1
|
Li Q, Zhang W, Zhu C, Pan H, Shi KY, Zhang Y, Han MY, Tan CH. Organobase-Catalyzed Umpolung of Amides: The Generation and Transfer of Carbamoyl Anion. J Org Chem 2023; 88:1245-1255. [PMID: 36628963 DOI: 10.1021/acs.joc.2c02487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A novel organobase-catalyzed umpolung reaction of amides was disclosed. This method provides an efficient method to generate and transfer carbamoyl anions. In this transformation, some of the inherent disadvantages of carbamoyl metal were avoided. The mechanistic analysis revealed that the reaction proceeds through polarity inversion of amide, and various carbamoyl anions were applied in the reaction. Moreover, a wide range of substrates was achieved with moderate to excellent yield.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Wang Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Chen Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Hong Pan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Kang-Yue Shi
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Man-Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huabei Normal University, Huaibei, Anhui 235000, PR China
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 637371
| |
Collapse
|
2
|
Lim SH, Kim MJ, Wee KR, Lim DH, Kim YI, Cho DW. Silyl Tether-Assisted Photooxygenation of Electron-Deficient Enaminoesters: Direct Access to Oxamate Formation. J Org Chem 2023; 88:172-188. [PMID: 36516444 DOI: 10.1021/acs.joc.2c02101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photooxygenation reactions of electron-deficient enaminoesters bearing an oxophilic silyl tether at the α-position of the nitrogen atom using methylene blue (MB) were explored to develop a mild and efficient photochemical strategy for oxidative C-C double bond cleavage reactions via singlet oxygen (1O2). Photochemically generated 1O2, through energy transfer from the triplet excited state of MB (3MB*) to molecular oxygen (3O2), was added across a C-C double bond moiety of enaminoesters to form perepoxides, which rearranged to form dioxetane intermediates. The cycloreversion of the formed dioxetane via both C-C and O-O bond cleavage processes led to the formation of oxamates. Importantly, contrary to alkyl group tether-substituted electron-deficient enaminoesters that typically disfavor photooxygenation, the silyl tether-substituted analogues undergo this photochemical transformation efficiently with the assistance of a silyl tether, which facilitates formation of the perepoxide. The observations in this study provide useful information about photosensitized oxygenation reactions of unsaturated C-C bonds, and, moreover, this photochemical strategy can be utilized as a mild and feasible method for the preparation of diversely functionalized carbonyl compounds including oxamates.
Collapse
Affiliation(s)
- Suk Hyun Lim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Min-Ji Kim
- Department of Chemistry, Daegu University, Gyeongsan, Gyeongbuk 38453, Korea
| | - Kyung-Ryang Wee
- Department of Chemistry, Daegu University, Gyeongsan, Gyeongbuk 38453, Korea
| | - Dong Hyun Lim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Young-Il Kim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Dae Won Cho
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| |
Collapse
|
3
|
Jiang Y, Yorimitsu H. Taming Highly Unstable Radical Anions and 1,4-Organodilithiums by Flow Microreactors: Controlled Reductive Dimerization of Styrenes. JACS AU 2022; 2:2514-2521. [PMID: 36465543 PMCID: PMC9709950 DOI: 10.1021/jacsau.2c00375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 05/21/2023]
Abstract
The reduction of styrenes with lithium arenide in a flow microreactor leads to the instantaneous generation of highly unstable radical anions that subsequently dimerize to yield the corresponding 1,4-organodilithiums. A flow reactor with fast mixing is essential for this reductive dimerization as the efficiency and selectivity are low under batch conditions. A series of styrenes undergo dimerization, and the resulting 1,4-organodilithiums are trapped with various electrophiles. Trapping with divalent electrophiles affords precursors for useful yet less accessible cyclic structures, for example, siloles from dichlorosilanes. Thus, we highlight the power of single-electron reduction of unsaturated compounds in flow microreactors for organic synthesis.
Collapse
|
4
|
Shi L, Han L, Zhao Z, Li Q, Wang Y, Ding G, Xing X. Furanoids from the Gymnadenia conopsea (Orchidaceae) seed germination supporting fungus Ceratobasidium sp. (GS2). Front Microbiol 2022; 13:1037292. [PMID: 36466680 PMCID: PMC9712750 DOI: 10.3389/fmicb.2022.1037292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 02/18/2024] Open
Abstract
Five furanoids including a new analog (S)-1,4-di(furan-2-yl)-2-hydroxybutane-1,4-dione (1) together with four known ones, rhizosolaniol (2), 5-hydroxymethylfurfural (3), 2-furoic acid (4) and (2-furyl) oxoacetamide (5), were isolated from the fungal strain Ceratobasidium sp. (GS2) inducing seed germination of the endangered medicinal plant Gymnadenia conopsea of Orchidaceae. The structure of new furanoid 1 was determined mainly based on HR-ESI-MS and NMR spectral data. Modified Mosher's reactions were used to establish the stereochemistry of the hydroxyl group in 1, which was not stable in Mosher's reagents and transformed into four analogs 6-9. These degraded products (6-9) were elucidated based on UPLC-Q-TOF-MS/MS analysis, and compound 8 was further isolated from the degraded mixture and its structure was characterized through NMR experiments. Therefore, the absolute configuration of compound 1 was determined by electronic circular dichroism combined with quantum-chemical calculations adopting time-dependent density functional theory. Compounds (1-5), and 8 showed weak antioxidant activities, and compounds (2-4) displayed phytotoxicity on punctured detached green foxtail leaves. In addition, compounds 3 and 4 strongly showed inhibition activities on the seed germination of G. conopsea. This was the first chemical investigation of the symbiotic fungus of G. conopsea.
