1
|
Shao J, Huang L, Lou SJ, Ohno A, Yamada YMA, Nishiura M, Murahashi T, Hou Z. Synthesis of Rigid Stepladder Polymers via Scandium-Catalyzed Polyspiroannulation of Quinoline with Alkyne. J Am Chem Soc 2025; 147:1416-1420. [PMID: 39743767 DOI: 10.1021/jacs.4c15046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Polymers with rigid three-dimensional architectures have attracted significant attention due to their high rigidity and intrinsic microporosity. Here, we report the synthesis of a new class of rigid stepladder polymers featuring unique spirodihydroquinoline skeletons. Under the catalysis of a half-sandwich scandium catalyst, quinoline compounds bearing both an aryl substituent (e.g., phenyl or naphthyl) and an alkynyl group (e.g., C≡CSiMe3) selectively undergo dearomative polyspiroannulation between the quinoline skeleton and the alkyne unit via ortho-C-H activation of the aryl group. This reaction efficiently yields rigid stepladder polymers comprising a spirodihydroquinoline skeleton with a quaternary carbon stereocenter and an unprotected N-H group. Treatment of the N-H-containing polymers with an alkyl lithium reagent followed by methyl iodide leads to quantitative formation of the corresponding N-methylated polymers, which exhibit enhanced thermal stability and porosity compared to their N-H counterparts.
Collapse
Affiliation(s)
- Jingjing Shao
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, S1-23, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Lin Huang
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shao-Jie Lou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Aya Ohno
- Green Nanocatalysis Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoichi M A Yamada
- Green Nanocatalysis Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tetsuro Murahashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, S1-23, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Zhao L, Wu Z, Qin H, Bin G, Gao J, Zeng W, Zhao Y, Chen H. Ambipolar conjugated ladder polymers by room-temperature Knoevenagel polymerization. Chem Sci 2024; 15:11594-11603. [PMID: 39055013 PMCID: PMC11268504 DOI: 10.1039/d4sc03222e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Two soluble conjugated ladder polymers (cLPs), decorated with multiple electron-poor species (i.e., cyano groups, fused pentagons, and N-heterocyclic rings), have been synthesized from the newly developed tetraketo-functionalized double aza[5]helicene building blocks using a single-step Knoevenagel polycondensation strategy. This facile approach features mild conditions (e.g., room temperature) and high efficiency, allowing us to quickly access a nonalternant ladder-like conjugated system with the in situ formation of multicyano substituents in the backbone. Analysis by 1H NMR, FT-Raman, and FT-IR spectra confirms the successful synthesis of the resulting cLPs. The combination of theoretical calculations and experimental characterizations reveals that the slightly contorted geometry coupled with a random assignment of trans- and cis-isomeric repeating units in each main chain contributes to improving the solubility of such rigid, multicyano nanoribbon systems. Apart from outstanding thermal stability, the resulting cLPs exhibit attractive red fluorescence, excellent redox properties, and strong π-π interactions coupled with orderly face-on packing in their thin-film states. They are proven to be the first example of ambipolar cLPs that show satisfactory hole and electron mobilities of up to 0.01 and 0.01 cm2 V-1 s-1, respectively. As we demonstrate, the Knoevenagel polycondensation chemistries open a new window to create complex and unique ladder-like nanoribbon systems under mild reaction conditions that are otherwise challenging to achieve.
Collapse
Affiliation(s)
- Lingli Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University Xiangtan 411105 P. R. China
| | - Zeng Wu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University Shanghai 200438 P. R. China
| | - Hanwen Qin
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University Xiangtan 411105 P. R. China
| | - Guangxiong Bin
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University Xiangtan 411105 P. R. China
| | - Junxiang Gao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University Xiangtan 411105 P. R. China
| | - Weixuan Zeng
- Zhangjiang Laboratory Shanghai 201210 P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University Shanghai 200438 P. R. China
| | - Huajie Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University Xiangtan 411105 P. R. China
| |
Collapse
|
3
|
Xie H, Xiao Z, Song Y, Jin K, Liu H, Zhou E, Cao J, Chen J, Ding J, Yi C, Shen X, Zuo C, Ding L. Tethered Helical Ladder-Type Aromatic Lactams. J Am Chem Soc 2024; 146:11978-11990. [PMID: 38626322 DOI: 10.1021/jacs.4c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Tethered nonplanar aromatics (TNAs) make up an important class of nonplanar aromatic compounds showing unique features. However, the knowledge on the synthesis, structures, and properties of TNAs remains insufficient. In this work, a new type of TNAs, the tethered aromatic lactams, is synthesized via Pd-catalyzed consecutive intramolecular direct arylations. These molecules possess a helical ladder-type conjugated system of up to 13 fused rings. The overall yields ranged from 3.4 to 4.3%. The largest of the tethered aromatic lactams, 6L-Bu-C14, demonstrates a guest-adaptive hosting capability of TNAs for the first time. When binding fullerene guests, the cavity of 6L-Bu-C14 became more circular to better accommodate spherical fullerene molecules. The host-guest interaction is thoroughly studied by X-ray crystallography, theoretical calculations, fluorescence titration, and nuclear magnetic resonance (NMR) titration experiments. 6L-Bu-C14 shows stronger binding with C70 than with C60 due to the better convex-concave π-π interaction. P and M enantiomers of all tethered aromatic lactams show distinct and persistent chiroptical properties and demonstrate the potential of chiral TNAs as circularly polarized luminescence (CPL) emitters.
