1
|
Chu L, Su Y, Zan X, Lin W, Yao X, Xu P, Liu W. A Deniable Encryption Method for Modulation-Based DNA Storage. Interdiscip Sci 2024; 16:872-881. [PMID: 39155324 DOI: 10.1007/s12539-024-00648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
Recent advancements in synthesis and sequencing techniques have made deoxyribonucleic acid (DNA) a promising alternative for next-generation digital storage. As it approaches practical application, ensuring the security of DNA-stored information has become a critical problem. Deniable encryption allows the decryption of different information from the same ciphertext, ensuring that the "plausible" fake information can be provided when users are coerced to reveal the real information. In this paper, we propose a deniable encryption method that uniquely leverages DNA noise channels. Specifically, true and fake messages are encrypted by two similar modulation carriers and subsequently obfuscated by inherent errors. Experiment results demonstrate that our method not only can conceal true information among fake ones indistinguishably, but also allow both the coercive adversary and the legitimate receiver to decrypt the intended information accurately. Further security analysis validates the resistance of our method against various typical attacks. Compared with conventional DNA cryptography methods based on complex biological operations, our method offers superior practicality and reliability, positioning it as an ideal solution for data encryption in future large-scale DNA storage applications.
Collapse
Affiliation(s)
- Ling Chu
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, 510006, China
| | - Yanqing Su
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, 510006, China
| | - Xiangzhen Zan
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, 510006, China
| | - Wanmin Lin
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, 510006, China
| | - Xiangyu Yao
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, 510006, China
| | - Peng Xu
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, 510006, China.
- School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, 558000, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510000, China.
| | - Wenbin Liu
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Zhang C, Wu R, Sun F, Lin Y, Liang Y, Teng J, Liu N, Ouyang Q, Qian L, Yan H. Parallel molecular data storage by printing epigenetic bits on DNA. Nature 2024; 634:824-832. [PMID: 39443776 PMCID: PMC11499255 DOI: 10.1038/s41586-024-08040-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/11/2024] [Indexed: 10/25/2024]
Abstract
DNA storage has shown potential to transcend current silicon-based data storage technologies in storage density, longevity and energy consumption1-3. However, writing large-scale data directly into DNA sequences by de novo synthesis remains uneconomical in time and cost4. We present an alternative, parallel strategy that enables the writing of arbitrary data on DNA using premade nucleic acids. Through self-assembly guided enzymatic methylation, epigenetic modifications, as information bits, can be introduced precisely onto universal DNA templates to enact molecular movable-type printing. By programming with a finite set of 700 DNA movable types and five templates, we achieved the synthesis-free writing of approximately 275,000 bits on an automated platform with 350 bits written per reaction. The data encoded in complex epigenetic patterns were retrieved high-throughput by nanopore sequencing, and algorithms were developed to finely resolve 240 modification patterns per sequencing reaction. With the epigenetic information bits framework, distributed and bespoke DNA storage was implemented by 60 volunteers lacking professional biolab experience. Our framework presents a new modality of DNA data storage that is parallel, programmable, stable and scalable. Such an unconventional modality opens up avenues towards practical data storage and dual-mode data functions in biomolecular systems.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Computer Science, Key Laboratory of High Confidence Software Technologies, Peking University, Beijing, China.
| | - Ranfeng Wu
- School of Computer Science, Key Laboratory of High Confidence Software Technologies, Peking University, Beijing, China
| | - Fajia Sun
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Yisheng Lin
- School of Computer Science, Key Laboratory of High Confidence Software Technologies, Peking University, Beijing, China
| | - Yuan Liang
- School of Computer Science, Key Laboratory of High Confidence Software Technologies, Peking University, Beijing, China
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Jiongjiong Teng
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Na Liu
- 2nd Physics Institute, University of Stuttgart, Stuttgart, Germany
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Qi Ouyang
- Center for Quantitative Biology, Peking University, Beijing, China.
| | - Long Qian
- Center for Quantitative Biology, Peking University, Beijing, China.
| | - Hao Yan
- Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
3
|
Jo S, Shin H, Joe SY, Baek D, Park C, Chun H. Recent progress in DNA data storage based on high-throughput DNA synthesis. Biomed Eng Lett 2024; 14:993-1009. [PMID: 39220021 PMCID: PMC11362454 DOI: 10.1007/s13534-024-00386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 09/04/2024] Open
Abstract
DNA data storage has emerged as a solution for storing massive volumes of data by utilizing nucleic acids as a digital information medium. DNA offers exceptionally high storage density, long durability, and low maintenance costs compared to conventional storage media such as flash memory and hard disk drives. DNA data storage consists of the following steps: encoding, DNA synthesis (i.e., writing), preservation, retrieval, DNA sequencing (i.e., reading), and decoding. Out of these steps, DNA synthesis presents a bottleneck due to imperfect coupling efficiency, low throughput, and excessive use of organic solvents. Overcoming these challenges is essential to establish DNA as a viable data storage medium. In this review, we provide the overall process of DNA data storage, presenting the recent progress of each step. Next, we examine a detailed overview of DNA synthesis methods with an emphasis on their limitations. Lastly, we discuss the efforts to overcome the constraints of each method and their prospects.