Collapse
Affiliation(s)
- Lixin Shi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Han
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zeyu Zhao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanduo Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoke Xing
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Djukanovic D, Ganiek MA, Nishi K, Karaghiosoff K, Mashima K, Knochel P. Preparation of Functionalized Amides Using Dicarbamoylzincs. Angew Chem Int Ed Engl 2022; 61:e202205440. [PMID: 35561099 PMCID: PMC9401601 DOI: 10.1002/anie.202205440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 12/15/2022]
Abstract
We report a new convenient preparation of dicarbamoylzincs of type (R1 R2 NCO)2 Zn by the treatment of ZnCl2 and formamides R1 R2 NCHO with LiTMP in THF (15 °C, 15 min) or by the reaction of formamides R1 R2 NCHO with TMP2 Zn (25 °C, 16 h). This second method tolerates sensitive groups such as an ester, ketone or nitro function. Reaction of these dicarbamoylzincs with allylic, benzylic, aryl, alkenyl bromides, acid chlorides, aldehydes or enones provided various polyfunctional amides in 47-97 % yields. 13 C NMR characterization of these new carbamoylzinc derivatives is reported.
Collapse
Affiliation(s)
- Dimitrije Djukanovic
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–13, Haus F81377MünchenGermany
| | - Maximilian A. Ganiek
- Patheon, by Thermo Fisher ScientificPatheon Regensburg GmbhDonaustaufer Straße 37893055RegensburgGermany
| | - Kohei Nishi
- Graduate School of Engineering ScienceOsaka University1-3 MachikaneyamaToyonaka565-0871 OsakaJapan
- Graduate School of Pharmaceutical SciencesOsaka University1-6 YamadaokaSuita565-0871 OsakaJapan
| | - Konstantin Karaghiosoff
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–13, Haus F81377MünchenGermany
| | - Kazushi Mashima
- Graduate School of Engineering ScienceOsaka University1-3 MachikaneyamaToyonaka565-0871 OsakaJapan
- Graduate School of Pharmaceutical SciencesOsaka University1-6 YamadaokaSuita565-0871 OsakaJapan
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–13, Haus F81377MünchenGermany
| |
Collapse
|
6
|
Matsuo BT, Oliveira PHR, Pissinati EF, Vega KB, de Jesus IS, Correia JTM, Paixao M. Photoinduced carbamoylation reactions: unlocking new reactivities towards amide synthesis. Chem Commun (Camb) 2022; 58:8322-8339. [PMID: 35843219 DOI: 10.1039/d2cc02585j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of amide-containing compounds is among the most interesting and challenging topics for the synthetic community. Such relevance is given by their reactive aspects explored in the context of organic synthesis and by the direct application of these compounds as pharmaceuticals and useful materials, and their key roles in biological structures. A simple and straightforward strategy for the amide moiety installation is the use of carbamoyl radicals - this nucleophilic one-electron intermediate is prone to undergo a series of transformations, providing a range of structurally relevant derivatives. In this review, we summarize the latest advances in the field from the perspective of photoinduced protocols. To this end, their synthetic applications are organized accordingly to the nature of the radical precursor (formamides through HAT, 4-substituted-1,4-dihydropyridines, oxamic acids, and N-hydroxyphthalimido esters), the mechanistic aspects also being highlighted. The discussion also includes a recent approach proceeding via photolytic C-S cleavage of dithiocarbamate-carbamoyl intermediates. By exploring fundamental concepts, this material aims to offer an understanding of the topic, which will encourage and facilitate the design of new synthetic strategies applying the carbamoyl radical.
Collapse
Affiliation(s)
- Bianca T Matsuo
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil. .,Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| | - Pedro H R Oliveira
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Emanuele F Pissinati
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Kimberly B Vega
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Iva S de Jesus
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Jose Tiago M Correia
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Márcio Paixao
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
7
|
Preparation of Functionalized Amides using Dicarbamoylzincs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Ashikari Y, Maekawa K, Takumi M, Tomiyasu N, Fujita C, Matsuyama K, Miyamoto R, Bai H, Nagaki A. Flow grams-per-hour production enabled by hierarchical bimodal porous silica gel supported palladium column reactor having low pressure drop. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Flash Electrochemical Approach to Carbocations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Takumi M, Sakaue H, Nagaki A. Flash Electrochemical Approach to Carbocations. Angew Chem Int Ed Engl 2021; 61:e202116177. [PMID: 34931424 DOI: 10.1002/anie.202116177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/07/2022]
Abstract
A novel flow electrochemical reactor that accomplishes electrolysis within a few seconds in a single passage was developed. By using the flow reactor system, the flash electrochemical generation of short-lived carbocations, including oxocarbenium ions, N -acyliminium ions, glycosyl cations, and Ferrier cations was achieved within a few seconds, enabling the subsequent reaction with nucleophiles before their decomposition. Moreover, continuous operation based on the present system enabled the rapid synthesis of pharmaceutical precursors on demand.
