted by Removable Directing Groups. Angew Chem Int Ed Engl 2019; 58:8304-8329. [PMID: 30311719 DOI: 10.1002/anie.201808159] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/12/2018] [Indexed: 12/25/2022]
Abstract
In recent years, transition-metal-catalyzed C-H activation has become a key strategy in the field of organic synthesis. Rhodium complexes are widely used as catalysts in a variety of C-H functionalization reactions because of their high reactivity and selectivity. The availability of a number of rhodium complexes in various oxidation states enables diverse reaction patterns to be obtained. Regioselectivity, an important issue in C-H activation chemistry, can be accomplished by using a directing group to assist the reaction. However, to obtain the target functionalized compounds, it is also necessary to use a directing group that can be easily removed. A wide range of directed C-H functionalization reactions catalyzed by rhodium complexes have been reported to date. In this Review, we discuss Rh-catalyzed C-H functionalization reactions that are aided by the use of a removable directing group such as phenol, amine, aldehyde, ketones, ester, acid, sulfonic acid, and N-heteroaromatic derivatives.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
46
|
Baccalini A, Vergura S, Dolui P, Zanoni G, Maiti D. Recent advances in cobalt-catalysed C–H functionalizations. Org Biomol Chem 2019; 17:10119-10141. [DOI: 10.1039/c9ob01994d] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ready availability, low cost and low toxicity of cobalt salts have redirected the attention of researchers away from noble metals, such as Pd, Rh, and Ir, towards Co in the field of C–H functionalisation.
Collapse
Affiliation(s)
| | | | - Pravas Dolui
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | | | - Debabrata Maiti
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| |
Collapse
|
47
|
St John‐Campbell S, Ou AK, Bull JA. Palladium-Catalyzed C(sp 3 )-H Arylation of Primary Amines Using a Catalytic Alkyl Acetal to Form a Transient Directing Group. Chemistry 2018; 24:17838-17843. [PMID: 30255961 PMCID: PMC6391947 DOI: 10.1002/chem.201804515] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 12/20/2022]
Abstract
C-H Functionalization of amines is a prominent challenge due to the strong complexation of amines to transition metal catalysts, and therefore typically requires derivatization at nitrogen with a directing group. Transient directing groups (TDGs) permit C-H functionalization in a single operation, without needing these additional steps for directing group installation and removal. Here we report a palladium catalyzed γ-C-H arylation of amines using catalytic amounts of alkyl acetals as transient activators (e.g. commercially available (2,2-dimethoxyethoxy)benzene). This simple additive enables arylation of amines with a wide range of aryl iodides. Key structural features of the novel TDG are examined, demonstrating an important role for the masked carbonyl and ether functionalities. Detailed kinetic (RPKA) and mechanistic investigations determine the order in all reagents, and identify cyclopalladation as the turnover limiting step. Finally, the discovery of an unprecedented off-cycle free-amine directed ϵ-cyclopalladation of the arylation product is reported.
Collapse
Affiliation(s)
- Sahra St John‐Campbell
- Department of ChemistryImperial College London, Molecular Sciences Research Hub, White City CampusWood LaneLondonW12 0BZUK
| | - Alex K. Ou
- Department of ChemistryImperial College London, Molecular Sciences Research Hub, White City CampusWood LaneLondonW12 0BZUK
| | - James A. Bull
- Department of ChemistryImperial College London, Molecular Sciences Research Hub, White City CampusWood LaneLondonW12 0BZUK
| |
Collapse
|
48
|
Affiliation(s)
- Manuel Nappi
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J. Gaunt
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
49
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1105] [Impact Index Per Article: 184.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
50
|
Lin L, Fukagawa S, Sekine D, Tomita E, Yoshino T, Matsunaga S. Chiral Carboxylic Acid Enabled Achiral Rhodium(III)‐Catalyzed Enantioselective C−H Functionalization. Angew Chem Int Ed Engl 2018; 57:12048-12052. [DOI: 10.1002/anie.201807610] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Luqing Lin
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Seiya Fukagawa
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Daichi Sekine
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Eiki Tomita
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku Sapporo 060-0812 Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku Sapporo 060-0812 Japan
| |
Collapse
|