1
|
Guan Q, Ding F, Zhang C. Highly Selective Boron-Wittig Reaction: A Practical Method to Synthesize Trans-Aryl Alkenes. Chemistry 2024; 30:e202401801. [PMID: 39072812 DOI: 10.1002/chem.202401801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Olefins play an essential role in synthetic chemistry, serving not only as important synthons but also as key functional groups in numerous bio-active molecules. Consequently, there has been considerable interest in the development of more powerful methods for olefins. While the Wittig reaction stands as a prominent choice for olefin synthesis due to its simplicity and the ready availability of raw materials, its limitation lies in the challenge of controlling cis-trans selectivity, hampering its broader application. In this study, a novel Boron-Wittig reaction has been developed utilizing gem-bis(boryl)alkanes and aldehydes as starting materials. This method enables creating favourable intermediates, which possess less steric hindrance, and leading to trans-olefins via intramolecular O-B bonds elimination. Notably, synthesis studies have validated its good efficacy in modifying bioactive molecules and synthesizing drug molecules with great trans-selectivity. Furthermore, the reaction mechanism was elucidated based on intermediate trapping experiments, isotope labelling studies, and kinetic analyses.
Collapse
Affiliation(s)
- Qitao Guan
- Institute of Molecular Plus, Department of Chemistry, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Fupan Ding
- Institute of Molecular Plus, Department of Chemistry, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road 92, Tianjin, 300072, China
- Tianjin Key Laboratory of Innovative Drugs Targeting the Central Nervous System, Lanyuan Road 5, Tianjin, 300384, China
| |
Collapse
|
2
|
Wei Y, Xie XY, Liu J, Liu X, Zhang B, Chen XY, Li SJ, Lan Y, Hong K. Palladium-Catalyzed Cascade Heck Coupling and Allylboration of Iododiboron Compounds via Diboryl Radicals. Angew Chem Int Ed Engl 2024; 63:e202401050. [PMID: 38444397 DOI: 10.1002/anie.202401050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
Geminal bis(boronates) are versatile synthetic building blocks in organic chemistry. The fact that they predominantly serve as nucleophiles in the previous reports, however, has restrained their synthetic potential. Herein we disclose the ambiphilic reactivity of α-halogenated geminal bis(boronates), of which the first catalytic utilization was accomplished by merging a formal Heck cross-coupling with a highly diastereoselective allylboration of aldehydes or imines, providing a new avenue for rapid assembly of polyfunctionalized boron-containing compounds. We demonstrated that this cascade reaction is highly efficient and compatible with various functional groups, and a wide range of heterocycles. In contrast to a classical Pd(0/II) scenario, mechanistic experiments and DFT calculations have provided strong evidence for a catalytic cycle involving Pd(I)/diboryl carbon radical intermediates.
Collapse
Affiliation(s)
- Yi Wei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Xiao-Yu Xie
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Jiabin Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoxiao Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Bo Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Xin-Yi Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Kai Hong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
3
|
Fernández E. α-Boryl Carbanions: The Influence of Geminal Heteroatoms in C-C Bond Formation. CHEM REC 2024; 24:e202300349. [PMID: 38308376 DOI: 10.1002/tcr.202300349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/12/2024] [Indexed: 02/04/2024]
Abstract
The wide applications of alpha-boryl carbanions in selective coupling with organohalides, imines/carbonyls and conjugated unsaturated substrates has become an interesting tool for organic synthesis. Strategically, the inclusion of heteroatoms, such as Si, S, N, F, Cl, Br and I in the alpha position opens a new venue towards multifunctionalities in molecular design. Here, a conceptual and practical view on powerful carbanions, containing α-silicoboron, α-thioboron, α-haloboron and α-aminoboron is given, as well as a prespective on their efficient application for selective electrophilic trapping.
Collapse
Affiliation(s)
- Elena Fernández
- Dept. Química Física i Inorgànica, University Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
4
|
Li X, Chen J, Song Q. Recent progress in the catalytic enantioselective reactions of 1,1-diborylalkanes. Chem Commun (Camb) 2024; 60:2462-2471. [PMID: 38328817 DOI: 10.1039/d3cc06165e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Organoboron compounds are environmentally benign, have low toxicity and are versatile reagents that are extensively employed in organic synthesis, especially in the realm of asymmetric synthesis. The last several decades have witnessed a tremendous outburst of asymmetric reactions based on various organoboron compounds. Among them, 1,1-diborylalkanes, which contain two boryl groups at the same sp3-carbon atom, are regarded as some of the most versatile and powerful reagents for their unique structure and unusual reaction mode in organic synthesis. Moreover, owing to the stabilizing effect of the empty p-orbital of the neighboring boron atoms and the inherent good steric-hindrance, 1,1-diborylalkanes often exhibit extraordinary reactivity and stereoselectivity compared to other kinds of organoboron compounds in asymmetric synthesis. Herein, the present highlight summarizes and discusses the recent progress achieved in the catalytic enantioselective reactions of 1,1-diborylalkanes during the past decade.
Collapse
Affiliation(s)
- Xin Li
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen 361021, Fujian, China
| | - Jinglong Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| |
Collapse
|
5
|
Baumann JE, Chung CP, Lalic G. Stereoselective Copper-Catalyzed Olefination of Imines. Angew Chem Int Ed Engl 2024; 63:e202316521. [PMID: 38100274 PMCID: PMC10977923 DOI: 10.1002/anie.202316521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Alkenes are an important class of organic molecules found among synthetic intermediates and bioactive compounds. They are commonly synthesized through stoichiometric Wittig-type olefination of carbonyls and imines, using ylides or their equivalents. Despite the importance of Wittig-type olefination reactions, their catalytic variants remain underdeveloped. We explored the use of transition metal catalysis to form ylide equivalents from readily available starting materials. Our investigation led to a new copper-catalyzed olefination of imines with alkenyl boronate esters as coupling partners. We identified a heterobimetallic complex, obtained by hydrocupration of the alkenyl boronate esters, as the key catalytic intermediate that serves as an ylide equivalent. The high E-selectivity observed in the reaction is due to the stereoselective addition of this intermediate to an imine, followed by stereospecific anti-elimination.