Collapse
Affiliation(s)
- Masahiro Takumi
- Graduate School of Engineering, Kyoto University, Department of Synthetic Chemistry and Biological Chemistry, JAPAN
| | - Hodaka Sakaue
- Graduate School of Engineering, Kyoto University, Department of Synthetic Chemistry and Biological Chemistry, JAPAN
| | - Aiichiro Nagaki
- Kyoto University, Graduate School of Engineering, Department of Synthetic Chemistry & Biological Chemistry, Katsura, 615-8510, Kyoto, JAPAN
| |
Collapse
|
11
|
Ashikari Y, Tamaki T, Kawaguchi T, Furusawa M, Yonekura Y, Ishikawa S, Takahashi Y, Aizawa Y, Nagaki A. Switchable Chemoselectivity of Reactive Intermediates Formation and Their Direct Use in A Flow Microreactor. Chemistry 2021; 27:16107-16111. [PMID: 34549843 DOI: 10.1002/chem.202103183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 11/10/2022]
Abstract
A chemoselectivity switchable microflow reaction was developed to generate reactive and unstable intermediates. The switchable chemoselectivity of this reaction enables a selection for one of two different intermediates, an aryllithium or a benzyl lithium, at will from the same starting material. Starting from bromo-substituted styrenes, the aryllithium intermediates were converted to the substituted styrenes, whereas the benzyl lithium intermediates were engaged in an anionic polymerization. These chemoselectivity-switchable reactions can be integrated to produce polymers that cannot be formed during typical polymerization reactions.
Collapse
Affiliation(s)
- Yosuke Ashikari
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Takashi Tamaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Tomoko Kawaguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Mai Furusawa
- TOHO Chemical Industry Co., Ltd., 5-2931, Urago-cho, Yokosuka, Kanagawa, 237-0062, Japan
| | - Yuya Yonekura
- TOHO Chemical Industry Co., Ltd., 5-2931, Urago-cho, Yokosuka, Kanagawa, 237-0062, Japan
| | - Susumu Ishikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Yusuke Takahashi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Yoko Aizawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| |
Collapse
|
12
|
Wong JYF, Thomson CG, Vilela F, Barker G. Flash chemistry enables high productivity metalation-substitution of 5-alkyltetrazoles. Chem Sci 2021; 12:13413-13424. [PMID: 34777760 PMCID: PMC8528014 DOI: 10.1039/d1sc04176b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Tetrazoles play a prominent role in medicinal chemistry due to their role as carboxylate bioisosteres but have largely been overlooked as C-H functionalisation substrates. We herein report the development of a high-yielding and general procedure for the heterobenzylic C-H functionalisation of 5-alkyltetrazoles in up to 97% yield under batch conditions using a metalation/electrophilic trapping strategy. Through the use of thermal imaging to identify potentially unsafe exotherms, a continuous flow procedure using a flash chemistry strategy has also been developed, allowing products to be accessed in up to 95% yield. This enabled an extremely high productivity rate of 141 g h-1 to be achieved on an entry-level flow system.
Collapse
Affiliation(s)
- Jeff Y F Wong
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| | - Christopher G Thomson
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| | - Filipe Vilela
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
- Continuum Flow Lab, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| | - Graeme Barker
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
- Continuum Flow Lab, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| |
Collapse
|
13
|
Kuhwald C, Kirschning A. Matteson Reaction under Flow Conditions: Iterative Homologations of Terpenes. Org Lett 2021; 23:4300-4304. [PMID: 33983747 DOI: 10.1021/acs.orglett.1c01222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Matteson reaction is ideally suited for flow chemistry since it allows iterative homologation of boronate esters. The present study provides accurate data on reaction times of the individual steps of the Matteson reaction, which occurs in less than 10 s in total. The protocol allows terpenes to be (per-)homologated in a controlled manner to yield homo-, bishomo-, and trishomo-terpenols after oxidative workup. The new terpene alcohols are validated with respect to their olfactoric properties.
Collapse
Affiliation(s)
- Conrad Kuhwald
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|
14
|
Tamaki T, Nagaki A. Reaction Selectivity Control in Flash Synthetic Chemistry. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
| |
Collapse
|
15
|
Lee HJ, Yonekura Y, Kim N, Yoshida JI, Kim H. Regioselective Synthesis of α-Functional Stilbenes via Precise Control of Rapid cis- trans Isomerization in Flow. Org Lett 2021; 23:2904-2910. [PMID: 33797929 DOI: 10.1021/acs.orglett.1c00538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rapid cis-trans isomerization of α-anionic stilbene was regioselectively controlled by using flow microreactors, and its reaction with various electrophiles was conducted. The reaction time was precisely controlled within milliseconds to seconds at -50 °C to selectively give the cis- or trans-isomer in high yields. This synthetic method in flow was well-applied to synthesize precursors of commercial drug compound, (E)- and (Z)-tamoxifen with high regioselectivity and productivity.
Collapse
Affiliation(s)
- Hyune-Jea Lee
- Department of Chemistry, College of Science, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Yuya Yonekura
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-08510, Japan
| | - Nayoung Kim
- Department of Chemistry, College of Science, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Jun-Ichi Yoshida
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-08510, Japan.,National Institution of Technology, Suzuka College, Suzuka, Mie 510-0294, Japan
| | - Heejin Kim
- Department of Chemistry, College of Science, Korea University, Seongbuk-gu, Seoul 02841, South Korea.,Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-08510, Japan
| |
Collapse
|
16
|
Knochel P, Harenberg JH, Weidmann N. Continuous-Flow Reactions Mediated by Main Group Organometallics. Synlett 2020. [DOI: 10.1055/s-0040-1706536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractThe generation of reactive organometallic reagents in batch is often complicated by the low thermal stability of these important synthetic intermediates and can require low reaction temperatures and special reaction conditions. However, the use of continuous-flow setups and microreactors has led to a revolution in this field. In this short review, an overview is given of recent advances in this area, with a focus on the main group organometallics of Li, Na, and K.
