1
|
Wu L, Zhang L, Guo J, Gao J, Ding Y, Ke J, He C. Catalytic Asymmetric Construction of C- and Si-Stereogenic Silacyclopentanes via Hydrosilylation of Arylmethylenecyclopropanes. Angew Chem Int Ed Engl 2024:e202413753. [PMID: 39138131 DOI: 10.1002/anie.202413753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
Silacycles have exhibited significant potential for application in the fields of medicinal chemistry, agrochemistry, and materials science. Accordingly, the development of effective methods for synthesizing these compounds has attracted increasing attention. Here, we report an efficient Cu-catalyzed enantioselective hydrosilylation of arylmethylenecyclopropanes with hydrosilanes, that allows the rapid assembly of various enantioenriched carbon- and silicon-stereogenic silacyclopentanes in good yields with excellent enantioselectivities and diastereoselectivities under mild conditions. Further stereospecific transformation of the Si-H bond on the chiral silicon center expands the diversity of these C- and Si-stereogenic silacyclopentanes.
Collapse
Affiliation(s)
- Liexin Wu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jiandong Guo
- Institute for Innovative Materials and Energy School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Jihui Gao
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yang Ding
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
2
|
Han JT, Tsuji N, Zhou H, Leutzsch M, List B. Organocatalytic asymmetric synthesis of Si-stereogenic silacycles. Nat Commun 2024; 15:5846. [PMID: 38992000 PMCID: PMC11239892 DOI: 10.1038/s41467-024-49988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
A strong and confined Brønsted acid catalyzed enantioselective cyclization of bis(methallyl)silanes provides enantioenriched Si-stereogenic silacycles. High enantioselectivities of up to 96.5:3.5 er were obtained for a range of bis(methallyl)silanes. NMR and ESI-MS studies reveal that the formation of a covalent adduct irreversibly inhibits turnover. Remarkably, we found that acetic acid as an additive promotes the collapse of this adduct, enabling full turnover. Experimental investigation and density functional theory (DFT) calculations were conducted to elucidate the origin of this phenomenon and the observed enantioselectivity.
Collapse
Affiliation(s)
- Jung Tae Han
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Nobuya Tsuji
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Hui Zhou
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|
3
|
Wang X, Feng C, Jiang J, Maeda S, Kubota K, Ito H. Stereospecific synthesis of silicon-stereogenic optically active silylboranes and general synthesis of chiral silyl Anions. Nat Commun 2023; 14:5561. [PMID: 37689789 PMCID: PMC10492825 DOI: 10.1038/s41467-023-41113-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 09/11/2023] Open
Abstract
Silicon-stereogenic optically active silylboranes could potentially allow the formation of chiral silyl nucleophiles as well as the synthesis of various chiral silicon compounds. However, the synthesis of such silicon-stereogenic silylboranes has not been achieved so far. Here, we report the synthesis of silicon-stereogenic optically active silylboranes via a stereospecific Pt(PPh3)4-catalyzed Si-H borylation of chiral hydrosilanes, which are synthesized by stoichiometric and catalytic asymmetric synthesis, in high yield and very high or perfect enantiospecificity (99% es in one case, and >99% es in the others) with retention of the configuration. Furthermore, we report a practical approach to generate silicon-stereogenic silyl nucleophiles with high enantiopurity and configurational stability using MeLi activation. This protocol is suitable for the stereospecific and general synthesis of silicon-stereogenic trialkyl-, dialkylbenzyl-, dialkylaryl-, diarylalkyl-, and alkylary benzyloxy-substituted silylboranes and their corresponding silyl nucleophiles with excellent enantiospecificity (>99% es except one case of 99% es). Transition-metal-catalyzed C-Si bond-forming cross-coupling reactions and conjugate-addition reactions are also demonstrated. The mechanisms underlying the stability and reactivity of such chiral silyl anion were investigated by combining NMR spectroscopy and DFT calculations.
Collapse
Affiliation(s)
- Xihong Wang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Chi Feng
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Julong Jiang
- Department of Chemistry, Faculty of Science, Hokkaido University Sapporo, Hokkaido, 060-0815, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University Sapporo, Hokkaido, 060-0815, Japan
| | - Koji Kubota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan.