Collapse
Affiliation(s)
- James E Baumann
- Department of Chemistry, University of Washington, 109 Bagley Hall, 98195, Seattle, WA, USA
| | - Crystal P Chung
- Department of Chemistry, University of Washington, 109 Bagley Hall, 98195, Seattle, WA, USA
| | - Gojko Lalic
- Department of Chemistry, University of Washington, 109 Bagley Hall, 98195, Seattle, WA, USA
| |
Collapse
|
6
|
Jiang XM, Ji CL, Ge JF, Zhao JH, Zhu XY, Gao DW. Asymmetric Synthesis of Chiral 1,2-Bis(Boronic) Esters Featuring Acyclic, Non-Adjacent 1,3-Stereocenters. Angew Chem Int Ed Engl 2023:e202318441. [PMID: 38098269 DOI: 10.1002/anie.202318441] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 12/30/2023]
Abstract
The construction of acyclic, non-adjacent 1,3-stereogenic centers, prevalent motifs in drugs and bioactive molecules, has been a long-standing synthetic challenge due to acyclic nucleophiles being distant from the chiral environment. In this study, we successfully synthesized highly valuable 1,2-bis(boronic) esters featuring acyclic and nonadjacent 1,3-stereocenters. Notably, this reaction selectively produces migratory coupling products rather than alternative deborylative allylation or direct allylation byproducts. This approach introduces a new activation mode for selective transformations of gem-diborylmethane in asymmetric catalysis. Additionally, we found that other gem-diborylalkanes, previously challenging due to steric hindrance, also successfully participated in this reaction. The incorporation of 1,2-bis(boryl)alkenes facilitated the diversification of the alkenyl and two boron moieties in our target compounds, thereby enabling access to a broad array of versatile molecules. DFT calculations were performed to elucidate the reaction mechanism and shed light on the factors responsible for the observed excellent enantioselectivity and diastereoselectivity. These were determined to arise from ligand-substrate steric repulsions in the syn-addition transition state.
Collapse
Affiliation(s)
- Xia-Min Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Chong-Lei Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jian-Fei Ge
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jia-Hui Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Xin-Yuan Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - De-Wei Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
7
|
Wheatley E, Zanghi JM, Mason MM, Meek SJ. A Catalytic Method for the Enantioselective Synthesis of α-Quaternary Ketones, α-Ketoesters and Aldehydes. Angew Chem Int Ed Engl 2023; 62:e202215855. [PMID: 36595272 PMCID: PMC10121843 DOI: 10.1002/anie.202215855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
A practical method for the efficient and enantioselective preparation of versatile ketones and aldehydes that contain an α-quaternary stereocenter is described. Reactions utilize simple carboxylic acid or ester starting materials, a monodentate chiral phosphine, and afford a variety of aryl, alkenyl, alkynyl, and alkyl-substituted ketone and aldehyde products in 25-94 % yield and 90 : 10 to >99 : 1 enantiomeric ratio. Reactions proceed by acyl substitution with in situ formed chiral allylic nucleophiles, and display selectivity and conversion dependence on a protic additive. The utility of the approach is demonstrated through several product transformations.
Collapse
Affiliation(s)
- Emilie Wheatley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Joseph M Zanghi
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Miles M Mason
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Simon J Meek
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
8
|
Wang B, Zhang X, Cao Y, Zou L, Qi X, Lu Q. Electrooxidative Activation of B-B Bond in B 2 cat 2 : Access to gem-Diborylalkanes via Paired Electrolysis. Angew Chem Int Ed Engl 2023; 62:e202218179. [PMID: 36722684 DOI: 10.1002/anie.202218179] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
This report describes the unprecedented electrooxidation of a solvent (e.g., DMF)-ligated B2 cat2 complex, whereby a solvent-stabilized boryl radical is formed via quasi-homolytic cleavage of the B-B bond in a DMF-ligated B2 cat2 radical cation. Cyclic voltammetry and density functional theory provide evidence to support this novel B-B bond activation strategy. Furthermore, a strategy for the electrochemical gem-diborylation of gem-bromides via paired electrolysis is developed for the first time, affording a range of versatile gem-diborylalkanes, which are widely used in synthetic society. Notably, this reaction approach is scalable, transition-metal-free, and requires no external activator.
Collapse
Affiliation(s)
- Bingbing Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiangyu Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yangmin Cao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Long Zou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
9
|
Fang T, Xu L, Qin Y, Jiang N, Liu C. A Novel Synthesis of Halogenated gem-Diboron Reagents. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
10
|
Xu N, Liang H, Morken JP. Copper-Catalyzed Stereospecific Transformations of Alkylboronic Esters. J Am Chem Soc 2022; 144:11546-11552. [PMID: 35735669 PMCID: PMC10436227 DOI: 10.1021/jacs.2c04037] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Copper-catalyzed stereospecific cross-couplings of boronic esters are reported. Boron "ate" complexes derived from pinacol boronic esters and tert-butyl lithium undergo stereospecific transmetalation to copper cyanide, followed by coupling with alkynyl bromides, allyl halides, propargylic halides, β-haloenones, hydroxylamine esters, and acyl chlorides. Through this simple transformation, commercially available inexpensive compounds can be employed to convert primary and secondary alkylboronic esters to a wide array of synthetically useful compounds.
Collapse
Affiliation(s)
- Ningxin Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Hao Liang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P. Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
11
|
Zhou Y, Xiong T, Zhou LY, Li HY, Xiao YC, Chen FE. Diastereo- and Enantioselective Synthesis of Borylated 3-Hydroxyoxindoles by Addition of gem-Diborylalkanes to Isatins. Org Lett 2022; 24:791-796. [PMID: 35005977 DOI: 10.1021/acs.orglett.1c04380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The catalytic asymmetric synthesis of borylated 3-hydroxyoxindoles by addition of gem-diborylalkanes to isatins is disclosed. Chiral 3-hydroxyoxindoles bearing two contiguous stereogenic centers were produced in up to >20:1 dr and 99% ee. The synthetic utility of the corresponding products is presented through several transformations of the boryl moiety. This report provides an efficient strategy to incorporate a boryl functional group toward the synthesis of 3-hydroxyoxindoles.