Collapse
|
17
|
Ashikari Y, Kawaguchi T, Mandai K, Aizawa Y, Nagaki A. A Synthetic Approach to Dimetalated Arenes Using Flow Microreactors and the Switchable Application to Chemoselective Cross-Coupling Reactions. J Am Chem Soc 2020; 142:17039-17047. [PMID: 32859131 DOI: 10.1021/jacs.0c06370] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In spite of their potential utility, the chemistry of dimetalated arenes is still in its infancy because they are extremely difficult to synthesize. We report a novel method of synthesizing arenes bearing a boryl group and a metallic substituent, such as boryl, silyl, stannyl, or zincyl groups, in an integrated flow microreactor based on the generation and reactions of aryllithiums bearing a trialkyl borate moiety. The bimetallic arenes showed a remarkable chemoselectivity in palladium-catalyzed cross-coupling reactions. The selectivity was switched by the selection of the metal species that constitutes the dimetalated arenes as well as appropriate catalysts.
Collapse
Affiliation(s)
- Yosuke Ashikari
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoko Kawaguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kyoko Mandai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoko Aizawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura Nishikyo-ku, Kyoto 615-8510, Japan
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
18
|
Colella M, Tota A, Takahashi Y, Higuma R, Ishikawa S, Degennaro L, Luisi R, Nagaki A. Fluoro‐Substituted Methyllithium Chemistry: External Quenching Method Using Flow Microreactors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003831] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marco Colella
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Arianna Tota
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Yusuke Takahashi
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Ryosuke Higuma
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Susumu Ishikawa
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Leonardo Degennaro
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Renzo Luisi
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Aiichiro Nagaki
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
19
|
Colella M, Tota A, Takahashi Y, Higuma R, Ishikawa S, Degennaro L, Luisi R, Nagaki A. Fluoro‐Substituted Methyllithium Chemistry: External Quenching Method Using Flow Microreactors. Angew Chem Int Ed Engl 2020; 59:10924-10928. [DOI: 10.1002/anie.202003831] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/30/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Marco Colella
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Arianna Tota
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Yusuke Takahashi
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Ryosuke Higuma
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Susumu Ishikawa
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Leonardo Degennaro
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Renzo Luisi
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Aiichiro Nagaki
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
20
|
Synthesis of Biaryls Having a Piperidylmethyl Group Based on Space Integration of Lithiation, Borylation, and Suzuki-Miyaura Coupling. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901729] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Ichinari D, Ashikari Y, Mandai K, Aizawa Y, Yoshida JI, Nagaki A. A Novel Approach to Functionalization of Aryl Azides through the Generation and Reaction of Organolithium Species Bearing Masked Azides in Flow Microreactors. Angew Chem Int Ed Engl 2020; 59:1567-1571. [PMID: 31733010 DOI: 10.1002/anie.201912419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/13/2019] [Indexed: 01/04/2023]
Abstract
A novel straightforward method for aryl azides having functional groups based on generation and reactions of aryllithiums bearing a triazene group from polybromoarenes using flow microreactor systems was achieved. The present approach will serve as a powerful method in organolithium chemistry and open a new possibility in the synthesis of polyfunctional organic azides.
Collapse
Affiliation(s)
- Daisuke Ichinari
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yosuke Ashikari
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kyoko Mandai
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoko Aizawa
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Jun-Ichi Yoshida
- National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka, Mie, 510-0294, Japan
| | - Aiichiro Nagaki
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
22
|
Ichinari D, Ashikari Y, Mandai K, Aizawa Y, Yoshida J, Nagaki A. A Novel Approach to Functionalization of Aryl Azides through the Generation and Reaction of Organolithium Species Bearing Masked Azides in Flow Microreactors. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daisuke Ichinari
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Yosuke Ashikari
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Kyoko Mandai
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoko Aizawa
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Jun‐ichi Yoshida
- National Institute of Technology Suzuka College Shiroko-cho, Suzuka Mie 510-0294 Japan
| | - Aiichiro Nagaki
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
23
|
Ashikari Y, Saito K, Nokami T, Yoshida JI, Nagaki A. Oxo-Thiolation of Cationically Polymerizable Alkenes Using Flow Microreactors. Chemistry 2019; 25:15239-15243. [PMID: 31414708 DOI: 10.1002/chem.201903426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/14/2019] [Indexed: 01/11/2023]
Abstract
The present study describes the cationic oxo-thiolation of polymerizable alkenes by using highly reactive cationic species generated by anodic oxidation. These highly reactive cations were able to activate alkenes before their polymerization. Fast mixing in flow microreactors effectively controlled chemoselectivity, enabling higher reaction temperatures.
Collapse
Affiliation(s)
- Yosuke Ashikari
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kodai Saito
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology and Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori, 680-8552, Japan
| | - Jun-Ichi Yoshida
- National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka, Mie, 510-0294, Japan
| | - Aiichiro Nagaki
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
24
|
Colella M, Nagaki A, Luisi R. Flow Technology for the Genesis and Use of (Highly) Reactive Organometallic Reagents. Chemistry 2019; 26:19-32. [PMID: 31498924 DOI: 10.1002/chem.201903353] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/07/2019] [Indexed: 12/25/2022]
Abstract
In the field of organic synthesis, the advent of flow chemistry and flow microreactor technology represented a tremendous novelty in the way of thinking and performing chemical reactions, opening the doors to poorly explored or even impossible transformations using batch methods. In this Concept article, we would like to highlight the impact of flow chemistry for exploiting highly reactive organometallic reagents, and how, alongside the well-known advantages concerning safety, scalability, and productivity, flow chemistry makes possible processes that are impossible to control by using the traditional batch approach.