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.
| | - Hajime Ito
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan.
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.
| |
Collapse
|
4
|
Jiang F, Meng T, Zhou Y, Xiong Z, Zhao Y, Guo W. Pseudo-Diastereodivergent Synthesis of Chiral Fluorenes Bearing Bis-1,3-Nonadjacent Stereogenic Centers via Organocatalytic Desymmetrization of meso-Epoxides. Org Lett 2023; 25:6006-6011. [PMID: 37526278 DOI: 10.1021/acs.orglett.3c02150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
We report an enantio- and diastereodivergent synthesis of enantioenriched fluorenes bearing bis-1,3-nonadjacent stereocenters with broad substrate scope and high enantioselectivity (up to 99% ee) under low catalyst loading (0.1 mol %). The key to the success of this method is the pseudo-diastereodivergent desymmetrization of stereoisomers of meso-epoxides enabled by the same organocatalyst. Furthermore, some of the chiral fluorenes obtained exhibit high fluorescence quantum yields (up to 76.6%), as evidenced by photophysical properties studies.
Collapse
Affiliation(s)
- Feng Jiang
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Tengfei Meng
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Ying Zhou
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Zhenying Xiong
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Yupei Zhao
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wengang Guo
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
5
|
Yin KL, Zhao S, Qin Y, Chen SH, Li B, Zhao D. Enantioselective Construction of Sila-bicyclo[3.2.1] Scaffolds Bearing Both Carbon- and Silicon-Stereocenters. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kai-Lin Yin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuang Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shu-Han Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bo Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91106, United States
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Tomooka K. Enjoyable Encounter. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, Kyushu University
| |
Collapse
|
7
|
Liu H, He P, Liao X, Zhou Y, Chen X, Ou W, Wu Z, Luo C, Yang L, Xu J. Stereoselective Access to Silicon-Stereogenic Silacycles via the Carbene-Catalyzed Desymmetric Benzoin Reaction of Siladials. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hao Liu
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Pengyu He
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Xuanlong Liao
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yipeng Zhou
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Xingkuan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Wenpiao Ou
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Zhenhong Wu
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Cong Luo
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Limin Yang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Jianfeng Xu
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
8
|
Huang Y, Wu Y, Zhu Z, Zheng S, Ye Z, Peng Q, Wang P. Enantioselective Synthesis of Silicon‐Stereogenic Monohydrosilanes by Rhodium‐Catalyzed Intramolecular Hydrosilylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu‐Hao Huang
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Sujuan Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Zihang Ye
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Qian Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, CAS 345 Lingling Road Shanghai 200032 P. R. China
- CAS Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| |
Collapse
|
9
|
Huang YH, Wu Y, Zhu Z, Zheng S, Ye Z, Peng Q, Wang P. Enantioselective Synthesis of Silicon-Stereogenic Monohydrosilanes by Rhodium-Catalyzed Intramolecular Hydrosilylation. Angew Chem Int Ed Engl 2021; 61:e202113052. [PMID: 34731522 DOI: 10.1002/anie.202113052] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 02/05/2023]
Abstract
Enantiopure monohydrosilanes are versatile chiral reagents for alcohol resolution and mechanistic investigation. Herein, we have demonstrated the asymmetric synthesis of monohydrosilanes via an intramolecular hydrosilylation strategy. This protocol is suitable for the synthesis of five- and six-membered cyclic monohydrosilanes, including a class of chiral oxasilacycles, with excellent diastereo-, regio-, and enantioselectivities. Notably, the catalyst loading could be reduced to 0.1 mol % which makes this one of the most efficient methods to access chiral monohydrosilanes. Mechanistic studies and DFT calculations indicate this Rh-catalyzed intramolecular asymmetric hydrosilylation reaction might proceed via a Chalk-Harrod mechanism, and the enantio-determining step was predicted to be oxidative addition of Si-H bond.