Collapse
Affiliation(s)
- Huidong Xie
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuo Xiao
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixiao Song
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Jin
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxing Liu
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Cao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiangzhao Chen
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Junqiao Ding
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chenyi Yi
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Xingxing Shen
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Chuantian Zuo
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Ding
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Xu M, Wei C, Zhang Y, Chen J, Li H, Zhang J, Sun L, Liu B, Lin J, Yu M, Xie L, Huang W. Coplanar Conformational Structure of π-Conjugated Polymers for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301671. [PMID: 37364981 DOI: 10.1002/adma.202301671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Hierarchical structure of conjugated polymers is critical to dominating their optoelectronic properties and applications. Compared to nonplanar conformational segments, coplanar conformational segments of conjugated polymers (CPs) demonstrate favorable properties for applications as a semiconductor. Herein, recent developments in the coplanar conformational structure of CPs for optoelectronic devices are summarized. First, this review comprehensively summarizes the unique properties of planar conformational structures. Second, the characteristics of the coplanar conformation in terms of optoelectrical properties and other polymer physics characteristics are emphasized. Five primary characterization methods for investigating the complanate backbone structures are illustrated, providing a systematical toolbox for studying this specific conformation. Third, internal and external conditions for inducing the coplanar conformational structure are presented, offering guidelines for designing this conformation. Fourth, the optoelectronic applications of this segment, such as light-emitting diodes, solar cells, and field-effect transistors, are briefly summarized. Finally, a conclusion and outlook for the coplanar conformational segment regarding molecular design and applications are provided.
Collapse
Affiliation(s)
- Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chuanxin Wei
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yunlong Zhang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jiefeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hao Li
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingrui Zhang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Lili Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Bin Liu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mengna Yu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
5
|
Zhu X, Liu F, Ba X, Wu Y. Tandem Suzuki Polymerization/Heck Cyclization Reaction to Form Ladder-Type 9,9'-Bifluorenylidene-Based Conjugated Polymer. Polymers (Basel) 2023; 15:3360. [PMID: 37631417 PMCID: PMC10458247 DOI: 10.3390/polym15163360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The synthesis of ladder-type 9,9'-bifluorenylidene-based conjugated polymer is reported. Unlike the typical synthetic strategy, the new designed ladder-type conjugated polymer is achieved via tandem Suzuki polymerization/Heck cyclization reaction in one-pot. In the preparation process, Suzuki polymerization reaction occurred first and then the intramolecular Heck cyclization followed smoothly under the same catalyst Pd(PPh3)4. The model reaction proved that the introduction of iodine (I) for this tandem reaction can effectively control the sequential bond-forming process and inhibit the additional competitive side reactions. Thus, small-molecule model compounds could be obtained in high yields. The successes of the synthesized small molecule and polymer compounds indicate that the Pd-catalyzed tandem reaction may be an effective strategy for improving extended π-conjugated materials.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (X.Z.); (X.B.)
| | - Feng Liu
- College of Basic Medicine, Hebei University, Baoding 071002, China
| | - Xinwu Ba
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (X.Z.); (X.B.)
| | - Yonggang Wu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (X.Z.); (X.B.)
| |
Collapse
|
6
|
Sarkar M, Patra A. N, N'-octyl biphenothiazine and dibenzothiophene dioxide-based soluble porous organic polymer for biphasic photocatalytic hydrogen evolution. Chem Commun (Camb) 2023; 59:2584-2587. [PMID: 36692376 DOI: 10.1039/d2cc06321b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A donor-acceptor-based soluble porous organic polymer (PzDBS) was fabricated using a flexible core composed of N,N'-octyl biphenothiazine and a rigid building unit involving dibenzothiophene dioxide. The soluble porous organic polymer was explored for aqueous-organic biphasic photocatalytic hydrogen evolution, introducing a promising avenue in the domain of porous polymer photocatalysts.