Collapse
Affiliation(s)
- Marco Colella
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab, University of Bari "A. Moro", Via E. Orabona 4, Bari, 70125, Italy
| | - Aichiiro Nagaki
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Renzo Luisi
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab, University of Bari "A. Moro", Via E. Orabona 4, Bari, 70125, Italy
| |
Collapse
|
25
|
Nagaki A, Yamashita H, Tsuchihashi Y, Hirose K, Takumi M, Yoshida JI. Generation and Reaction of Functional Alkyllithiums by Using Microreactors and Their Application to Heterotelechelic Polymer Synthesis. Chemistry 2019; 25:13719-13727. [PMID: 31400025 DOI: 10.1002/chem.201902867] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/04/2019] [Indexed: 12/29/2022]
Abstract
Flow microreactors enabled the successful generation of various functional alkyllithiums containing electrophilic functional groups, as well as the use of these alkyllithiums in subsequent reactions. The high reactivity of these series of reactions could be achieved by the extremely accurate and selective control of residence time. Moreover, integrated flow microreactor systems could be used to successfully synthesize heterotelechelic polymers with two functionalities, one at each end, via a process involving controlled anionic polymerization initiated by functional alkyllithium compounds, followed by trapping reactions with difunctional electrophiles.
Collapse
Affiliation(s)
- Aiichiro Nagaki
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Hiroki Yamashita
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuta Tsuchihashi
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Katsuyuki Hirose
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masahiro Takumi
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Jun-Ichi Yoshida
- National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka, Mie, 510-0294, Japan
| |
Collapse
|
26
|
Wong JYF, Tobin JM, Vilela F, Barker G. Batch Versus Flow Lithiation–Substitution of 1,3,4‐Oxadiazoles: Exploitation of Unstable Intermediates Using Flow Chemistry. Chemistry 2019; 25:12439-12445. [DOI: 10.1002/chem.201902917] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/26/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jeff Y. F. Wong
- Institute of Chemical SciencesHeriot-Watt University Riccarton Edinburgh UK
| | - John M. Tobin
- Institute of Chemical SciencesHeriot-Watt University Riccarton Edinburgh UK
| | - Filipe Vilela
- Institute of Chemical SciencesHeriot-Watt University Riccarton Edinburgh UK
| | - Graeme Barker
- Institute of Chemical SciencesHeriot-Watt University Riccarton Edinburgh UK
| |
Collapse
|
27
|
Nakahara Y, Furusawa M, Endo Y, Shimazaki T, Ohtsuka K, Takahashi Y, Jiang Y, Nagaki A. Practical Continuous‐Flow Controlled/Living Anionic Polymerization. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuichi Nakahara
- Kyoto University Micro Chemical Production Study Consortium in Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
- Ajinomoto Co., Inc. New Frontiers Research Group, Frontier Research Labs., Institute for Innovation 1-1 Suzuki-cho, Kawasaki-ku 210-8681 Kanagawa Japan
| | - Mai Furusawa
- Kyoto University Micro Chemical Production Study Consortium in Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
- TOHO Chemical Industry Co., Ltd. Oppama Research Laboratory 5-2931, Urago-cho, Yokosuka-shi 237-0062 Kanagawa Japan
| | - Yuta Endo
- Kyoto University Micro Chemical Production Study Consortium in Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
- Ajinomoto Co., Inc. Isolation And Purification Group, Process Development Section, Process Development Labs, Research Institute for Bioscience Products and Fine Chemicals 1-1 Suzuki-cho, Kawasakiku 210-8681 Kanagawa Japan
| | - Toshiya Shimazaki
- Kyoto University Micro Chemical Production Study Consortium in Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
- Japan, Tacmina Co. 2-2-14 Awajimachi, Chuo-ku 541-0047 Osaka Japan
| | - Keita Ohtsuka
- Kyoto University Micro Chemical Production Study Consortium in Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
- Sankoh Seiki Kougyou Co., Ltd. 2-7-2, Keihinjima, Ota-ku 143-0003 Tokyo Japan
| | - Yusuke Takahashi
- Kyoto University Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Nishikyo-ku 615-8510 Kyoto Japan
| | - Yiyuan Jiang
- Kyoto University Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Nishikyo-ku 615-8510 Kyoto Japan
| | - Aiichiro Nagaki
- Kyoto University Micro Chemical Production Study Consortium in Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
- Kyoto University Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Nishikyo-ku 615-8510 Kyoto Japan
| |
Collapse
|
28
|
Nagaki A. Recent topics of functionalized organolithiums using flow microreactor chemistry. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Xu F, Wang Y, Xun X, Huang Y, Jin Z, Song B, Wu J. Diverse Oxidative C(sp 2)-N Bond Cleavages of Aromatic Fused Imidazoles for Synthesis of α-Ketoamides and N-(pyridin-2-yl)arylamides. J Org Chem 2019; 84:8411-8422. [PMID: 30977657 DOI: 10.1021/acs.joc.9b00208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An efficient and chemoselective C(sp2)-N bond cleavage of aromatic imidazo[1,2- a]pyridine molecules is developed. A broad scope of amide compounds such as α-ketoamides and N-(pyridin-2-yl)arylamides are afforded as the final products in up to quantitative yields. Diverse C-N bond cleavages are controlled by the oxidative species used in this transformation, with various amide products afforded in a chemoselective fashion. A preliminary study indicated that some α-ketoamides exhibit anti-Tobacco Mosaic Virus activity for potential use in plant protection.