Collapse
Affiliation(s)
- Yuan Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tong Xiong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Li-Yan Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hong-Yan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - You-Cai Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fen-Er Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Grygorenko OO, Moskvina VS, Kleban I, Hryshchyk OV. Synthesis of saturated and partially saturated heterocyclic boronic derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Paul S, Das KK, Aich D, Manna S, Panda S. Recent developments in the asymmetric synthesis and functionalization of symmetrical and unsymmetrical gem-diborylalkanes. Org Chem Front 2022. [DOI: 10.1039/d1qo01300a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
gem-Diborylalkanes are an important class of organoboron compounds as they function as a key building block in organic synthesis. This review summarizes recent developments of the enantioselective synthesis of gem-diborylalkanes and application in asymmetric synthesis.
Collapse
Affiliation(s)
- Swagata Paul
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Debasis Aich
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Samir Manna
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Santanu Panda
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
14
|
Wisofsky GK, Rojales K, Su X, Bartholome TA, Molino A, Kaur A, Wilson DJD, Dutton JL, Martin CD. Ligation of Boratabenzene and 9-Borataphenanthrene to Coinage Metals. Inorg Chem 2021; 60:18981-18989. [PMID: 34879201 DOI: 10.1021/acs.inorgchem.1c02800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactions of boratabenzene and borataphenanthrene anions with group 11 Ph3PMCl reagents furnished η2 coordination complexes, with the exception of the copper boratabenzene species that adopted an η6 mode. The binding of arene ligands to copper in an η6 manner is rare, and altering the ancillary ligand on copper to an N-heterocyclic carbene switched the binding of the boratabenzene to η2, indicating that such ligands are capable of vacating coordination sites. The η2 coordination complexes bind side-on, akin to olefins, via a borataalkene unit, although with the carbon atom much more proximal to the metal center than boron.
Collapse
Affiliation(s)
- Greta K Wisofsky
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Katherine Rojales
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Xiaojun Su
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Tyler A Bartholome
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia 3086
| | - Aishvaryadeep Kaur
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia 3086
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia 3086
| | - Jason L Dutton
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia 3086
| | - Caleb D Martin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
15
|
Hu J, Ferger M, Shi Z, Marder TB. Recent advances in asymmetric borylation by transition metal catalysis. Chem Soc Rev 2021; 50:13129-13188. [PMID: 34709239 DOI: 10.1039/d0cs00843e] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral organoboronates have played a critical role in organic chemistry and in the development of materials science and pharmaceuticals. Much effort has been devoted to exploring synthetic methodologies for the preparation of these compounds during the past few decades. Among the known methods, asymmetric catalysis has emerged as a practical and highly efficient strategy for their straightforward preparation, and recent years have witnessed remarkable advances in this respect. Approaches such as asymmetric borylative addition, asymmetric allylic borylation and stereospecific cross-coupling borylation, have been extensively explored and well established employing transition-metal catalysis with a chiral ligand. This review provides a comprehensive overview of transition metal-catalysed asymmetric borylation processes to construct carbon-boron, carbon-carbon, and other carbon-heteroatom bonds. It summarises a range of recent achievements in this area of research, with considerable attention devoted to the reaction modes and the mechanisms involved.
Collapse
Affiliation(s)
- Jiefeng Hu
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816 Nanjing, China
| | - Matthias Ferger
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093 Nanjing, China.
| | - Todd B Marder
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
16
|
Lee Y, Han S, Cho SH. Catalytic Chemo- and Enantioselective Transformations of gem-Diborylalkanes and (Diborylmethyl)metallic Species. Acc Chem Res 2021; 54:3917-3929. [PMID: 34612034 DOI: 10.1021/acs.accounts.1c00455] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chemo- and stereoselective transformations of polyborylalkanes are powerful and efficient methods to access optically active molecules with greater complexity and diversity through programmed synthetic design. Among the various polyborylalkanes, gem-diborylalkanes have attracted much attention in organic chemistry as versatile synthetic handles. The notable advantage of gem-diborylalkanes lies in their ability to generate two key intermediates, α-borylalkyl anions and (gem-diborylalkyl) anions. These two different intermediates can be applied to various enantioselective reactions to rapidly access a diverse set of enantioenriched organoboron compounds, which can be further manipulated to generate various chiral molecule libraries via stereospecific C(sp3)-B bond transformations.In this Account, we summarize our recent contributions to the development of catalytic chemo- and stereoselective reactions using gem-diborylalkanes as versatile nucleophiles, which can be categorized as follows: (1) copper-catalyzed enantioselective coupling of gem-diborylalkanes with electrophiles and (2) the design and synthesis of (diborylmethyl)metallic species and their applications to enantioselective reactions. Since Shibata and Endo reported the Pd-catalyzed chemoselective Suzuki-Miyaura cross-coupling of gem-diborylalkanes with organohalides in 2014, Morken and Hall subsequently developed the first enantioselective analogous reactions using TADDOL-derived chiral phosphoramidite as the supporting ligand of a palladium catalyst. This discovery sparked interest in the catalytic enantioselective coupling of gem-diborylalkanes with electrophiles. Our initial studies focused on generating chiral (α-borylmethyl)copper species by enantiotopic-group-selective transmetalation of gem-diborylalkanes with chiral copper complexes and their reactions with various aldimines and ketimines to afford syn-β-aminoboronate esters with excellent enantio- and diastereoselectivity. Moreover, we developed the enantioselective allylation of gem-diborylalkanes that proceeded by reaction of in situ-generated chiral (α-borylalkyl)copper and allyl bromides. Mechanistic investigations revealed that the enantiotopic-group-selective transmetalation between gem-diborylalkanes and the chiral copper complex occurred through the open transition state rather than the closed transition state, thereby effectively generating chiral (α-borylmethyl)copper species. We also utilized (diborylmethyl)metallic species such as (diborylmethyl)silanes and (diborylmethyl)zinc halides in catalytic enantioselective reactions. We succeeded in developing the enantiotopic-group-selective cross-coupling of (diborylmethyl)silanes with aryl iodides to afford enantioenriched benzylic 1,1-silylboronate esters, which could be used for further consecutive stereospecific transformations to afford various enantioenriched molecules. In addition, we synthesized (diborylmethyl)zinc halides for the first time by the transmetalation of isolated (diborylmethyl)lithium and zinc(II) halides and their utilization to the synthesis of enantioenriched gem-diborylalkanes bearing a chiral center at the β-position via an iridium-catalyzed enantioselective allylic substitution process. In addition to our research efforts, we also include key contributions by other research groups. We hope that this Account will draw the attention of the synthetic community to gem-diboryl compounds and provide guiding principles for the future development of catalytic enantioselective reactions using gem-diboryl compounds.