Collapse
Affiliation(s)
- Madhurima Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
7
|
Müllen K, Scherf U. Conjugated Polymers: Where We Come From, Where We Stand, and Where We Might Go. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Klaus Müllen
- Max Planck Institute for Polymer Research Ackermannweg 10 D‐50128 Mainz Germany
| | - Ullrich Scherf
- Department of Chemistry, Macromolecular Chemistry Group (BUWmakro), and Wuppertal Institute for Smart Materials & Systems (CM@S) University of Wuppertal Gauss‐Str. 20 D‐42119 Wuppertal Germany
| |
Collapse
|
8
|
Wang H, Zhao H, Liu F, Bai L, Ba X, Wu Y. Effective synthesis of regular ladder-type oligo(p-phenol)s via intramolecular SNAr O-arylation reaction. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Zhu X, Liu F, Ba X, Wu Y. Synthesis of Ladder-Type 9,9'-Bifluorenylidene-Based Conjugated Oligomers via a Pd-Catalyzed Tandem Suzuki Coupling/Heck Cyclization Approach. Org Lett 2022; 24:5851-5854. [PMID: 35904327 DOI: 10.1021/acs.orglett.2c02418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For new ladder-type oligomers and polymers with versatile and robust synthetic strategies, in this study, four fully conjugated ladder-type overcrowded 9,9'-bifluorenylidene-based compounds and oligomers (BFY1, BFY2, BFY3, and BFY4) were synthesized via a Pd-catalyzed tandem Suzuki coupling/Heck cyclization reaction. By monomer screening and route optimization, the target products were obtained in high yields and characterized by 1H and 13C NMR spectroscopy and high resolution mass spectroscopy.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Feng Liu
- College of Basic Medicine, Hebei University, Baoding 071002, PR China
| | - Xinwu Ba
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| | - Yonggang Wu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China
| |
Collapse
|
10
|
Tam TLD, Lin M, Chien SW, Xu J. Facile Synthesis of Solubilizing a Group-Free, Solution-Processable p-Type Ladder Conjugated Polymer and Its Thermoelectric Properties. ACS Macro Lett 2022; 11:110-115. [PMID: 35574790 DOI: 10.1021/acsmacrolett.1c00696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report the synthesis of a new solubilizing group-free, solution-processable p-type ladder conjugated polymer, 6H-pyrrolo[3,2-b:4,5-b']bis[1,4]benzothiazine ladder (PBBTL) polymer by using a polyphosphoric acid (PPA) and phenylphosphonic acid (PhPO3H2) 1:1 binary acid solvent system together with careful control of reaction kinetics. With a good intrinsic viscosity of 3.69 dL/g in methanesulfonic acid (MSA), good quality PBBTL films can be obtained via spin-coating. Intrinsic thin film properties and thermoelectric performance of PBBTL were evaluated, making it the second solubilizing group-free, solution-processable ladder-type conjugated polymer after BBL to be used for thin-film polymer electronics. While our preliminary thermoelectric performance of the FeCl3-doped PBBTL films is modest, we believe that many opportunities lie ahead for PBBTL and hope that its successful synthesis using the new PPA:PhPO3H2 binary acid solvent system will inspire synthetic organic chemists to relook into solubilizing group-free, solution-processable ladder-type conjugated polymer systems.
Collapse
Affiliation(s)
- Teck Lip Dexter Tam
- Agency of Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Ming Lin
- Agency of Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Sheau Wei Chien
- Agency of Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Jianwei Xu
- Agency of Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
11
|
Kadam VS, Machhi HK, Soni SS, Zade SS, Patel AL. Donor–acceptor π-conjugated polymers based on terthiophene-3,4-dicarboxylate, dithienopyrrolobenzothiadiazole and thieno[3,4- c]pyrrole-4,6-dione units and their hole mobility. NEW J CHEM 2022. [DOI: 10.1039/d2nj00124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have synthesized three different p-type donor–acceptor π-conjugated polymers based on diethyl [2,2′:5′,2′′-terthiophene]-3′,4′-dicarboxylate, dithienopyrrolobenzothiadiazole and thieno[3,4-c]pyrrole-4,6-dione units.
Collapse
Affiliation(s)
- Vinay S. Kadam
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Hiren K. Machhi
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - Saurabh S. Soni
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - Sanjio S. Zade
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Arun L. Patel
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| |
Collapse
|
12
|
Hanamura H, Watanabe M, Tanabiki M, Saito H, Sugita H, Mikami K. Synthesis of dithieno[2,3-d:2′,3′-d']anthra[1,2-b:5,6-b']dithiophene (DTADT) units: Structure, polymerization, DFT study, and OFET application. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Ghosh S, Das S, Kumar C, Kumar NR, Agrawal AR, Karmakar HS, Ghosh NG, Zade SS. Triazole‐fused indolo[2,3‐
a
]carbazoles: synthesis, structures, and properties. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sirina Ghosh
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata Nadia India
| | - Sarasija Das
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata Nadia India
| | - Chandan Kumar
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata Nadia India
| | - Neha Rani Kumar
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata Nadia India
| | - Abhijeet R. Agrawal
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata Nadia India
| | - Himadri S. Karmakar
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata Nadia India
| | - Nani Gopal Ghosh
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata Nadia India
| | - Sanjio S. Zade
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata Nadia India
| |
Collapse
|
14
|
Kalin AJ, Che S, Wang C, Mu AU, Duka EM, Fang L. Solution-Processable Porous Nanoparticles of a Conjugated Ladder Polymer Network. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander J. Kalin
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
| | - Sai Che
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
| | - Chenxu Wang
- Department of Materials Science & Engineering, Texas A&M University, 3003 TAMU, College Station, Texas 77843-3003, United States
