1
|
Hirsch F, Fischer I, Bakels S, Rijs AM. Gas-Phase Infrared Spectra of the C 7H 5 Radical and Its Bimolecular Reaction Products. J Phys Chem A 2022; 126:2532-2540. [PMID: 35427137 DOI: 10.1021/acs.jpca.2c01228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Resonance-stabilized radicals are considered as possible intermediates in the formation of polycyclic aromatic hydrocarbons (PAHs) in interstellar space. Here, we investigate the fulvenallenyl radical, the most stable C7H5 isomer by IR/UV ion dip spectroscopy employing free electron laser radiation in the mid-infrared region between 550 and 1750 cm-1. The radical is generated by pyrolysis from phthalide. Various jet-cooled reaction products are identified by their mass-selective IR spectra in the fingerprint region, based on a comparison with computed spectra. Interestingly, benzyl is present as a second resonance-stabilized radical. It is connected to fulvenallenyl by a sequence of two H atom losses or additions. Among the identified aromatic hydrocarbons are toluene and styrene, as well as polycyclic molecules, such as indene, naphthalene, fluorene and phenanthrene. Mechanisms for the formation of PAH from C7H5 have already been suggested in previous computational work. In particular, the radical/radical reaction of two fulvenallenyl radicals provides an efficient route to phenanthrene in one bimolecular step and might be relevant for PAH formation under astrochemical conditions.
Collapse
Affiliation(s)
- Florian Hirsch
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sjors Bakels
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
2
|
Chin CH, Zhu T, Zhang JZH. Cyclopentadienyl radical formation from the reaction of excited nitrogen atoms with benzene: a theoretical study. Phys Chem Chem Phys 2021; 23:12408-12420. [PMID: 34027937 DOI: 10.1039/d1cp00133g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ab initio CCSD(T)/CBS//ωB97X-D/6-311+G(d,p) calculations of the C6H6N potential energy surface were performed to investigate the reaction mechanism underlying the reaction of atomic nitrogen (2D) with benzene. Thereafter, Rice-Ramsperger-Kassel-Marcus (RRKM) calculations of reaction rate constants and product branching ratios were performed under single-collision conditions. The results revealed that the N(2D) + C6H6 reaction in the case of statistical behavior is expected to produce hydrogen cyanide plus a cyclopentadienyl radical (91.5-88.9%), acetylene plus a pyrrole radical (5.8-7.5%), 1-cyano-2,4-cyclopentadiene + H (2.3-3.0%) and 1-ethynyl-pyrrole + H (0.4-0.6%), with the most favorable pathways being the initial adduct i1 leading to the formation of a seven-membered cyclic intermediate i12 through an exothermic ring expansion process and a multistep route i12 → i15 → i16 → C5H5 + HCN featuring an intramolecular ring-shrinking process involving a C-C bond fusion elimination channel to yield the bicyclic intermediate i15, followed by hydrogen cyanide elimination, thus forming a cyclopentadienyl radical. The calculated product branching ratios were consistent with the available experimental data; however, some quantitative deviations from the experimental results and the possible reasons are also discussed. The possible effects of the title reaction on the upper atmosphere of Titan, with critical implications for the rapid degradation of nitrogen-bearing polycyclic aromatic hydrocarbons, were compared with the mass growth processes of their polycyclic aromatic hydrocarbon counterparts produced through ring expansion.
Collapse
Affiliation(s)
- Chih-Hao Chin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China. and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China.
| | - Tong Zhu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China. and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China.
| | - John Zeng Hui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China. and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China. and Department of Chemistry, New York University, New York 10003, USA
| |
Collapse
|
3
|
Matsugi A. Thermal Decomposition of Benzyl Radicals: Kinetics and Spectroscopy in a Shock Tube. J Phys Chem A 2020; 124:824-835. [PMID: 31917568 DOI: 10.1021/acs.jpca.9b10705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the mechanism of high-temperature reactions of aromatic hydrocarbons and radicals is essential for the modeling of hydrocarbon growth processes in combustion environments. In this study, the thermal decomposition reaction of benzyl radicals was investigated using time-resolved broadband cavity-enhanced absorption spectroscopy behind reflected shock waves at a postshock pressure of 100 kPa and temperatures of 1530, 1630, and 1740 K. The transient absorption spectra during the decomposition were recorded over the spectral range of 282-410 nm. The spectra were contributed by the absorption of benzyl radicals and some transient and residual absorbing species. The temporal behavior of the absorption was analyzed using a kinetic model to determine the rate constant for benzyl decomposition. The obtained rate constants can be represented by the Arrhenius expression k1 = 1.1 × 1012 exp(-30 500 K/T) s-1 with an estimated logarithmic uncertainty of Δlog10 k = ±0.2. Kinetic simulation of the secondary reactions indicated that fulvenallenyl radicals are potentially responsible for the transient absorption that appeared around 400 nm. This assignment is consistent with the available spectroscopic information of this radical. Possible candidates for the residual absorbing species are presented, suggesting the potential importance of ortho-benzyne as a reactive intermediate.