Collapse
Affiliation(s)
- Yeosan Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seungcheol Han
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
17
|
Zhang C, Hu W, Morken JP. α-Boryl Organometallic Reagents in Catalytic Asymmetric Synthesis. ACS Catal 2021; 11:10660-10680. [PMID: 35591862 DOI: 10.1021/acscatal.1c02496] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent years have witnessed an increase in the popularity of α-boryl organometallic reagents as versatile nucleophiles in asymmetric synthesis. These compounds have been adopted in chemo- and stereoselective coupling reactions with a number of different electrophiles. The resulting enantioenriched boronic esters can be applied in stereospecific carbon-carbon or carbon-heteroatom bond construction reactions, enabling a two-step strategy for the construction of complex structures with high efficiency and functional group compatibility. Due to these reasons, tremendous effort has been devoted to the preparation of enantiomerically enriched α-boryl organometallic reagents and to the development of stereoselective reactions of related racemic or prochiral materials. In this review, we describe the enantio- or diastereoselective reactions that involve α-boryl organometallic reagents as starting materials or products and we showcase their synthetic utility.
Collapse
Affiliation(s)
- Chenlong Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Weipeng Hu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P. Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
18
|
Chen WW, Fernández NP, Baranda MD, Cunillera A, Rodríguez LG, Shafir A, Cuenca AB. Exploring benzylic gem-C(sp 3)-boron-silicon and boron-tin centers as a synthetic platform. Chem Sci 2021; 12:10514-10521. [PMID: 34447544 PMCID: PMC8356736 DOI: 10.1039/d1sc01741a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/28/2021] [Indexed: 01/31/2023] Open
Abstract
A stepwise build-up of multi-substituted Csp3 carbon centers is an attractive, conceptually simple, but often synthetically challenging type of disconnection. To this end, this report describes how gem-α,α-dimetalloid-substituted benzylic reagents bearing boron/silicon or boron/tin substituent sets are an excellent stepping stone towards diverse substitution patterns. These gem-dimetalloids were readily accessed, either by known carbenoid insertion into C-B bonds or by the newly developed scalable deprotonation/metallation approach. Highly chemoselective transformations of either the C-Si (or C-Sn) or the C-B bonds in the newly formed gem-Csp3 centers have been achieved through a set of approaches, with a particular focus on exploiting the synthetically versatile polarity reversal in organometalloids by λ3-aryliodanes. Of particular note is the metal-free arylation of the C-Si (or C-Sn) bonds in such gem-dimetalloids via the iodane-guided C-H coupling approach. DFT calculations show that this transfer of the (α-Bpin)benzyl group proceeds via unusual [5,5]-sigmatropic rearrangement and is driven by the high-energy iodine(iii) center. As a complementary tool, the gem-dimetalloid C-B bond is shown to undergo a potent and chemoselective Suzuki-Miyaura arylation with diverse Ar-Cl, thanks to the development of the reactive gem-α,α-silyl/BF3K building blocks.
Collapse
Affiliation(s)
- Wei W Chen
- Department of Organic and Pharmaceutical Chemistry, Institut Químic de Sarrià, URL Vía Augusta 390 Barcelona 08017 Spain
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC c/ Jordi Girona 20 Barcelona 08034 Spain
| | - Nahiane Pipaon Fernández
- Department of Organic and Pharmaceutical Chemistry, Institut Químic de Sarrià, URL Vía Augusta 390 Barcelona 08017 Spain
| | - Marta Díaz Baranda
- Department of Organic and Pharmaceutical Chemistry, Institut Químic de Sarrià, URL Vía Augusta 390 Barcelona 08017 Spain
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC c/ Jordi Girona 20 Barcelona 08034 Spain
| | - Anton Cunillera
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC c/ Jordi Girona 20 Barcelona 08034 Spain
| | - Laura G Rodríguez
- Department of Organic and Pharmaceutical Chemistry, Institut Químic de Sarrià, URL Vía Augusta 390 Barcelona 08017 Spain
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC c/ Jordi Girona 20 Barcelona 08034 Spain
| | - Alexandr Shafir
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC c/ Jordi Girona 20 Barcelona 08034 Spain
| | - Ana B Cuenca
- Department of Organic and Pharmaceutical Chemistry, Institut Químic de Sarrià, URL Vía Augusta 390 Barcelona 08017 Spain
| |
Collapse
|
19
|
You Y, Ge S. Cobalt‐Catalyzed One‐Pot Asymmetric Difunctionalization of Alkynes to Access Chiral
gem
‐(Borylsilyl)alkanes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang'en You
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Shaozhong Ge
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| |
Collapse
|
20
|
Maza RJ, Fernández E, Carbó JJ. Mapping the Electronic Structure and the Reactivity Trends for Stabilized α-Boryl Carbanions. Chemistry 2021; 27:12352-12361. [PMID: 34156127 PMCID: PMC8457114 DOI: 10.1002/chem.202101464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 11/12/2022]
Abstract
The chemistry of stabilized α-boryl carbanions shows remarkable diversity, and can enable many different synthetic routes towards efficient C-C bond formation. The electron-deficient, trivalent boron center stabilizes the carbanion facilitating its generation and tuning its reactivity. Here, the electronic structure and the reactivity trends of a large dataset of α-boryl carbanions are described. DFT-derived parameters were used to capture their electronic and steric properties, computational reactivity towards model substrates, and crystallographic analysis within the Cambridge Structural Dataset. This study maps the reactivity space by systematically varying the nature of the boryl moiety, the substituents of the carbanionic center, the number of α-boryl motifs, and the metal counterion. In general, the free carbanionic intermediates are described as borata-alkene species with C-B π interactions polarized towards the carbon. Furthermore, it was possible to classify the α-boryl alkylidene metal precursors into three classes directly related to their reactivity: 1) nucleophilic borata-alkene salts with alkali and alkaline earth metals, 2) nucleophilic η2 -(C-B) borata-alkene complexes with early transition metals, Cu and Ag, and 3) α-boryl alkyl complexes with late transition metals. This trend map aids selection of the appropriate reactive synthon depending on the reactivity sought.