| | - Anthony U. Mu
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
| | - E. Meir Duka
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
| | - Lei Fang
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
- Department of Materials Science & Engineering, Texas A&M University, 3003 TAMU, College Station, Texas 77843-3003, United States
| |
Collapse
|
15
|
Hirano T, Hanamura H, Inoue M, Ueda S, Watanabe M, Tanabiki M, Mikami K. Synthesis of soluble, air-stable fully conjugated ladder polymers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Zhu C, Kalin AJ, Fang L. Covalent and Noncovalent Approaches to Rigid Coplanar π-Conjugated Molecules and Macromolecules. Acc Chem Res 2019; 52:1089-1100. [PMID: 30943015 DOI: 10.1021/acs.accounts.9b00022] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular conformation and rigidity are essential factors in determining the properties of individual molecules, the associated supramolecular assemblies, and bulk materials. This correlation is particularly important for π-conjugated molecular and macromolecular systems. Within such an individual molecule, a coplanar conformation facilitates the delocalization of not only molecular orbitals but also charges, excitons, and spins, leading to synergistically ensembled properties of the entire conjugated system. A rigid backbone, meanwhile, imposes a high energy cost to disrupt such a favorable conformation, ensuring the robustness and persistence of coplanarity. From a supramolecular and material point of view, coplanarity and rigidity often promote strong intermolecular electronic coupling and reduce the energy barrier for the intermolecular transport of charges, excitons, and phonons, affording advanced materials properties in bulk. In this context, pursuing a rigid and coplanar molecular conformation often represents one of the primary objectives when designing and synthesizing conjugated molecules for electronic and optical applications. Two general bottom-up strategies-covalent annulation and noncovalent conformational control-are often employed to construct rigid coplanar π systems. These strategies have afforded various classes of such molecules and macromolecules, including so-called conjugated ladder polymers, graphene nanoribbons, polyacenes, and conformationally locked organic semiconductors. While pursuing these targets, however, one often confronts challenges associated with precise synthesis and limited solubility of the rigid coplanar systems, which could further impede their large-scale preparation, characterization, processing, and application. To address these issues, we developed and utilized a number of synthetic methods and molecular engineering approaches to construct and to process rigid coplanar conjugated molecules and macromolecules. Structure-property correlations of this unique class of organic materials were established, providing important chemical principles for molecular design and materials applications. In this Account, we first describe our efforts to synthesize rigid coplanar π systems fused by various types of bonds, including kinetically formed covalent bonds, thermodynamically formed covalent bonds, N→B coordinate bonds, and hydrogen bonds, in order of increasing dynamic character. The subsequent section discusses the characteristic properties of selected examples of these rigid coplanar π systems in comparison with control compounds that are not rigid and coplanar, particularly focusing on the optical, electronic, and electrochemical properties. For systems bridged with noncovalent interactions, active manipulation of the dynamic bonds can tune variable properties at the molecular or collective level. Intermolecular interactions, solid-state packing, and processing of several cases are then discussed to lay the foundation for future materials applications of rigid coplanar π conjugated compounds.
Collapse
Affiliation(s)
- Congzhi Zhu
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Alexander J. Kalin
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Lei Fang
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
17
|
Trilling F, Ausländer MK, Scherf U. Ladder-Type Polymers and Ladder-Type Polyelectrolytes with On-Chain Dibenz[a,h]anthracene Chromophores. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Florian Trilling
- Macromolecular Chemistry Group and Institute for Polymer Technology, Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Michelle-Kathrin Ausländer
- Macromolecular Chemistry Group and Institute for Polymer Technology, Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Ullrich Scherf
- Macromolecular Chemistry Group and Institute for Polymer Technology, Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| |
Collapse
|
18
|
Ren X, Zhang H, Song M, Cheng C, Zhao H, Wu Y. One‐Step Route to Ladder‐Type C–N Linked Conjugated Polymers. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaojie Ren
- College of Chemistry and Environmental ScienceHebei University No. 180 Wusidong Road Baoding 071002 P. R. China
| | - Hailei Zhang
- College of Chemistry and Environmental ScienceHebei University No. 180 Wusidong Road Baoding 071002 P. R. China
| | - Meining Song
- College of Chemistry and Environmental ScienceHebei University No. 180 Wusidong Road Baoding 071002 P. R. China
| | - Cong Cheng
- College of Chemistry and Environmental ScienceHebei University No. 180 Wusidong Road Baoding 071002 P. R. China
| | - Hongchi Zhao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education No. 180 Wusidong Road Baoding 071002 P. R. China
| | - Yonggang Wu
- College of Chemistry and Environmental ScienceHebei University No. 180 Wusidong Road Baoding 071002 P. R. China
| |
Collapse
|
19
|
Klein P, Jötten HJ, Aitchison CM, Clowes R, Preis E, Cooper AI, Sprick RS, Scherf U. Aromatic polymers made by reductive polydehalogenation of oligocyclic monomers as conjugated polymers of intrinsic microporosity (C-PIMs). Polym Chem 2019. [DOI: 10.1039/c9py00869a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Incorporation of tetrabenzohepta- or -pentafulvalene connectors into soluble, aromatic polymers results in significantly different optical spectra and intrinsic microporosity.