Collapse
Affiliation(s)
- Seokwoo Jo
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
| | - Haewon Shin
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
| | - Sung-yune Joe
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
| | - David Baek
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
| | - Chaewon Park
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
| | - Honggu Chun
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
| |
Collapse
|
4
|
Zhang J, Hou C, Liu C. CRISPR-powered quantitative keyword search engine in DNA data storage. Nat Commun 2024; 15:2376. [PMID: 38491032 PMCID: PMC10943086 DOI: 10.1038/s41467-024-46767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Despite the growing interest of archiving information in synthetic DNA to confront data explosion, quantitatively querying the data stored in DNA is still a challenge. Herein, we present Search Enabled by Enzymatic Keyword Recognition (SEEKER), which utilizes CRISPR-Cas12a to rapidly generate visible fluorescence when a DNA target corresponding to the keyword of interest is present. SEEKER achieves quantitative text searching since the growth rate of fluorescence intensity is proportional to keyword frequency. Compatible with SEEKER, we develop non-collision grouping coding, which reduces the size of dictionary and enables lossless compression without disrupting the original order of texts. Using four queries, we correctly identify keywords in 40 files with a background of ~8000 irrelevant terms. Parallel searching with SEEKER can be performed on a 3D-printed microfluidic chip. Overall, SEEKER provides a quantitative approach to conducting parallel searching over the complete content stored in DNA with simple implementation and rapid result generation.
Collapse
Affiliation(s)
- Jiongyu Zhang
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Chengyu Hou
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Changchun Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
5
|
Buko T, Tuczko N, Ishikawa T. DNA Data Storage. BIOTECH 2023; 12:44. [PMID: 37366792 DOI: 10.3390/biotech12020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
The demand for data storage is growing at an unprecedented rate, and current methods are not sufficient to accommodate such rapid growth due to their cost, space requirements, and energy consumption. Therefore, there is a need for a new, long-lasting data storage medium with high capacity, high data density, and high durability against extreme conditions. DNA is one of the most promising next-generation data carriers, with a storage density of 10¹⁹ bits of data per cubic centimeter, and its three-dimensional structure makes it about eight orders of magnitude denser than other storage media. DNA amplification during PCR or replication during cell proliferation enables the quick and inexpensive copying of vast amounts of data. In addition, DNA can possibly endure millions of years if stored in optimal conditions and dehydrated, making it useful for data storage. Numerous space experiments on microorganisms have also proven their extraordinary durability in extreme conditions, which suggests that DNA could be a durable storage medium for data. Despite some remaining challenges, such as the need to refine methods for the fast and error-free synthesis of oligonucleotides, DNA is a promising candidate for future data storage.
Collapse
Affiliation(s)
- Tomasz Buko
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, PL-02-096 Warsaw, Poland
| | - Nella Tuczko
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, PL-02-096 Warsaw, Poland
| | - Takao Ishikawa
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, PL-02-096 Warsaw, Poland
| |
Collapse
|
6
|
Liu Y, Ren Y, Li J, Wang F, Wang F, Ma C, Chen D, Jiang X, Fan C, Zhang H, Liu K. In vivo processing of digital information molecularly with targeted specificity and robust reliability. SCIENCE ADVANCES 2022; 8:eabo7415. [PMID: 35930647 PMCID: PMC9355361 DOI: 10.1126/sciadv.abo7415] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/22/2022] [Indexed: 05/28/2023]
Abstract
DNA has attracted increasing interest as an appealing medium for information storage. However, target-specific rewriting of the digital data stored in intracellular DNA remains a grand challenge because the highly repetitive nature and uneven guanine-cytosine content render the encoded DNA sequences poorly compatible with endogenous ones. In this study, a dual-plasmid system based on gene editing tools was introduced into Escherichia coli to process information accurately. Digital data containing large repeat units in binary codes, such as text, codebook, or image, were involved in the realization of target-specific rewriting in vivo, yielding up to 94% rewriting reliability. An optical reporter was introduced as an advanced tool for presenting data processing at the molecular level. Rewritten information was stored stably and amplified over hundreds of generations. Our work demonstrates a digital-to-biological information processing approach for highly efficient data storage, amplification, and rewriting, thus robustly promoting the application of DNA-based information technology.