Collapse
Affiliation(s)
- Akira Matsugi
- National Institute of Advanced Industrial Science and Technology (AIST) , 16-1 Onogawa , Tsukuba , Ibaraki 305-8569 , Japan
| |
Collapse
|
4
|
Brown AR, Brice JT, Franke PR, Douberly GE. Infrared Spectrum of Fulvenallene and Fulvenallenyl in Helium Droplets. J Phys Chem A 2019; 123:3782-3792. [DOI: 10.1021/acs.jpca.9b01661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alaina R. Brown
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Joseph T. Brice
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Peter R. Franke
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Gary E. Douberly
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Ramphal IA, Shapero M, Haibach-Morris C, Neumark DM. Photodissociation dynamics of fulvenallene and the fulvenallenyl radical at 248 and 193 nm. Phys Chem Chem Phys 2017; 19:29305-29314. [DOI: 10.1039/c7cp05490d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photofragment translational spectroscopy was used to study the photodissociation of fulvenallene, C7H6, and the fulvenallenyl radical, C7H5. Fulvenallene only loses H atoms to form fulvenallenyl. Fulvenallenyl exhibits both C2H2-loss and C3H3-loss pathways.
Collapse
Affiliation(s)
- Isaac A. Ramphal
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
- Department of Chemistry
| | - Mark Shapero
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
- Department of Chemistry
| | | | - Daniel M. Neumark
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
- Department of Chemistry
| |
Collapse
|
6
|
Qiu S, Zhang Y, Huang X, Bao L, Hong Y, Zeng Z, Wu J. 9-Ethynylfluoroenyl Radicals: Regioselective Dimerization and Post Ring-Cyclization Reactions. Org Lett 2016; 18:6018-6021. [PMID: 27934347 DOI: 10.1021/acs.orglett.6b02904] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
9-Ethynylfluorenyl radical derivatives were readily prepared in situ and underwent simultaneous intermolecular coupling reactions. Interestingly, the dimerization process took place in either a head-to-tail or a head-to-head mode between the acetylenic or the allenic resonance forms dependent on the terminal substituents, which could be well explained by their different spin distribution and steric hindrance effects. The structures of the products were confirmed by X-ray crystallographic and other spectroscopic analyses. It was also found that the newly generated dipropinyl dimers underwent a rearrangement and ring-cyclization reaction at room temperature, eventually giving unique difluorenylidene cyclobutene derivatives.
Collapse
Affiliation(s)
- Shuhai Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, P. R. China
| | - Xiaobo Huang
- College of Chemistry and Materials Engineering, Wenzhou University , Wenzhou 325035, P. R. China
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST) , Wuhan 430074, P. R. China
| | - Youhua Hong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore , 3 Science Drive 3, 117543 Singapore
| |
Collapse
|
7
|
Fulara J, Chakraborty A, Maier JP. Electronic Characterization of Reaction Intermediates: The Fluorenylium, Phenalenylium, and Benz[f]indenylium Cations and Their Radicals. Angew Chem Int Ed Engl 2016; 55:3424-7. [PMID: 26845059 DOI: 10.1002/anie.201511230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 11/09/2022]
Abstract
Three vibrationally resolved absorption systems commencing at 538, 518, and 392 nm were detected in a 6 K neon matrix after mass-selected deposition of C13 H9 (+) ions (m/z=165) produced from fluorene in a hot-cathode discharge ion source. The benz[f]indenylium (BfI(+) : 538 nm), fluorenylium (FL9(+) : 518 nm), and phenalenylium (PHL(+) : 392 nm) cations are the absorbing molecules. Two electronic systems corresponding to neutral species are apparent at 490 and 546 nm after irradiation of the matrix with λ<260 nm photons and were assigned to the FL9 and BfI radicals, respectively. The strongest peak at 518 nm is the origin of the 2 (1) B2 ←X̃ (1) A1 absorption of FL9(+) , and the 490 nm band is the 2 (2) A2 ←X̃ (2) B1 origin of FL9. The electronic systems commencing at 538 nm and 546 nm were assigned to the 1 (1) A1 ←X̃ (1) A1 and 1 (2) A2 ←X̃ (2) A2 transitions of BfI(+) and BfI. The 392 nm band is the 1 (1) E'←X̃ (1) A1 ' transition of PHL(+). The electronic spectra of C13 H9 (+) /C13 H9 were assigned on the basis of the vertical excitation energies calculated with SAC-CI and MS-CASPT2 methods.
Collapse
Affiliation(s)
- Jan Fulara
- Departement Chemie, Universität Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland.,Institute of Physics, Polish Academy of Sciences, Al. Lotników, 32/46, 02-668, Warsaw, Poland
| | - Arghya Chakraborty
- Departement Chemie, Universität Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - John P Maier
- Departement Chemie, Universität Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland.
| |
Collapse
|
8
|
Fulara J, Chakraborty A, Maier JP. Electronic Characterization of Reaction Intermediates: The Fluorenylium, Phenalenylium, and Benz[f
]indenylium Cations and Their Radicals. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jan Fulara
- Departement Chemie; Universität Basel; Klingelbergstrasse 80 4056 Basel Switzerland
- Institute of Physics; Polish Academy of Sciences; Al. Lotników, 32/46 02-668 Warsaw Poland
| | - Arghya Chakraborty
- Departement Chemie; Universität Basel; Klingelbergstrasse 80 4056 Basel Switzerland
| | - John P. Maier
- Departement Chemie; Universität Basel; Klingelbergstrasse 80 4056 Basel Switzerland
| |
Collapse
|