Collapse
Affiliation(s)
- Yu-Hao Huang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Sujuan Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zihang Ye
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Qian Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China.,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
10
|
Noji M, Baba M, Hirabe R, Hayashi S, Takanami T. Proton-accelerated Lewis acid catalysis for stereo- and regioselective isomerization of epoxides to allylic alcohols. Chem Commun (Camb) 2021; 57:7104-7107. [PMID: 34179905 DOI: 10.1039/d1cc02840e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The isomerization of epoxides to allylic alcohols was developed via proton-accelerated Lewis acid catalysis. The addition of tBuOH as a proton source is the key to the efficient catalytic cycle. Trisubstituted epoxides, including enantioenriched derivatives, were selectively converted to secondary-allylic alcohols without loss of enantiopurity.
Collapse
Affiliation(s)
- Masahiro Noji
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Misako Baba
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Rina Hirabe
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Satoshi Hayashi
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Toshikatsu Takanami
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
11
|
Sarai N, Levin BJ, Roberts JM, Katsoulis DE, Arnold FH. Biocatalytic Transformations of Silicon-the Other Group 14 Element. ACS CENTRAL SCIENCE 2021; 7:944-953. [PMID: 34235255 PMCID: PMC8227617 DOI: 10.1021/acscentsci.1c00182] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 05/30/2023]
Abstract
Significant inroads have been made using biocatalysts to perform new-to-nature reactions with high selectivity and efficiency. Meanwhile, advances in organosilicon chemistry have led to rich sets of reactions holding great synthetic value. Merging biocatalysis and silicon chemistry could yield new methods for the preparation of valuable organosilicon molecules as well as the degradation and valorization of undesired ones. Despite silicon's importance in the biosphere for its role in plant and diatom construction, it is not known to be incorporated into any primary or secondary metabolites. Enzymes have been found that act on silicon-containing molecules, but only a few are known to act directly on silicon centers. Protein engineering and evolution has and could continue to enable enzymes to catalyze useful organosilicon transformations, complementing and expanding upon current synthetic methods. The role of silicon in biology and the enzymes that act on silicon-containing molecules are reviewed to set the stage for a discussion of where biocatalysis and organosilicon chemistry may intersect.
Collapse
Affiliation(s)
- Nicholas
S. Sarai
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Benjamin J. Levin
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - John M. Roberts
- Dow
Inc., Core R&D, 633 Washington Street, Midland, Michigan 48667, United
States
| | - Dimitris E. Katsoulis
- Dow
Silicones Corporation, 2200 West Salzburg Road, Auburn, Michigan 48611, United
States
| | - Frances H. Arnold
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
12
|
Fontana N, Espinosa‐Jalapa NA, Seidl M, Bauer JO. Easy Access to Enantiomerically Pure Heterocyclic Silicon-Chiral Phosphonium Cations and the Matched/Mismatched Case of Dihydrogen Release. Chemistry 2021; 27:2649-2653. [PMID: 33264430 PMCID: PMC7898527 DOI: 10.1002/chem.202005171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 11/17/2022]
Abstract
Phosphonium ions are widely used in preparative organic synthesis and catalysis. The provision of new types of cations that contain both functional and chiral information is a major synthetic challenge and can open up new horizons in asymmetric cation-directed and Lewis acid catalysis. We discovered an efficient methodology towards new Si-chiral four-membered CPSSi* heterocyclic cations. Three synthetic approaches are presented. The stereochemical sequence of anchimerically assisted cation formation with B(C6 F5 )3 and subsequent hydride addition was fully elucidated and proceeds with excellent preservation of the chiral information at the stereogenic silicon atom. Also the mechanism of dihydrogen release from a protonated hydrosilane was studied in detail by the help of Si-centered chirality as stereochemical probe. Chemoselectivity switch (dihydrogen release vs. protodesilylation) can easily be achieved through slight modifications of the solvent. A matched/mismatched case was identified and the intermolecularity of this reaction supported by spectroscopic, kinetic, deuterium-labeling experiments, and quantum chemical calculations.