Collapse
Affiliation(s)
- Ricardo J Maza
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, 43007, Tarragona, Spain
| | - Elena Fernández
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, 43007, Tarragona, Spain
| | - Jorge J Carbó
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, 43007, Tarragona, Spain
| |
Collapse
|
21
|
You Y, Ge S. Cobalt-Catalyzed One-Pot Asymmetric Difunctionalization of Alkynes to Access Chiral gem-(Borylsilyl)alkanes. Angew Chem Int Ed Engl 2021; 60:20684-20688. [PMID: 34223687 DOI: 10.1002/anie.202107405] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Indexed: 11/10/2022]
Abstract
Enantioselective cobalt-catalyzed one-pot hydrosilylation and hydroboration of terminal alkynes has been developed employing a cobalt catalyst generated from Co(acac)2 and (R,R)-Me-Ferrocelane. A variety of terminal alkynes undergo this asymmetric transformation, affording the corresponding gem-(borylsilyl)alkane products with high enantioselectivity (up to 98 % ee). This one-pot reaction combines (E)-selective hydrosilylation of alkynes and consecutive enantioselective hydroboration of (E)-vinylsilanes with one chiral cobalt catalyst. This protocol represents the most straightforward approach to access versatile chiral gem-(borylsilyl)alkanes from readily available alkynes with commercially available cobalt salt and chiral ligand.
Collapse
Affiliation(s)
- Yang'en You
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| |
Collapse
|
22
|
Guo P, Zhan M. Iridium-Catalyzed Enantioconvergent Allylation of a Boron-Stabilized Organozinc Reagent. J Org Chem 2021; 86:9905-9913. [PMID: 34184905 DOI: 10.1021/acs.joc.1c01076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An iridium-catalyzed enantioconvergent coupling of the versatile boron-stabilized organozinc reagent BpinCH2ZnI with a racemic branched allylic carbonate has been developed here, which differs from our previous work by using 1,1-bisborylmethane through the kinetic resolution process. The reaction has a broad substrate scope, and various chiral homoallylic organoboronic esters could be obtained in good yields with excellent enantioselectivities. The synthetic practicability of the products was demonstrated by their conversion to other useful families of compounds.
Collapse
Affiliation(s)
- Panchi Guo
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R.China
| | - Miao Zhan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R.China
| |
Collapse
|
23
|
Access to enantioenriched compounds bearing challenging tetrasubstituted stereocenters via kinetic resolution of auxiliary adjacent alcohols. Nat Commun 2021; 12:3735. [PMID: 34145256 PMCID: PMC8213810 DOI: 10.1038/s41467-021-23990-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/21/2021] [Indexed: 11/28/2022] Open
Abstract
Contemporary asymmetric catalysis faces huge challenges when prochiral substrates bear electronically and sterically unbiased substituents and when substrates show low reactivities. One of the inherent limitations of chiral catalysts and ligands is their incapability in recognizing prochiral substrates bearing similar groups. This has rendered many enantiopure substances bearing several similar substituents inaccessible. Here we report the rationale, scope, and applications of the strategy of kinetic resolution of auxiliary adjacent alcohols (KRA*) that can be used to solve the above troubles. Using this method, a large variety of optically enriched tertiary alcohols, epoxides, esters, ketones, hydroxy ketones, epoxy ketones, β-ketoesters, and tetrasubstituted methane analogs with two, three, and four spatially and electronically similar groups can be readily obtained (totally 96 examples). At the current stage, the strategy serves as the optimal solution that can complement the inability caused by direct asymmetric catalysis in getting chiral molecules with challenging fully substituted stereocenters. A large number of enantiopure substances, such as those with tetrasubstituted carbon centres bearing several similar substituents, are inaccessible due to the incapability of chiral catalysts/ligands to recognize those substrates. Here, the authors develop kinetic resolution of auxiliary adjacent alcohols (KRA*) strategy to access various optically enriched compounds with two, three or four spatially and electronically similar groups.
Collapse
|
24
|
Corro M, Salvado O, González S, Dominguez‐Molano P, Fernández E. Reactivity Trends with Borylalkyl Copper(I) Species. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Macarena Corro
- Department Química Física i Inorgànica University Rovira i Virgili C/Marcel⋅lí Domingo s/n 43007 Virgili Tarragona
| | - Oriol Salvado
- Department Química Física i Inorgànica University Rovira i Virgili C/Marcel⋅lí Domingo s/n 43007 Virgili Tarragona
| | - Sara González
- Department Química Física i Inorgànica University Rovira i Virgili C/Marcel⋅lí Domingo s/n 43007 Virgili Tarragona
| | - Paula Dominguez‐Molano
- Department Química Física i Inorgànica University Rovira i Virgili C/Marcel⋅lí Domingo s/n 43007 Virgili Tarragona
| | - Elena Fernández
- Department Química Física i Inorgànica University Rovira i Virgili C/Marcel⋅lí Domingo s/n 43007 Virgili Tarragona
| |
Collapse
|
25
|
|
26
|
Kim C, Roh B, Lee HG. Restoration of catalytic activity by the preservation of ligand structure: Cu-catalysed asymmetric conjugate addition with 1,1-diborylmethane. Chem Sci 2021; 12:3668-3673. [PMID: 34163641 PMCID: PMC8179450 DOI: 10.1039/d0sc06543a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/21/2021] [Indexed: 11/21/2022] Open
Abstract
Reported herein is a novel reaction engineering protocol to enhance the efficiency of a transition metal-catalysed process by strategically preventing ligand degradation. Based on spectroscopic investigations, a decomposition pathway of a chiral phosphoramidite ligand during a Cu-catalysed reaction was identified. The involvement of the destructive process could be minimized under the modified reaction conditions that control the amount of nucleophilic alkoxide base, which is the origin of ligand decomposition. Overall, the strategy has been successfully applied to a new class of asymmetric conjugate addition reactions with bis[(pinacolato)boryl]methane, in which α,β-unsaturated enones are utilised as substrates.