Collapse
Affiliation(s)
- Yangyi Liu
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yubin Ren
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fei Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Dong Chen
- College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
7
|
Zhang Y, Ren Y, Liu Y, Wang F, Zhang H, Liu K. Preservation and Encryption in DNA Digital Data Storage. Chempluschem 2022; 87:e202200183. [PMID: 35856827 DOI: 10.1002/cplu.202200183] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/01/2022] [Indexed: 11/08/2022]
Abstract
The exponential growth of the total amount of global data presents a huge challenge to mainstream storage media. The emergence of molecular digital storage inspires the development of the new-generation higher-density digital data storage. In particular, DNA with high storage density, reproducibility, and long recoverable lifetime behaves the ideal representative of molecular digital storage media. With the development of DNA synthesis and sequencing technologies and the reduction of cost, DNA digital storage has attracted more and more attention and achieved significant breakthroughs. Herein, this Review briefly describes the workflow of DNA storage, and highlights the storage step of DNA digital data storage. Then, according to different information storage forms, the current DNA information encryption methods are emphatically expounded. Finally, the brief perspectives on the current challenges and optimizing proposals in DNA information preservation and encryption are presented.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yubin Ren
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yangyi Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
8
|
Soete M, De Bruycker K, Du Prez F. Rewritable Macromolecular Data Storage with Automated Read-out. Angew Chem Int Ed Engl 2022; 61:e202116718. [PMID: 35104375 DOI: 10.1002/anie.202116718] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 12/22/2022]
Abstract
Rewriting data stored on synthetic macromolecules is an interesting feature, even though it is considered as being quite challenging within the area of digital macromolecules. In this context, we initially studied a strategy for modifying the position tag of sequence-encoded macromolecules in a reversible manner. The efficiency of this method, which relies on the orthogonal cleavage of a thioester moiety via aminolysis, was demonstrated by modifying parts of an exemplary sentence. Simultaneously, a novel algorithm was developed to ease the read-out of macromolecular information by means of MS/MS techniques. This program, Oligoreader, can identify potential information-containing macromolecules from a series of MS1 spectra, analyze the corresponding MS2 spectra, and finally decode the data. Consequently, the algorithm simplifies the entire read-out process by avoiding any interference from the operator, which increases the potential for blind sequencing of uniform macromolecules.
Collapse
Affiliation(s)
- Matthieu Soete
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, 9000, Ghent, Belgium
| | - Kevin De Bruycker
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, 9000, Ghent, Belgium
| | - Filip Du Prez
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, 9000, Ghent, Belgium
| |
Collapse
|
9
|
Soete M, De Bruycker K, Du Prez F. Rewritable Macromolecular Data Storage with Automated Read‐out. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matthieu Soete
- Polymer Chemistry Research group Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry Faculty of Sciences Ghent University Krijgslaan 281 S4-bis 9000 Ghent Belgium
| | - Kevin De Bruycker
- Polymer Chemistry Research group Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry Faculty of Sciences Ghent University Krijgslaan 281 S4-bis 9000 Ghent Belgium
| | - Filip Du Prez
- Polymer Chemistry Research group Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry Faculty of Sciences Ghent University Krijgslaan 281 S4-bis 9000 Ghent Belgium
| |
Collapse
|
10
|
Jonasson NSW, Janßen R, Menke A, Zott FL, Zipse H, Daumann LJ. TET-Like Oxidation in 5-Methylcytosine and Derivatives: A Computational and Experimental Study. Chembiochem 2021; 22:3333-3340. [PMID: 34498783 PMCID: PMC9293240 DOI: 10.1002/cbic.202100420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/08/2021] [Indexed: 01/05/2023]
Abstract
The epigenetic marker 5-methylcytosine (5mC) is an important factor in DNA modification and epigenetics. It can be modified through a three-step oxidation performed by ten-eleven-translocation (TET) enzymes and we have previously reported that the iron(IV)-oxo complex [Fe(O)(Py5 Me2 H)]2+ (1) can oxidize 5mC. Here, we report the reactivity of this iron(IV)-oxo complex towards a wider scope of methylated cytosine and uracil derivatives relevant for synthetic DNA applications, such as 1-methylcytosine (1mC), 5-methyl-iso-cytosine (5miC) and thymine (T/5mU). The observed kinetic parameters are corroborated by calculation of the C-H bond energies at the reactive sites which was found to be an efficient tool for reaction rate prediction of 1 towards methylated DNA bases. We identified oxidation products of methylated cytosine derivatives using HPLC-MS and GC-MS. Thereby, we shed light on the impact of the methyl group position and resulting C-H bond dissociation energies on reactivity towards TET-like oxidation.