Collapse
Affiliation(s)
- Fangzhou Xu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Yanyan Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Xiwei Xun
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Yun Huang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Baoan Song
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| | - Jian Wu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals , Guizhou University , Huaxi District, Guiyang 550025 , China
| |
Collapse
|
30
|
Nagaki A, Jiang Y, Yamashita H, Takabayashi N, Takahashi Y, Yoshida JI. Monolithiation of 5,5′‐Dibromo‐2,2′‐bithiophene Using Flow Microreactors: Mechanistic Implications and Synthetic Applications. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Aiichiro Nagaki
- Kyoto University Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Nishikyo-ku 615-8510 Kyoto Japan
| | - Yiyuan Jiang
- Kyoto University Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Nishikyo-ku 615-8510 Kyoto Japan
| | - Hiroki Yamashita
- Kyoto University Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Nishikyo-ku 615-8510 Kyoto Japan
| | - Naoshi Takabayashi
- Kyoto University Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Nishikyo-ku 615-8510 Kyoto Japan
| | - Yusuke Takahashi
- Kyoto University Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Nishikyo-ku 615-8510 Kyoto Japan
| | - Jun-ichi Yoshida
- National Institute of Technology Suzuka College Shiroko-cho 510-0294 Suzuka, Mie Japan
| |
Collapse
|
31
|
Nagaki A, Sasatsuki K, Ishiuchi S, Miuchi N, Takumi M, Yoshida JI. Synthesis of Functionalized Ketones from Acid Chlorides and Organolithiums by Extremely Fast Micromixing. Chemistry 2019; 25:4946-4950. [PMID: 30775815 DOI: 10.1002/chem.201900743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Indexed: 01/03/2023]
Abstract
Synthesis of ketones containing various functional groups from acid chlorides bearing electrophilic functional groups and functionalized organolithiums was achieved using a flow microreactor system. Extremely fast mixing is important for high chemoselectivity.
Collapse
Affiliation(s)
- Aiichiro Nagaki
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kengo Sasatsuki
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Satoshi Ishiuchi
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Nobuyuki Miuchi
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masahiro Takumi
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Jun-Ichi Yoshida
- National Institute of Technology, Suzuka College, Emeritus Professor, Kyoto University, Shiroko-cho, Suzuka, Mie, 510-0294, Japan
| |
Collapse
|
32
|
Suzuki–Miyaura Coupling Using Monolithic Pd Reactors and Scaling-Up by Series Connection of the Reactors. Catalysts 2019. [DOI: 10.3390/catal9030300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The space integration of the lithiation of aryl halides, the borylation of aryllithiums, and Suzuki–Miyaura coupling using a Pd catalyst supported by a polymer monolith flow reactor without using an intentionally added base was achieved. To scale up the process, a series connection of the monolith Pd reactor was examined. To suppress the increase in the pressure drop caused by the series connection, a monolith reactor having larger pore sizes was developed by varying the temperature of the monolith preparation. The monolithic Pd reactor having larger pore sizes enabled Suzuki–Miyaura coupling at a higher flow rate because of a lower pressure drop and, therefore, an increase in productivity. The present study indicates that series connection of the reactors with a higher flow rate serves as a good method for increasing the productivity without decreasing the yields.
Collapse
|
33
|
Nagaki A, Yamashita H, Hirose K, Tsuchihashi Y, Yoshida JI. Alkyllithium Compounds Bearing Electrophilic Functional Groups: A Flash Chemistry Approach. Angew Chem Int Ed Engl 2019; 58:4027-4030. [PMID: 30690827 DOI: 10.1002/anie.201814088] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 11/08/2022]
Abstract
Flash chemistry based on flow microreactor systems allowed alkyllithiums bearing electrophilic functional groups to be successfully generated and used for subsequent reactions. The series of reactions with high reactivity was achieved by extremely accurate control over residence time in a controlled and selective manner.