Collapse
Affiliation(s)
- Changhee Kim
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Byeongdo Roh
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Hong Geun Lee
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
27
|
Kim M, Park B, Shin M, Kim S, Kim J, Baik MH, Cho SH. Copper-Catalyzed Enantiotopic-Group-Selective Allylation of gem-Diborylalkanes. J Am Chem Soc 2021; 143:1069-1077. [DOI: 10.1021/jacs.0c11750] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minjae Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Bohyun Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Minkyeong Shin
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Suyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Junghoon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
28
|
Zhao B, Yang L, Cheng K, Zhou L, Wan JP. Visible Light Induced Oxidation of α-Diazo Esters for the Transition Metal-Free Synthesis of α-Keto Esters. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202111020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Li X, Gao G, He S, Song Q. Copper-catalyzed 1,6-conjugate addition of para-quinone methides with diborylmethane. Org Chem Front 2021. [DOI: 10.1039/d1qo00632k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Presented herein is the first 1,6-conjugate addition of diborylmethane. This reaction features high yields, mild reaction conditions, and broad functional group compatibilities.
Collapse
Affiliation(s)
- Xin Li
- Institute of Next Generation Matter Transformation
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Guoliang Gao
- Institute of Next Generation Matter Transformation
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Songtao He
- Institute of Next Generation Matter Transformation
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| |
Collapse
|
30
|
Hoveyda AH, Zhou Y, Shi Y, Brown MK, Wu H, Torker S. Sulfonate N‐Heterocyclic Carbene–Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of C−C, C−B, C−H, and C−Si Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Amir H. Hoveyda
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| | - Yuebiao Zhou
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Ying Shi
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - M. Kevin Brown
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Hao Wu
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Sebastian Torker
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| |
Collapse
|
31
|
Hoveyda AH, Zhou Y, Shi Y, Brown MK, Wu H, Torker S. Sulfonate N-Heterocyclic Carbene-Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of C-C, C-B, C-H, and C-Si Bonds. Angew Chem Int Ed Engl 2020; 59:21304-21359. [PMID: 32364640 DOI: 10.1002/anie.202003755] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Indexed: 12/21/2022]
Abstract
A copper-based complex that contains a sulfonate N-heterocyclic carbene ligand was first reported 15 years ago. Since then, these organometallic entities have proven to be uniquely effective in catalyzing an assortment of enantioselective transformations, including allylic substitutions, conjugate additions, proto-boryl additions to alkenes, boryl and silyl substitutions, hydride-allyl additions to alkenyl boronates, and additions of boron-containing allyl moieties to N-H ketimines. In this review article, we detail the shortcomings in the state-of-the-art that fueled the development of this air stable ligand class, members of which can be prepared on multigram scale. For each reaction type, when relevant, the prior art at the time of the advance involving sulfonate NHC-Cu catalysts and/or subsequent key developments are briefly analyzed, and the relevance of the advance to efficient and enantioselective total or formal synthesis of biologically active molecules is underscored. Mechanistic analysis of the structural attributes of sulfonate NHC-Cu catalysts that are responsible for their ability to facilitate transformations with high efficiency as well as regio- and enantioselectivity are detailed. This review contains several formerly undisclosed methodological advances and mechanistic analyses, the latter of which constitute a revision of previously reported proposals.
Collapse
Affiliation(s)
- Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA.,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| | - Yuebiao Zhou
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Ying Shi
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - M Kevin Brown
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Hao Wu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Sebastian Torker
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA.,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| |
Collapse
|
32
|
Whyte A, Torelli A, Mirabi B, Zhang A, Lautens M. Copper-Catalyzed Borylative Difunctionalization of π-Systems. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02758] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Andrew Whyte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alexa Torelli
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Bijan Mirabi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Anji Zhang
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
33
|
Liang MZ, Meek SJ. Synthesis of Quaternary Carbon Stereogenic Centers by Diastereoselective Conjugate Addition of Boron-Stabilized Allylic Nucleophiles to Enones. J Am Chem Soc 2020; 142:9925-9931. [PMID: 32408746 DOI: 10.1021/jacs.0c03900] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A method for the site-selective and diastereoselective conjugate addition of boron-stabilized allylic nucleophiles to α,β-unsaturated ketones is disclosed. Transformations involve easily prepared γ,γ-disubstituted allyldiboron reagents and proceed in the presence of a fluoride activator at 80 °C. Reactions proceed with a wide variety of enones and allyldiboron reagents efficiently to deliver ketone products that contain otherwise difficult-to-access vicinal β-tertiary and γ-quaternary carbon stereogenic centers and an alkenylboron moiety. The utility of the method is highlighted by several transformations, including cross-coupling and carbocyclizations.
Collapse
Affiliation(s)
- Michael Z Liang
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Simon J Meek
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
34
|
Wang X, Cui X, Li S, Wang Y, Xia C, Jiao H, Wu L. Zirconium‐Catalyzed Atom‐Economical Synthesis of 1,1‐Diborylalkanes from Terminal and Internal Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xianjin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xin Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Yue Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
35
|
Wang X, Cui X, Li S, Wang Y, Xia C, Jiao H, Wu L. Zirconium-Catalyzed Atom-Economical Synthesis of 1,1-Diborylalkanes from Terminal and Internal Alkenes. Angew Chem Int Ed Engl 2020; 59:13608-13612. [PMID: 32297413 PMCID: PMC7496309 DOI: 10.1002/anie.202002642] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 12/23/2022]
Abstract
A general and atom‐economical synthesis of 1,1‐diborylalkanes from alkenes and a borane without the need for an additional H2 acceptor is reported for the first time. The key to our success is the use of an earth‐abundant zirconium‐based catalyst, which allows a balance of self‐contradictory reactivities (dehydrogenative boration and hydroboration) to be achieved. Our method avoids using an excess amount of another alkene as an H2 acceptor, which was required in other reported systems. Furthermore, substrates such as simple long‐chain aliphatic alkenes that did not react before also underwent 1,1‐diboration in our system. Significantly, the unprecedented 1,1‐diboration of internal alkenes enabled the preparation of 1,1‐diborylalkanes.