Collapse
Affiliation(s)
- Niko S. W. Jonasson
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MünchenGermany
| | - Rachel Janßen
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MünchenGermany
| | - Annika Menke
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MünchenGermany
| | - Fabian L. Zott
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MünchenGermany
| | - Hendrik Zipse
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MünchenGermany
| | - Lena J. Daumann
- Department of ChemistryLudwig-Maximilians-University MunichButenandtstr. 5–1381377MünchenGermany
| |
Collapse
|
11
|
Bennet D, Vo‐Dinh T, Zenhausern F. Current and emerging opportunities in biological medium‐based computing and digital data storage. NANO SELECT 2021. [DOI: 10.1002/nano.202100275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Devasier Bennet
- Center for Applied NanoBioscience and Medicine College of Medicine Phoenix The University of Arizona Phoenix USA
| | - Tuan Vo‐Dinh
- Department of Biomedical Engineering Department of Chemistry Fitzpatrick Institute for Photonics Duke University Durham North Carolina USA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine College of Medicine Phoenix The University of Arizona Phoenix USA
- Department of Basic Medical Sciences College of Medicine Phoenix The University of Arizona Phoenix Arizona USA
- Department of Biomedical Engineering; and BIO5 Institute College of Engineering The University of Arizona Tucson Arizona USA
- School of Pharmaceutical Sciences University of Geneva Geneva Switzerland
| |
Collapse
|
12
|
Lim CK, Nirantar S, Yew WS, Poh CL. Novel Modalities in DNA Data Storage. Trends Biotechnol 2021; 39:990-1003. [PMID: 33455842 DOI: 10.1016/j.tibtech.2020.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
The field of storing information in DNA has expanded exponentially. Most common modalities involve encoding information from bits into synthesized nucleotides, storage in liquid or dry media, and decoding via sequencing. However, limitations to this paradigm include the cost of DNA synthesis and sequencing, along with low throughput. Further unresolved questions include the appropriate media of storage and the scalability of such approaches for commercial viability. In this review, we examine various storage modalities involving the use of DNA from a systems-level perspective. We compare novel methods that draw inspiration from molecular biology techniques that have been devised to overcome the difficulties posed by standard workflows and conceptualize potential applications that can arise from these advances.
Collapse
Affiliation(s)
- Cheng Kai Lim
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | | | - Wen Shan Yew
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
13
|
Cui M, Zhang Y. Advancing DNA Steganography with Incorporation of Randomness. Chembiochem 2020; 21:2503-2511. [PMID: 32270906 PMCID: PMC7497043 DOI: 10.1002/cbic.202000149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/08/2020] [Indexed: 11/29/2022]
Abstract
DNA has become a promising candidate as a future data storage medium; this makes DNA steganography indispensable in DNA data security. PCR primers are conventional secret keys in DNA steganography. Brute force testing of different primers will be extremely time consuming, and practically unaffordable when high-throughput sequencing is used. However, the encrypted information can be sequenced and read once the primers are intercepted. A new steganography approach is needed to make the DNA-encoded information safer, if not unhackable. Mixing information-carrying DNA with a partially degenerated DNA library containing single or multiple restriction sites, we have built an additional protective layer that can be removed by desired restriction enzymes as secondary secret keys. As PCR is inevitable for reading DNA-encrypted information, heating will cause reshuffling and generate endonuclease-resistant mismatched duplexes, especially for DNA with high sequence diversity. Consequently, with the incorporation of randomness, DNA steganography possesses both quantum key distribution (QKD)-like function for detecting PCR by an interceptor and a self-destructive property. It is noteworthy that the background noise generated through the protective layer is independent from any sequencing technology including Sanger and high-throughput sequencing. With a DNA ink incorporating the steganography, we have shown that the authenticity of a piece of writing can be confirmed only by authorized persons with knowledge of all embedded keys.