Collapse
Affiliation(s)
- Patrick Klein
- Macromolecular Chemistry
- University of Wuppertal
- 42119 Wuppertal
- Germany
| | - Hauke J. Jötten
- Macromolecular Chemistry
- University of Wuppertal
- 42119 Wuppertal
- Germany
| | | | - Rob Clowes
- Materials Innovation Factory
- University of Liverpool
- Liverpool
- UK
| | - Eduard Preis
- Macromolecular Chemistry
- University of Wuppertal
- 42119 Wuppertal
- Germany
| | | | | | - Ullrich Scherf
- Macromolecular Chemistry
- University of Wuppertal
- 42119 Wuppertal
- Germany
| |
Collapse
|
20
|
Hu C, Chen W, Yao H, Ren X, Zhang H, Zhao H, Wu Y, Ba X. Facile Synthesis of Ladder-Type Polyacenes with Perylene-Fused-Pyrene Structures. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chaoying Hu
- College of Chemistry and Environmental Science; Hebei University; No.180 Wusidong Road Baoding 071002 P. R. China
| | - Weiping Chen
- College of Chemistry and Environmental Science; Hebei University; No.180 Wusidong Road Baoding 071002 P. R. China
| | - Haicui Yao
- College of Chemistry and Environmental Science; Hebei University; No.180 Wusidong Road Baoding 071002 P. R. China
| | - Xiaojie Ren
- College of Chemistry and Environmental Science; Hebei University; No.180 Wusidong Road Baoding 071002 P. R. China
| | - Hailei Zhang
- College of Chemistry and Environmental Science; Hebei University; No.180 Wusidong Road Baoding 071002 P. R. China
| | - Hongchi Zhao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education; No.180 Wusidong Road Baoding 071002 P. R. China
| | - Yonggang Wu
- College of Chemistry and Environmental Science; Hebei University; No.180 Wusidong Road Baoding 071002 P. R. China
| | - Xinwu Ba
- College of Chemistry and Environmental Science; Hebei University; No.180 Wusidong Road Baoding 071002 P. R. China
| |
Collapse
|
21
|
Liu F, Wu Y, Wang C, Ma J, Wu F, Zhang Y, Ba X. Synthesis and Characterization of Fully Conjugated Ladder Naphthalene Bisimide Copolymers. Polymers (Basel) 2018; 10:E790. [PMID: 30960715 PMCID: PMC6403639 DOI: 10.3390/polym10070790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 11/26/2022] Open
Abstract
Fully conjugated ladder copolymers have attracted considerable attention due to their unique fused-ring structure and optoelectronic properties. In this study, two fully conjugated ladder naphthalene diimide (NDI) copolymers, P(NDI-CZL) and P(NDI-TTL) with imine-bridged structures are presented in high yields. Both of the two copolymers have good solubility and high thermal stability. The corresponding compounds with the same structure as the copolymers were synthesized as model system. The yields for each step of the synthesis of the model compounds are higher than 95%. These results suggest that P(NDI-CZL) and P(NDI-TTL) can be synthesized successfully with fewer structural defects. The structures and optoelectronic properties of compounds and copolymers are investigated by NMR, fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis), and cyclic voltammetry (CV). Both in solution and as a thin film, the two copolymers show two UV-vis absorption bands (around 300⁻400 nm and 400⁻750 nm) and a very weak fluorescence. The collective results suggest that the two fully conjugated ladder copolymers can be used as potential acceptor materials.
Collapse
Affiliation(s)
- Feng Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Yonggang Wu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Chao Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Junshu Ma
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Fan Wu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Ye Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Xinwu Ba
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
22
|
Wang Y, Guo H, Harbuzaru A, Uddin MA, Arrechea-Marcos I, Ling S, Yu J, Tang Y, Sun H, López Navarrete JT, Ortiz RP, Woo HY, Guo X. (Semi)ladder-Type Bithiophene Imide-Based All-Acceptor Semiconductors: Synthesis, Structure–Property Correlations, and Unipolar n-Type Transistor Performance. J Am Chem Soc 2018; 140:6095-6108. [DOI: 10.1021/jacs.8b02144] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yingfeng Wang
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, South University of Science and Technology of China, No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Han Guo
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, South University of Science and Technology of China, No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Alexandra Harbuzaru
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga 29071, Spain
| | - Mohammad Afsar Uddin
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Iratxe Arrechea-Marcos
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga 29071, Spain
| | - Shaohua Ling
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, South University of Science and Technology of China, No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Jianwei Yu
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, South University of Science and Technology of China, No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Yumin Tang
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, South University of Science and Technology of China, No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Huiliang Sun
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, South University of Science and Technology of China, No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | | | - Rocio Ponce Ortiz
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga 29071, Spain
| | - Han Young Woo
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Xugang Guo
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, South University of Science and Technology of China, No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| |
Collapse
|
23
|
Yin Y, Zhang S, Chen D, Guo F, Yu G, Zhao L, Zhang Y. Synthesis of an indacenodithiophene-based fully conjugated ladder polymer and its optical and electronic properties. Polym Chem 2018. [DOI: 10.1039/c8py00351c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fully conjugated ladder polymer (PFIDT) based on the indacenodithiophene unit was synthesized via a simple strategy.