Collapse
Affiliation(s)
- Nicolò Fontana
- Institut für Anorganische ChemieFakultät für Chemie und PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Noel Angel Espinosa‐Jalapa
- Institut für Anorganische ChemieFakultät für Chemie und PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Michael Seidl
- Institut für Anorganische ChemieFakultät für Chemie und PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Jonathan O. Bauer
- Institut für Anorganische ChemieFakultät für Chemie und PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| |
Collapse
|
13
|
Ma W, Liu L, An K, He T, He W. Rhodium‐Catalyzed Synthesis of Chiral Monohydrosilanes by Intramolecular C−H Functionalization of Dihydrosilanes. Angew Chem Int Ed Engl 2020; 60:4245-4251. [DOI: 10.1002/anie.202013041] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Wenpeng Ma
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Li‐Chuan Liu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Kun An
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Tao He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Wei He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
14
|
Ma W, Liu L, An K, He T, He W. Rhodium‐Catalyzed Synthesis of Chiral Monohydrosilanes by Intramolecular C−H Functionalization of Dihydrosilanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013041] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Wenpeng Ma
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Li‐Chuan Liu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Kun An
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Tao He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Wei He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
15
|
Hu F, Chen Z, Tan Y, Xu D, Huang S, Jia S, Gong X, Qin W, Yan H. Organocatalytic Enantioselective γ-Elimination: Applications in the Preparation of Chiral Peroxides and Epoxides. Org Lett 2020; 22:1934-1940. [PMID: 32057244 DOI: 10.1021/acs.orglett.0c00295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An organocatalyzed enantioselective γ-elimination process has been achieved and applied in the kinetic resolution of peroxides to access chiral peroxides and epoxides. The reaction provided a pathway for the preparation of two useful synthetic and biologically important structural motifs through a single-step reaction. A range of substrates has been resolved with a selectivity factor up to 63. The obtained enantioenriched peroxides and epoxides allowed a series of transformations with retained optical purities.
Collapse
Affiliation(s)
- Fangli Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhili Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yu Tan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Da Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Shengli Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Shiqi Jia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xiangnan Gong
- Analytical and Testing Center of Chongqing University, Chongqing University, Chongqing 401331, P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
16
|
Wang Y, Cao Z, Li Q, Lin G, Zhou J, Tian P. Activating Pronucleophiles with High p
K
a
Values: Chiral Organo‐Superbases. Angew Chem Int Ed Engl 2020; 59:8004-8014. [DOI: 10.1002/anie.201913484] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Yu‐Hui Wang
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Zhong‐Yan Cao
- College of Chemical EngineeringZhejiang University of Technology 18 Chaowang Road Hangzhou 310014 China
| | - Qing‐Hua Li
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Guo‐Qiang Lin
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Jian Zhou
- School of Chemistry and Molecular EngineeringEast China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Ping Tian
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| |
Collapse
|
17
|
Wang Y, Cao Z, Li Q, Lin G, Zhou J, Tian P. Activating Pronucleophiles with High p
K
a
Values: Chiral Organo‐Superbases. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913484] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yu‐Hui Wang
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Zhong‐Yan Cao
- College of Chemical EngineeringZhejiang University of Technology 18 Chaowang Road Hangzhou 310014 China
| | - Qing‐Hua Li
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Guo‐Qiang Lin
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Jian Zhou
- School of Chemistry and Molecular EngineeringEast China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Ping Tian
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| |
Collapse
|
18
|
Reid WB, McAtee JR, Watson DA. Synthesis of Unsaturated Silyl Heterocycles via an Intramolecular Silyl-Heck Reaction. Organometallics 2019; 38:3796-3803. [PMID: 32431470 DOI: 10.1021/acs.organomet.9b00498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the synthesis of unsaturated silacycles via an intramolecular silyl-Heck reaction. Using palladium catalysis, silicon electrophiles tethered to alkenes cyclize to form 5- and 6-membered silicon heterocycles. The effects of alkene substitution and tether length on the efficiency and regioselectivity of the cyclizations are described. Finally, through the use of an intramolecular tether, the first examples of disubstituted alkenes in silyl-Heck reactions are reported.
Collapse
Affiliation(s)
- William B Reid
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jesse R McAtee
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Donald A Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
19
|
Wu Y, Chen H, Yang W, Fan Y, Gao L, Su Z, Hu C, Song Z. Asymmetric retro-[1,4]-Brook rearrangement of 3-silyl allyloxysilanes via chirality transfer from silicon to carbon. RSC Adv 2019; 9:26209-26213. [PMID: 35530994 PMCID: PMC9070365 DOI: 10.1039/c9ra05482k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022] Open
Abstract
An asymmetric retro-[1,4]-Brook rearrangement of 3-silyl allyloxysilanes has been developed via Si-to-C chirality transfer. Mechanistic studies reveal that the silyl group migrates with retention of configuration. The stereochemical outcome of the newly formed stereogenic carbon center, which has remained a longstanding question, is also clarified, suggesting a diastereoselective Si to C chirality transfer without loss of enantiomeric excess.