Collapse
Affiliation(s)
- Xianjin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yue Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
36
|
Wang D, Mück-Lichtenfeld C, Studer A. 1, n-Bisborylalkanes via Radical Boron Migration. J Am Chem Soc 2020; 142:9119-9123. [PMID: 32363871 PMCID: PMC7259776 DOI: 10.1021/jacs.0c03058] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Indexed: 12/14/2022]
Abstract
A systematic study of radical boron migration in diboronate complexes to form synthetically valuable 1,n-bisborylalkanes is reported. The boronate complexes are readily generated by reaction of commercial bis(pinacolato)diboron with alkyl Grignard compounds. C-radical generation at a defined position with respect to the diboron moiety is achieved either via intermolecular H-abstraction with a CF3-radical or via alkene perfluoroalkyl radical addition. It is shown that radical 1,2- and 1,4-boron migrations to provide geminal and 1,3-bisborylalkanes are efficient transformations. The 1,5-boron migration in the homologous series leading to 1,4-bisborylalkanes is also occurring, albeit with lower efficiency. Experimental results are supported by DFT calculations which also reveal the corresponding 1,3-boron migration in such diboronate complexes to be feasible.
Collapse
Affiliation(s)
- Dinghai Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
37
|
Kumar N, Eghbarieh N, Stein T, Shames AI, Masarwa A. Photoredox-Mediated Reaction of gem-Diborylalkenes: Reactivity Toward Diverse 1,1-Bisborylalkanes. Chemistry 2020; 26:5360-5364. [PMID: 32141638 DOI: 10.1002/chem.202000603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 12/21/2022]
Abstract
The use of gem-diborylalkenes as radical-reactive groups is explored for the first time. These reactions provide an efficient and general method for the photochemical conversion of gem-diborylalkenes to rapidly access 1,1-bisborylalkanes. This method exploits a novel photoredox decarboxylative radical addition to gem-diborylalkenes to afford α-gem-diboryl carbon-centered radicals, which benefit from additional stability by virtue of an interaction with the empty p-orbitals on borons. The reaction offers a highly modular and regioselective approach to γ-amino gem-diborylalkanes. Furthermore, EPR spectroscopy and DFT calculations have provided insight into the radical mechanism underlying the photochemistry reaction and the stability of the bis-metalated radicals, respectively.
Collapse
Affiliation(s)
- Nivesh Kumar
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Nadim Eghbarieh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Tamar Stein
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University Jerusalem, Jerusalem, 91904, Israel
| | - Alexander I Shames
- Physics Department, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel
| | - Ahmad Masarwa
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| |
Collapse
|
38
|
Zanghi JM, Meek SJ. Cu‐Catalyzed Diastereo‐ and Enantioselective Reactions of γ,γ‐Disubstituted Allyldiboron Compounds with Ketones. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Joseph M. Zanghi
- Department of Chemistry The University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Simon J. Meek
- Department of Chemistry The University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| |
Collapse
|
39
|
Zanghi JM, Meek SJ. Cu-Catalyzed Diastereo- and Enantioselective Reactions of γ,γ-Disubstituted Allyldiboron Compounds with Ketones. Angew Chem Int Ed Engl 2020; 59:8451-8455. [PMID: 32101637 DOI: 10.1002/anie.202000675] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 12/14/2022]
Abstract
A catalytic diastereo- and enantioselective method for the preparation of complex tertiary homoallylic alcohols containing a vicinal quaternary carbon stereogenic center and a versatile alkenylboronic ester is disclosed. Transformations are promoted by 5 mol % of a readily available copper catalyst bearing a bulky monodentate phosphoramidite ligand, which is essential for attaining both high dr and er. Reactions proceed with a wide variety of ketones and allylic 1,1-diboronate reagents, which enables the efficient preparation of diverse array of molecular scaffolds.
Collapse
Affiliation(s)
- Joseph M Zanghi
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Simon J Meek
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
40
|
Green JC, Zanghi JM, Meek SJ. Diastereo- and Enantioselective Synthesis of Homoallylic Amines Bearing Quaternary Carbon Centers. J Am Chem Soc 2020; 142:1704-1709. [PMID: 31934766 DOI: 10.1021/jacs.9b11529] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A Cu-catalyzed method for the efficient enantio- and diastereoselective synthesis of chiral homoallylic amines bearing a quaternary carbon and an alkenylboron is disclosed. Transformations are promoted by a readily prepared (phosphoramidite)-Cu complex and involve bench-stable γ,γ-disubstituted allyldiborons and benzyl imines; products are obtained in up to 82% yield, >20:1 dr, and >99:1 er. Reactions proceed via stereodefined boron-stabilized allylic Cu species formed by an enantioselective transmetalation. Utility of the 1-amino-3-alkenylboronate products is highlighted by a variety of synthetic transformations.