Collapse
Affiliation(s)
- Yuli Yin
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Shiying Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Daoyuan Chen
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Fengyun Guo
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Liancheng Zhao
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Yong Zhang
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|
24
|
Lee J, Kalin AJ, Wang C, Early JT, Al-Hashimi M, Fang L. Donor–acceptor conjugated ladder polymer via aromatization-driven thermodynamic annulation. Polym Chem 2018. [DOI: 10.1039/c7py02059g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of coplanar conjugated ladder polymers featuring alternating donor–acceptor units has been achieved in high efficiency using ring-closing olefin metathesis.
Collapse
Affiliation(s)
- Jongbok Lee
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Chenxu Wang
- Department of Materials Science & Engineering
- Texas A&M University
- College Station
- USA
| | - Julia T. Early
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Lei Fang
- Department of Chemistry
- Texas A&M University
- College Station
- USA
- Department of Materials Science & Engineering
| |
Collapse
|
25
|
Teo YC, Lai HWH, Xia Y. Synthesis of Ladder Polymers: Developments, Challenges, and Opportunities. Chemistry 2017; 23:14101-14112. [DOI: 10.1002/chem.201702219] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Yew Chin Teo
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Holden W. H. Lai
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Yan Xia
- Department of Chemistry Stanford University Stanford CA 94305 USA
| |
Collapse
|
26
|
Wang Y, Guo H, Ling S, Arrechea‐Marcos I, Wang Y, López Navarrete JT, Ortiz RP, Guo X. Ladder‐type Heteroarenes: Up to 15 Rings with Five Imide Groups. Angew Chem Int Ed Engl 2017; 56:9924-9929. [DOI: 10.1002/anie.201702225] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/30/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Yingfeng Wang
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic ElectronicsSouth University of Science and Technology of China No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Han Guo
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic ElectronicsSouth University of Science and Technology of China No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Shaohua Ling
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic ElectronicsSouth University of Science and Technology of China No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Iratxe Arrechea‐Marcos
- Department of Physical ChemistryUniversity of Málaga Campus de Teatinos s/n 29071 Málaga Spain
| | - Yuxi Wang
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic ElectronicsSouth University of Science and Technology of China No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
- Department of ChemistryWuhan University Wuhan Hubei 430072 China
| | | | - Rocio Ponce Ortiz
- Department of Physical ChemistryUniversity of Málaga Campus de Teatinos s/n 29071 Málaga Spain
| | - Xugang Guo
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic ElectronicsSouth University of Science and Technology of China No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| |
Collapse
|
27
|
Wang Y, Guo H, Ling S, Arrechea‐Marcos I, Wang Y, López Navarrete JT, Ortiz RP, Guo X. Ladder‐type Heteroarenes: Up to 15 Rings with Five Imide Groups. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702225] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yingfeng Wang
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic ElectronicsSouth University of Science and Technology of China No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Han Guo
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic ElectronicsSouth University of Science and Technology of China No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Shaohua Ling
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic ElectronicsSouth University of Science and Technology of China No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Iratxe Arrechea‐Marcos
- Department of Physical ChemistryUniversity of Málaga Campus de Teatinos s/n 29071 Málaga Spain
| | - Yuxi Wang
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic ElectronicsSouth University of Science and Technology of China No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
- Department of ChemistryWuhan University Wuhan Hubei 430072 China
| | | | - Rocio Ponce Ortiz
- Department of Physical ChemistryUniversity of Málaga Campus de Teatinos s/n 29071 Málaga Spain
| | - Xugang Guo
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic ElectronicsSouth University of Science and Technology of China No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| |
Collapse
|
28
|
Banerjee S, Ladmiral V, Debuigne A, Detrembleur C, Rahaman SMW, Poli R, Ameduri B. Organometallic-Mediated Alternating Radical Copolymerization of tert
-Butyl-2-Trifluoromethacrylate with Vinyl Acetate and Synthesis of Block Copolymers Thereof. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700203] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/18/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Sanjib Banerjee