Collapse
Affiliation(s)
- Ya Wu
- Department of Biological and Chemical Engineering, Chongqing University of Education Chongqing 400067 China
| | - Hua Chen
- Sichuan Engineering Laboratory for Plant-Sourced Drug, Research Center for Drug Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Wenyu Yang
- Sichuan Engineering Laboratory for Plant-Sourced Drug, Research Center for Drug Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Yu Fan
- Sichuan Engineering Laboratory for Plant-Sourced Drug, Research Center for Drug Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Lu Gao
- Sichuan Engineering Laboratory for Plant-Sourced Drug, Research Center for Drug Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Changwei Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Zhenlei Song
- Sichuan Engineering Laboratory for Plant-Sourced Drug, Research Center for Drug Industrial Technology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| |
Collapse
|
20
|
Lin Y, Ma W, Xu Z, Zheng Z, Cao J, Yang K, Cui Y, Xu L. Desymmetrization‐Oriented Enantioselective Synthesis of Silicon‐Stereogenic Silanes by Palladium‐Catalyzed C−H Olefinations. Chem Asian J 2019; 14:2082-2085. [DOI: 10.1002/asia.201900408] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/07/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Yan Lin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationHangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Wei‐Yang Ma
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationHangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationHangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Zhan‐Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationHangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationHangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Ke‐Fang Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationHangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Yu‐Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationHangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Li‐Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationHangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| |
Collapse
|
21
|
Vale JR, Valkonen A, Afonso CAM, Candeias NR. Synthesis of silacyclopent-2-en-4-ols via intramolecular [2 + 2] photocycloaddition of benzoyl(allyl)silanes. Org Chem Front 2019. [DOI: 10.1039/c9qo01028a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organosilicon compounds are versatile units with a wide range of uses from medicinal chemistry to the field of organic electronics.
Collapse
Affiliation(s)
- João R. Vale
- Faculty of Engineering and Natural sciences
- Tampere University
- 33101 Tampere
- Finland
- Instituto de Investigação do Medicamento (iMed.ULisboa)
| | - Arto Valkonen
- Department of Chemistry
- University of Jyvaskyla
- 40014 Jyväskylä
- Finland
| | - Carlos A. M. Afonso
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Nuno R. Candeias
- Faculty of Engineering and Natural sciences
- Tampere University
- 33101 Tampere
- Finland
| |
Collapse
|
22
|
Yu Z, Zhang T, Bai R, Lan Y. Probing enantioselectivity in rhodium-catalyzed Si–C bond cleavage to construct silicon-stereocenters: a theoretical study. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02261e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Density functional theory (DFT) calculations indicate that favorable oxidative addition/reductive elimination process from arylrhodium complex determines the enantioselectivity.