Collapse
Affiliation(s)
- Jacob C Green
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-3290 , United States
| | - Joseph M Zanghi
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-3290 , United States
| | - Simon J Meek
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-3290 , United States
| |
Collapse
|
41
|
Lee H, Lee S, Yun J. Pd-Catalyzed Stereospecific Cross-Coupling of Chiral α-Borylalkylcopper Species with Aryl Bromides. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05213] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hyesu Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Soyeon Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jaesook Yun
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
42
|
Jang WJ, Yun J. Catalytic Asymmetric Conjugate Addition of a Borylalkyl Copper Complex for Chiral Organoboronate Synthesis. Angew Chem Int Ed Engl 2019; 58:18131-18135. [DOI: 10.1002/anie.201909712] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Won Jun Jang
- Department of ChemistrySungkyunkwan University Suwon 16419 Korea
| | - Jaesook Yun
- Department of ChemistrySungkyunkwan University Suwon 16419 Korea
| |
Collapse
|
43
|
Chen J, Gao S, Chen M. Cu-catalyzed C-C bond formation of vinylidene cyclopropanes with carbon nucleophiles. Chem Sci 2019; 10:10601-10606. [PMID: 32110346 PMCID: PMC7020789 DOI: 10.1039/c9sc04122b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
The development of Cu-catalyzed addition of carbon nucleophiles to vinylidene cyclopropanes was reported. The reactions with 1,1-bisborylmethane provided homopropargylic boronate products by forming a C-C bond at the terminal carbon atom of the allene moiety of vinylidene cyclopropanes. Alkynyl boronates are also suitable nucleophile precursors in reactions with vinylidene cyclopropanes, and skipped diynes were obtained in high yields. In addition, the Cu-enolate generated from the initial addition of nucleophilic copper species to vinylidene cyclopropanes can be intercepted by an external electrophile. As such, vinylidene cyclopropane serves as a linchpin to connect a nucleophile and an electrophile by forming two carbon-carbon bonds sequentially.
Collapse
Affiliation(s)
- Jichao Chen
- Department of Chemistry and Biochemistry , Auburn University , Auburn , AL 36849 , USA .
| | - Shang Gao
- Department of Chemistry and Biochemistry , Auburn University , Auburn , AL 36849 , USA .
| | - Ming Chen
- Department of Chemistry and Biochemistry , Auburn University , Auburn , AL 36849 , USA .
| |
Collapse
|
44
|
Jang WJ, Yun J. Catalytic Asymmetric Conjugate Addition of a Borylalkyl Copper Complex for Chiral Organoboronate Synthesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Won Jun Jang
- Department of ChemistrySungkyunkwan University Suwon 16419 Korea
| | - Jaesook Yun
- Department of ChemistrySungkyunkwan University Suwon 16419 Korea
| |
Collapse
|
45
|
Liang MZ, Meek SJ. Catalytic Enantioselective Synthesis of 1,4-Keto-Alkenylboronate Esters and 1,4-Dicarbonyls. Angew Chem Int Ed Engl 2019; 58:14234-14239. [PMID: 31353794 PMCID: PMC6764896 DOI: 10.1002/anie.201907757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/20/2019] [Indexed: 12/15/2022]
Abstract
A catalytic enantioselective method for the synthesis of 1,4-keto-alkenylboronate esters by a rhodium-catalyzed conjugate addition pathway is disclosed. A variety of novel, bench-stable alkenyl gem-diboronate esters are synthesized. These easily accessible reagents react smoothly with a collection of cyclic α,β-unsaturated ketones, generating a new C-C bond and stereocenter. Products are isolated in up to 99 % yield with greater than 20:1 E/Z and greater than 99:1 e.r. Mechanistic studies show the site-selectivity of transmetalation and reactivity is ligand dependent. The utility of the approach is highlighted by gram-scale synthesis of enantioenriched cyclic 1,4-diketones, and stereoselective transformations of the products by hydrogenation, allylation, and isomerization.
Collapse
Affiliation(s)
- Michael Z Liang
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Simon J Meek
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
46
|
Liang MZ, Meek SJ. Catalytic Enantioselective Synthesis of 1,4‐Keto‐Alkenylboronate Esters and 1,4‐Dicarbonyls. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Z. Liang
- Department of Chemistry The University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Simon J. Meek
- Department of Chemistry The University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| |
Collapse
|
47
|
Yamamoto T, Ishibashi A, Suginome M. Boryl-Directed, Ir-Catalyzed C(sp 3)-H Borylation of Alkylboronic Acids Leading to Site-Selective Synthesis of Polyborylalkanes. Org Lett 2019; 21:6235-6240. [PMID: 31386387 DOI: 10.1021/acs.orglett.9b02112] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyrazolylaniline serves as a temporary directing group attached to the boron atom of alkylboronic acids in Ir-catalyzed C(sp3)-H borylation. The reaction takes place at α-, β-, and γ-C-H bonds, giving polyborylated products including di-, tri-, tetra-, and even pentaborylalkanes. α-C-H borylation was generally found to be the preferred reaction of primary alkylboronic acid derivatives, whereas β- or γ-borylation also occurred if β- or γ-C-H bonds were located on the methyl group.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Katsura, Nishikyo-ku , Kyoto 615-8510 , Japan
| | - Aoi Ishibashi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Katsura, Nishikyo-ku , Kyoto 615-8510 , Japan
| | - Michinori Suginome
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Katsura, Nishikyo-ku , Kyoto 615-8510 , Japan
| |
Collapse
|
48
|
Kim J, Shin M, Cho SH. Copper-Catalyzed Diastereoselective and Enantioselective Addition of 1,1-Diborylalkanes to Cyclic Ketimines and α-Imino Esters. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02931] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jeongho Kim
- Department of Chemistry, POSTECH, 37673, Pohang, Korea
| | | | | |
Collapse
|
49
|
Yu Z, Mendoza A. Enantioselective Assembly of Congested Cyclopropanes using Redox-Active Aryldiazoacetates. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02615] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhunzhun Yu
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden
| | - Abraham Mendoza
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 106 91 Stockholm, Sweden
| |
Collapse
|
50
|
Kim J, Lee E, Cho SH. Chemoselective Palladium‐Catalyzed Suzuki‐Miyaura Cross‐Coupling of (Diborylmethyl)silanes with Alkenyl Bromides. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Junghoon Kim
- Department of ChemistryPohang University of Science and Technology (POSTECH) Address Pohang 37673 Republic of Korea
| | - Eunsung Lee
- Department of ChemistryPohang University of Science and Technology (POSTECH) Address Pohang 37673 Republic of Korea
| | - Seung Hwan Cho
- Department of ChemistryPohang University of Science and Technology (POSTECH) Address Pohang 37673 Republic of Korea
| |
Collapse
|