- Ingénierie et Architectures Macromoléculaires; Institut Charles Gerhardt; UMR 5253 CNRS, UM, ENSCM, Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| | - Vincent Ladmiral
- Ingénierie et Architectures Macromoléculaires; Institut Charles Gerhardt; UMR 5253 CNRS, UM, ENSCM, Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM); University of Liege; CESAM Research Unit, Sart-Tilman B6a 4000 Liege Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM); University of Liege; CESAM Research Unit, Sart-Tilman B6a 4000 Liege Belgium
| | - S. M. Wahidur Rahaman
- CNRS, LCC (Laboratoire de Chimie de Coordination) and Université de Toulouse; UPS, INPT, 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination) and Université de Toulouse; UPS, INPT, 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
- Institut Universitaire de France; 1, rue Descartes 75231 Paris Cedex 05 France
| | - Bruno Ameduri
- Ingénierie et Architectures Macromoléculaires; Institut Charles Gerhardt; UMR 5253 CNRS, UM, ENSCM, Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| |
Collapse
|
29
|
Klöckner B, Niederer K, Fokina A, Frey H, Zentel R. Conducting Polymer with Orthogonal Catechol and Disulfide Anchor Groups for the Assembly of Inorganic Nanostructures. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin Klöckner
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kerstin Niederer
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Ana Fokina
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
30
|
Rudnick A, Kass KJ, Preis E, Scherf U, Bässler H, Köhler A. Interplay of localized pyrene chromophores and π-conjugation in novel poly(2,7-pyrene) ladder polymers. J Chem Phys 2017; 146:174903. [DOI: 10.1063/1.4982046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alexander Rudnick
- Experimental Physics II, University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Kim-Julia Kass
- Macromolecular Chemistry, Bergische Universität Wuppertal, Gauss-Strasse 20, 42119 Wuppertal, Germany
| | - Eduard Preis
- Macromolecular Chemistry, Bergische Universität Wuppertal, Gauss-Strasse 20, 42119 Wuppertal, Germany
| | - Ullrich Scherf
- Macromolecular Chemistry, Bergische Universität Wuppertal, Gauss-Strasse 20, 42119 Wuppertal, Germany
| | - Heinz Bässler
- Bayreuth Institute of Macromolecular Research (BIMF), University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Anna Köhler
- Experimental Physics II, University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
- Bayreuth Institute of Macromolecular Research (BIMF), University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
31
|
Lee J, Kalin AJ, Yuan T, Al-Hashimi M, Fang L. Fully conjugated ladder polymers. Chem Sci 2017; 8:2503-2521. [PMID: 28553483 PMCID: PMC5431637 DOI: 10.1039/c7sc00154a] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/15/2017] [Indexed: 12/24/2022] Open
Abstract
Fully conjugated ladder polymers (cLPs), in which all the backbone units on the polymer main-chain are π-conjugated and fused, have attracted great interest owing to their intriguing properties, remarkable chemical and thermal stability, and potential suitability as functional organic materials. The synthesis of cLPs can be, in general, achieved by two main strategies: single-step ladderization and post-polymerization ladderization. Although a variety of synthetic methods have been developed, the chemistry of cLPs must contend with structural defects and low solubility that prevents complete control over synthesis and structural characterization. Despite these challenges, cLPs have been used for a wide range of applications such as organic light emitting diodes (OLEDs) and organic field effect transistors (OFETs), paralleling developments in processing methods. In this perspective, we discuss the background of historical syntheses including the most recent synthetic approaches, challenges related to the synthesis and structural characterization of well-defined cLPs with minimum levels of structural defects, cLPs' unique properties, and wide range of applications. In addition, we propose outlooks to overcome the challenges limiting the synthesis, analysis, and processing of cLPs in order to fully unlock the potential of this intriguing class of organic materials.
Collapse
Affiliation(s)
- Jongbok Lee
- Department of Chemistry , Texas A&M University , 3255 TAMU , College Station , TX 77843 , USA .
| | - Alexander J Kalin
- Department of Chemistry , Texas A&M University , 3255 TAMU , College Station , TX 77843 , USA .
| | - Tianyu Yuan
- Department of Chemistry , Texas A&M University , 3255 TAMU , College Station , TX 77843 , USA .
- Materials Science & Engineering Department , Texas A&M University , 3003 TAMU , College Station , TX 77843 , USA
| | - Mohammed Al-Hashimi
- Department of Chemistry , Texas A&M University at Qatar , P.O. Box 23874 , Doha , Qatar
| | - Lei Fang
- Department of Chemistry , Texas A&M University , 3255 TAMU , College Station , TX 77843 , USA .