Collapse
Affiliation(s)
- Aiichiro Nagaki
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Hiroki Yamashita
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Katsuyuki Hirose
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuta Tsuchihashi
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Jun-Ichi Yoshida
- National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka, Mie, 510-0294, Japan
| |
Collapse
|
34
|
Bogdan AR, Dombrowski AW. Emerging Trends in Flow Chemistry and Applications to the Pharmaceutical Industry. J Med Chem 2019; 62:6422-6468. [DOI: 10.1021/acs.jmedchem.8b01760] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrew R. Bogdan
- Discovery Chemistry and Technology, AbbVie, Inc. 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Amanda W. Dombrowski
- Discovery Chemistry and Technology, AbbVie, Inc. 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
35
|
Nagaki A, Yamashita H, Hirose K, Tsuchihashi Y, Yoshida J. Alkyllithium Compounds Bearing Electrophilic Functional Groups: A Flash Chemistry Approach. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aiichiro Nagaki
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Hiroki Yamashita
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Katsuyuki Hirose
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Yuta Tsuchihashi
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Jun‐ichi Yoshida
- National Institute of TechnologySuzuka College Shiroko-cho, Suzuka Mie 510-0294 Japan
| |
Collapse
|
36
|
Endo Y, Furusawa M, Shimazaki T, Takahashi Y, Nakahara Y, Nagaki A. Molecular Weight Distribution of Polymers Produced by Anionic Polymerization Enables Mixability Evaluation. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuta Endo
- Micro Chemical Production Study Consortium in Kyoto University, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- Isolation And Purification Group, Process Development Section, Process Development Labs, Research Institute For Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kanagawa 210-8681, Japan
| | - Mai Furusawa
- Micro Chemical Production Study Consortium in Kyoto University, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- Oppama Research Laboratory, Toho Chemical Industry Co., Ltd., 5-2931, Urago-cho, Yokosuka-shi, Kanagawa 237-0062, Japan
| | - Toshiya Shimazaki
- Micro Chemical Production Study Consortium in Kyoto University, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- Tacmina Co., 2-2-14 Awajimachi, Chuo-ku, Osaka 541-0047, Japan
| | - Yusuke Takahashi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuichi Nakahara
- Micro Chemical Production Study Consortium in Kyoto University, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- New Frontiers Research Group, Frontier Research Labs., Institute For Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kanagawa 210-8681, Japan
| | - Aiichiro Nagaki
- Micro Chemical Production Study Consortium in Kyoto University, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
37
|
Kolekar YA, Bhanage BM. Pd/C-catalyzed synthesis of oxamates by oxidative cross double carbonylation of alcohols and tertiary amines through C–N bond cleavage. NEW J CHEM 2019. [DOI: 10.1039/c9nj04156g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Palladium-catalyzed oxidative cross double carbonylation reaction between tertiary amines and alcohols using oxidant O2 and KI as the additive affords oxamates. Oxamate are as a intermediate in biological active compound and glycol synthesis.
Collapse
Affiliation(s)
- Yuvraj A. Kolekar
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai-400019
- India
| | | |
Collapse
|
38
|
Weidmann N, Ketels M, Knochel P. Natriierung von Aromaten und Heteroaromaten im kontinuierlichen Durchfluss. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Niels Weidmann
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstraße 5–13, Haus F 81377 München Deutschland
| | - Marthe Ketels
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstraße 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstraße 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
39
|
Weidmann N, Ketels M, Knochel P. Sodiation of Arenes and Heteroarenes in Continuous Flow. Angew Chem Int Ed Engl 2018; 57:10748-10751. [PMID: 29873427 DOI: 10.1002/anie.201803961] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The first sodiations of (hetero)arenes in continuous flow using NaDA (sodium diisopropylamide) in Me2 EtN are reported. This flow procedure enables sodiation of functionalized arenes and heteroarenes that decompose under batch-sodiation conditions. The resulting sodiated (hetero)arenes react instantly with various electrophiles, such as ketones, aldehydes, isocyanates, alkyl bromides, and disulfides, affording polyfunctionalized (hetero)arenes in high yields. Scale-up is possible without further optimization.
Collapse
Affiliation(s)
- Niels Weidmann
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Marthe Ketels
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Paul Knochel
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| |
Collapse
|
40
|
Kim H, Yonekura Y, Yoshida JI. A Catalyst-Free Amination of Functional Organolithium Reagents by Flow Chemistry. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Heejin Kim
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University; Nishikyo-ku Kyoto 615-8510 Japan
| | - Yuya Yonekura
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University; Nishikyo-ku Kyoto 615-8510 Japan
| | - Jun-ichi Yoshida
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University; Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
41
|
Kim H, Yonekura Y, Yoshida JI. A Catalyst-Free Amination of Functional Organolithium Reagents by Flow Chemistry. Angew Chem Int Ed Engl 2018; 57:4063-4066. [DOI: 10.1002/anie.201713031] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/04/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Heejin Kim
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University; Nishikyo-ku Kyoto 615-8510 Japan
| | - Yuya Yonekura
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University; Nishikyo-ku Kyoto 615-8510 Japan
| | - Jun-ichi Yoshida
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University; Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
42
|
Continuous flow reaction system for the synthesis of 2,2,2-trichloroacetophenone derivatives and its application. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Nagaki A, Yamashita H, Takahashi Y, Ishiuchi S, Imai K, Yoshida JI. Selective Mono Addition of Aryllithiums to Dialdehydes by Micromixing. CHEM LETT 2018. [DOI: 10.1246/cl.170899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroki Yamashita
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yusuke Takahashi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Satoshi Ishiuchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keita Imai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jun-ichi Yoshida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
44
|
Kim H, Yin Z, Sakurai H, Yoshida JI. Sequential double C–H functionalization of 2,5-norbornadiene in flow. REACT CHEM ENG 2018. [DOI: 10.1039/c8re00131f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An integrated one-flow synthesis of 2-bromo-2,5-norbornadienes bearing a functional group at the 3-position was achieved in 3 min.