Collapse
Affiliation(s)
- Zhaoyuan Yu
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- China
| | - Yu Lan
- Department College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
- School of Chemistry and Chemical Engineering
| |
Collapse
|
23
|
Shintani R. Catalytic Asymmetric Synthesis of Silicon-Stereogenic Compounds by Enantioselective Desymmetrization of Prochiral Tetraorganosilanes. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.1163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University
| |
Collapse
|
24
|
Mu QC, Chen J, Xia CG, Xu LW. Synthesis of silacyclobutanes and their catalytic transformations enabled by transition-metal complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Namba T, Shibata Y, Sugiyama H, Teraoka K, Uekusa H, Tanaka K. Rhodium-catalyzed Enantioselective Synthesis and Properties of Silicon-stereogenic Benzofuranylmethylidene-benzoxasiloles. CHEM LETT 2018. [DOI: 10.1246/cl.180214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tomoya Namba
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yu Shibata
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Haruki Sugiyama
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kota Teraoka
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hidehiro Uekusa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
26
|
Bai XF, Zou JF, Chen MY, Xu Z, Li L, Cui YM, Zheng ZJ, Xu LW. Lewis-Base-Mediated Diastereoselective Silylations of Alcohols: Synthesis of Silicon-Stereogenic Dialkoxysilanes Controlled by Chiral Aryl BINMOLs. Chem Asian J 2017; 12:1730-1735. [DOI: 10.1002/asia.201700640] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Xing-Feng Bai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 P.R. China
- Suzhou Research Institute and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 P.R. China
| | - Jin-Feng Zou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 P.R. China
| | - Mu-Yi Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 P.R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 P.R. China
| | - Li Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 P.R. China
| | - Yu-Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 P.R. China
| | - Zhan-Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 P.R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 P.R. China
- Suzhou Research Institute and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 P.R. China
| |
Collapse
|
27
|
Koller SG, Bauer JO, Strohmann C. Selektive Si-C(sp3
)-Bindungsspaltung in (Aminomethyl)silanen durch carbanionische Nucleophile und ihr stereochemischer Verlauf. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stephan G. Koller
- Anorganische Chemie; Technische Universität Dortmund; Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Jonathan O. Bauer
- Anorganische Chemie; Technische Universität Dortmund; Otto-Hahn-Straße 6 44227 Dortmund Deutschland
- Institut für Anorganische Chemie; Universität Regensburg; Deutschland
| | - Carsten Strohmann
- Anorganische Chemie; Technische Universität Dortmund; Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| |
Collapse
|
28
|
Koller SG, Bauer JO, Strohmann C. Selective Si−C(sp3
) Bond Cleavage in (Aminomethyl)silanes by Carbanionic Nucleophiles and Its Stereochemical Course. Angew Chem Int Ed Engl 2017; 56:7991-7994. [DOI: 10.1002/anie.201702410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Stephan G. Koller
- Anorganische Chemie; Technische Universität Dortmund; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Jonathan O. Bauer
- Anorganische Chemie; Technische Universität Dortmund; Otto-Hahn-Strasse 6 44227 Dortmund Germany
- Current address: Institut für Anorganische Chemie; Universität Regensburg; Germany
| | - Carsten Strohmann
- Anorganische Chemie; Technische Universität Dortmund; Otto-Hahn-Strasse 6 44227 Dortmund Germany
| |
Collapse
|
29
|
Igawa K. Asymmetric Synthesis of Chiral Silicon Molecules and Stereoselective Transformations Thereof. J SYN ORG CHEM JPN 2017. [DOI: 10.5059/yukigoseikyokaishi.75.898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, Kyushu University
| |
Collapse
|
30
|
Zhang QW, An K, Liu LC, Zhang Q, Guo H, He W. Construction of Chiral Tetraorganosilicons by Tandem Desymmetrization of Silacyclobutanes/Intermolecular Dehydrogenative Silylation. Angew Chem Int Ed Engl 2016; 56:1125-1129. [DOI: 10.1002/anie.201609022] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Qing-Wei Zhang
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Kun An
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Li-Chuan Liu
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Qi Zhang
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Huifang Guo
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Wei He
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| |
Collapse
|
31
|
Zhang QW, An K, Liu LC, Zhang Q, Guo H, He W. Construction of Chiral Tetraorganosilicons by Tandem Desymmetrization of Silacyclobutanes/Intermolecular Dehydrogenative Silylation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qing-Wei Zhang
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Kun An
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Li-Chuan Liu
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Qi Zhang
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Huifang Guo
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Wei He
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| |
Collapse
|
32
|
Bauer JO, Strohmann C. Recent Progress in Asymmetric Synthesis and Application of Difunctionalized Silicon-Stereogenic Silanes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600100] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jonathan O. Bauer
- Anorganische Chemie; Technische Universität Dortmund; Otto-Hahn-Straße 6 44227 Dortmund Germany
- Department of Organic Chemistry; The Weizmann Institute of Science; P. O. Box 26 76100 Rehovot Israel
| | - Carsten Strohmann
- Anorganische Chemie; Technische Universität Dortmund; Otto-Hahn-Straße 6 44227 Dortmund Germany
| |
Collapse
|