- Materials Science & Engineering Department , Texas A&M University , 3003 TAMU , College Station , TX 77843 , USA
| |
Collapse
|
32
|
Jiang Y, Fang M, Chang SJ, Huang JJ, Chu SQ, Hu SM, Liu CF, Lai WY, Huang W. Towards Monodisperse Star-Shaped Ladder-Type Conjugated Systems: Design, Synthesis, Stabilized Blue Electroluminescence, and Amplified Spontaneous Emission. Chemistry 2017; 23:5448-5458. [PMID: 28195668 DOI: 10.1002/chem.201605885] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/08/2017] [Indexed: 11/08/2022]
Abstract
A novel series of monodisperse star-shaped ladder-type oligo(p-phenylene)s, named as TrL-n (n=1-3), have been explored. Their thermal and electrochemical properties, fluorescence transients, photoluminescence quantum yields, density functional theory calculations, electroluminescence (EL) and amplified spontaneous emission (ASE) properties have been systematically investigated to unravel the molecular design on optoelectronic properties. The resulting materials showed excellent structural perfection, free of chemical defects, and exhibited great thermal stability (Td : 404-418 °C and Tg : 147-184 °C) and amorphous glassy morphologies. Compared with their corresponding linear counterparts FL-m (m=1-3), TrL-n showed only little bathochromic shifts (5-12 nm) for the absorption maxima λmax in both solution and films. The star-shaped ladder-type compounds exhibited enhanced optical stability and suppressed low-energy emission. Their EL spectra exhibited excellent stability with increasing the driving voltage from 6 to 12 V. Moreover, superior low ASE thresholds were recorded for TrL-n compared with FL-m. Rather low ASE threshold (29 nJ per pulse or 1.60 μJ cm-2 ) was recorded for TrL-3, demonstrating their promising potential as excellent gain media. This study provides a novel design concept to develop monodisperse star-shaped ladder-type materials with excellent structural perfection, which are vital for shedding light on exploring robust organic emitters for optoelectronic applications.
Collapse
Affiliation(s)
- Yi Jiang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Mei Fang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Si-Ju Chang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jin-Jin Huang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shuang-Quan Chu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shan-Ming Hu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Cheng-Fang Liu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wen-Yong Lai
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.,Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced, Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.,Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced, Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
33
|
|
34
|
Ghosh S, Das S, Kumar NR, Agrawal AR, Zade SS. Effect of heteroatom (S/Se) juggling in donor–acceptor–donor (D–A–D) fused systems: synthesis and electrochemical polymerization. NEW J CHEM 2017. [DOI: 10.1039/c7nj02394d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Planarization of donor–acceptor–donor (D–A–D) systems through N-bridges with systematic alteration of S/Se atom(s) resulted in interesting fluorosolvatochromic molecules and their electrochemical polymers.
Collapse
Affiliation(s)
- Sirina Ghosh
- Department of Chemical Sciences and Centre for Advanced Functional Materials
- Indian Institute of Science Education and Research (IISER) Kolkata
- Nadia
- India
| | - Sarasija Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials
- Indian Institute of Science Education and Research (IISER) Kolkata
- Nadia
- India
| | - Neha Rani Kumar
- Department of Chemical Sciences and Centre for Advanced Functional Materials
- Indian Institute of Science Education and Research (IISER) Kolkata
- Nadia
- India
| | - Abhijeet R. Agrawal
- Department of Chemical Sciences and Centre for Advanced Functional Materials
- Indian Institute of Science Education and Research (IISER) Kolkata
- Nadia
- India
| | - Sanjio S. Zade
- Department of Chemical Sciences and Centre for Advanced Functional Materials
- Indian Institute of Science Education and Research (IISER) Kolkata
- Nadia
- India
| |
Collapse
|
35
|
Banerjee S, Domenichelli I, Ameduri B. Nitroxide-Mediated Alternating Copolymerization of Vinyl Acetate with tert-Butyl-2-trifluoromethacrylate Using a SG1-Based Alkoxyamine. ACS Macro Lett 2016; 5:1232-1236. [PMID: 35614731 DOI: 10.1021/acsmacrolett.6b00707] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Unique alternating copolymers based on vinyl acetate (VAc) and tert-butyl-2-trifluoromethacrylate (MAF-TBE, a nonhomopolymerizable monomer under radical conditions) have been synthesized by nitroxide-mediated polymerization (NMP) using a SG1-based BlocBuilder alkoxyamine (MAMA-SG1) at moderate temperature (at 40 °C) in dimethyl sulfoxide. First-order kinetics and linear evolutions of the molecular weight (up to 17100 g mol-1), maintaining low dispersity values (Đ ≤ 1.33), confirmed the controlled nature of the copolymerization. Interestingly, none of the starting monomers could undergo homopolymerization under the NMP condition initiated by MAMA-SG1. The resulting alternating copolymers were characterized by 1H, 13C, 19F, and 31P NMR spectroscopies and size exclusion chromatography (SEC). The poly(VAc-alt-MAF-TBE) copolymer is amorphous and exhibited a single glass transition temperature of 59 °C. This is the first report of nitroxide-mediated (co)polymerization of VAc leading to well-defined copolymers with satisfactory yields. The results presented in this study established a new route via NMP toward the synthesis of strictly 1:1 alternating fluorocopolymers that can display diverse functionalities.
Collapse
Affiliation(s)
- Sanjib Banerjee
- Ingénierie
et Architectures Macromoléculaires, Institut Charles Gerhardt, UMR 5253 CNRS, UM, ENSCM, Place Eugéne Bataillon, 34095 Montpellier Cedex 5, France
| | - Ilaria Domenichelli
- Isituto di Chimica
dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche,
SS Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy
- Scuola Normale
Superiore, Piazzadei Cavalieri 7, 56126 Pisa, Italy
| | - Bruno Ameduri
- Ingénierie
et Architectures Macromoléculaires, Institut Charles Gerhardt, UMR 5253 CNRS, UM, ENSCM, Place Eugéne Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|