Collapse
Affiliation(s)
- Heejin Kim
- Department of Synthetic Chemistry and Biological Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Zuoyufan Yin
- Division of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Hidehiro Sakurai
- Division of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Jun-ichi Yoshida
- Department of Synthetic Chemistry and Biological Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
45
|
Matsumoto H, Seto H, Akiyoshi T, Shibuya M, Hoshino Y, Miura Y. Macroporous Gel with a Permeable Reaction Platform for Catalytic Flow Synthesis. ACS OMEGA 2017; 2:8796-8802. [PMID: 31457409 PMCID: PMC6645574 DOI: 10.1021/acsomega.7b00909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/26/2017] [Indexed: 05/29/2023]
Abstract
We mimic a living system wherein target molecules permeate through capillary and cells for chemical transformation. A monolithic porous gel (MPG) was easily prepared by copolymerization of gel matrix, tertiary amine, and cross-linking monomer in one-step synthesis. Interconnected capillaries existed in the MPG, enabling flow application with high permeability. Because the capillaries were constituted of polymer gel, Pd(0)-loaded MPG provided another permeable pathway to substrates in a gel network, contributing to its much high turnover number after 30 days of use, compared with that of Pd(0)-loaded inorganic supports. Interestingly, the gel network size of the MPG influenced the catalytic frequency. Diffusivities of the substrates and product in the gel networks increased with increasing network sizes in relation to catalytic activities. The MPG strategy provides a universal reactor design in conjunction with a practical process and precisely controlled reaction platform.
Collapse
Affiliation(s)
- Hikaru Matsumoto
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hirokazu Seto
- Department
of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Takanori Akiyoshi
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Makoto Shibuya
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiko Miura
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
46
|
Rodríguez-Fernández M, Yan X, Collados JF, White PB, Harutyunyan SR. Lewis Acid Enabled Copper-Catalyzed Asymmetric Synthesis of Chiral β-Substituted Amides. J Am Chem Soc 2017; 139:14224-14231. [PMID: 28960071 PMCID: PMC5639465 DOI: 10.1021/jacs.7b07344] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Here we report that readily available
silyl- and boron-based Lewis
acids in combination with chiral copper catalysts are able to overcome
the reactivity issues of unactivated enamides, known as the least
reactive carboxylic acid derivatives, toward alkylation with organomagnesium
reagents. Allowing unequaled chemo-reactivity and stereocontrol in
catalytic asymmetric conjugate addition to enamides, the method is
distinguished by its unprecedented reaction scope, allowing even the
most challenging and synthetically important methylations to be accomplished
with good yields and excellent enantioselectivities. This catalytic
protocol tolerates a broad temperature range (−78 °C to
ambient) and scale up (10 g), while the chiral catalyst can be reused
without affecting overall efficiency. Mechanistic studies revealed
the fate of the Lewis acid in each elementary step of the copper-catalyzed
conjugate addition of Grignard reagents to enamides, allowing us to
identify the most likely catalytic cycle of the reaction.
Collapse
Affiliation(s)
- Mamen Rodríguez-Fernández
- Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Xingchen Yan
- Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Juan F Collados
- Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Paul B White
- Institute for Molecules and Materials, Radboud University , Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
47
|
Ganiek MA, Becker MR, Berionni G, Zipse H, Knochel P. Barbier Continuous Flow Preparation and Reactions of Carbamoyllithiums for Nucleophilic Amidation. Chemistry 2017; 23:10280-10284. [PMID: 28590518 DOI: 10.1002/chem.201702593] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 11/05/2022]
Abstract
An ambient temperature continuous flow method for nucleophilic amidation and thioamidation is described. Deprotonation of formamides by lithium diisopropylamine (LDA) affords carbamoyllithium intermediates that are quenched in situ with various electrophiles such as ketones, allyl bromides, Weinreb and morpholino amides. The nature of the reactive lithium intermediates and the thermodynamics of the metalation were further investigated by ab initio calculations and kinetic experiments.
Collapse
Affiliation(s)
- Maximilian A Ganiek
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Matthias R Becker
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Guillaume Berionni
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Hendrik Zipse
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Paul Knochel
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| |
Collapse
|
48
|
Li H, Sheeran JW, Clausen AM, Fang YQ, Bio MM, Bader S. Flow Asymmetric Propargylation: Development of Continuous Processes for the Preparation of a Chiral β-Amino Alcohol. Angew Chem Int Ed Engl 2017; 56:9425-9429. [DOI: 10.1002/anie.201704882] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Hui Li
- Snapdragon Chemistry Inc.; 85 Bolton St. Cambridge MA 02140 USA
| | | | | | - Yuan-Qing Fang
- Snapdragon Chemistry Inc.; 85 Bolton St. Cambridge MA 02140 USA
| | - Matthew M. Bio
- Snapdragon Chemistry Inc.; 85 Bolton St. Cambridge MA 02140 USA
| | - Scott Bader
- Chemical R&D; Pfizer Worldwide R&D; Eastern Point Road, MS 8118D-4047 Groton CT 06340 USA
| |
Collapse
|
49
|
Li H, Sheeran JW, Clausen AM, Fang YQ, Bio MM, Bader S. Flow Asymmetric Propargylation: Development of Continuous Processes for the Preparation of a Chiral β-Amino Alcohol. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hui Li
- Snapdragon Chemistry Inc.; 85 Bolton St. Cambridge MA 02140 USA
| | | | | | - Yuan-Qing Fang
- Snapdragon Chemistry Inc.; 85 Bolton St. Cambridge MA 02140 USA
| | - Matthew M. Bio
- Snapdragon Chemistry Inc.; 85 Bolton St. Cambridge MA 02140 USA
| | - Scott Bader
- Chemical R&D; Pfizer Worldwide R&D; Eastern Point Road, MS 8118D-4047 Groton CT 06340 USA
| |
Collapse
|
50
|
Lin H, Dai C, Jamison TF, Jensen KF. A Rapid Total Synthesis of Ciprofloxacin Hydrochloride in Continuous Flow. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703812] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hongkun Lin
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Chunhui Dai
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Timothy F. Jamison
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Klavs F. Jensen
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|