Collapse
Affiliation(s)
- Meiying Cui
- B CUBE Center for Molecular BioengineeringTechnische Universität DresdenTatzberg 4101307DresdenGermany
| | - Yixin Zhang
- B CUBE Center for Molecular BioengineeringTechnische Universität DresdenTatzberg 4101307DresdenGermany
| |
Collapse
|
14
|
König NF, Al Ouahabi A, Oswald L, Szweda R, Charles L, Lutz JF. Photo-editable macromolecular information. Nat Commun 2019; 10:3774. [PMID: 31484927 PMCID: PMC6726599 DOI: 10.1038/s41467-019-11566-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/22/2019] [Indexed: 01/03/2023] Open
Abstract
Light-induced alteration of macromolecular information plays a central role in biology and is known to influence health, aging and Darwinian evolution. Here, we report that light can also trigger sequence variations in abiotic information-containing polymers. Sequence-coded poly(phosphodiester)s were synthesized using four phosphoramidite monomers containing either photo-sensitive or photo-inert substituents. These monomers allow different sequence manipulations. For instance, using two light-cleavable monomers containing o-nitrobenzyl ether and o-nitroveratryl ether motifs, photo-erasable digital polymers were prepared. These polymers can be decoded by tandem mass spectrometry but become unreadable after UVA exposure. The opposite behavior, i.e. photo-revealable sequences, was obtained with polymers made of two isobaric monomers containing light-cleavable o-nitrobenzyl ether and light-inert p-nitrobenzyl ether substituents. Furthermore, when the latter two monomers were used in conjunction with a third monomer bearing a light-inert OH group, site-directed photo-mutations were induced in synthetic polymers. This was used herein to change the meaning of binary sequences.
Collapse
Affiliation(s)
- Niklas Felix König
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| | - Abdelaziz Al Ouahabi
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| | - Laurence Oswald
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| | - Roza Szweda
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| | - Laurence Charles
- Aix Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397, Marseille Cedex 20, France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034, Strasbourg Cedex 2, France.
| |
Collapse
|
15
|
Szweda R, Tschopp M, Felix O, Decher G, Lutz JF. Sequences of Sequences: Spatial Organization of Coded Matter through Layer-by-Layer Assembly of Digital Polymers. Angew Chem Int Ed Engl 2018; 57:15817-15821. [DOI: 10.1002/anie.201810559] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/04/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Roza Szweda
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Michel Tschopp
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Olivier Felix
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Gero Decher
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| |
Collapse
|
16
|
Szweda R, Tschopp M, Felix O, Decher G, Lutz JF. Sequences of Sequences: Spatial Organization of Coded Matter through Layer-by-Layer Assembly of Digital Polymers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Roza Szweda
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Michel Tschopp
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Olivier Felix
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Gero Decher
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| |
Collapse
|
17
|
|
18
|
|
19
|
Liu C, Zou G, Peng S, Wang Y, Yang W, Wu F, Jiang Z, Zhang X, Zhou X. 5-Formyluracil as a Multifunctional Building Block in Biosensor Designs. Angew Chem Int Ed Engl 2018; 57:9689-9693. [DOI: 10.1002/anie.201804007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/27/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Chaoxing Liu
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Guangrong Zou
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Yafen Wang
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Wei Yang
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Fan Wu
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Zhuoran Jiang
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| |
Collapse
|
20
|
Li J, Green AA, Yan H, Fan C. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat Chem 2017; 9:1056-1067. [PMID: 29064489 PMCID: PMC11421837 DOI: 10.1038/nchem.2852] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022]
Abstract
Nucleic acids have attracted widespread attention due to the simplicity with which they can be designed to form discrete structures and programmed to perform specific functions at the nanoscale. The advantages of DNA/RNA nanotechnology offer numerous opportunities for in-cell and in-vivo applications, and the technology holds great promise to advance the growing field of synthetic biology. Many elegant examples have revealed the potential in integrating nucleic acid nanostructures in cells and in vivo where they can perform important physiological functions. In this Review, we summarize the current abilities of DNA/RNA nanotechnology to realize applications in live cells and then discuss the key problems that must be solved to fully exploit the useful properties of nanostructures. Finally, we provide viewpoints on how to integrate the tools provided by DNA/RNA nanotechnology and related new technologies to construct nucleic acid nanostructure-based molecular circuitry for synthetic biology.
Collapse
Affiliation(s)
- Jiang Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Alexander A Green
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
21
|
Amalian JA, Al Ouahabi A, Cavallo G, König NF, Poyer S, Lutz JF, Charles L. Controlling the structure of sequence-defined poly(phosphodiester)s for optimal MS/MS reading of digital information. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:788-798. [PMID: 28482377 DOI: 10.1002/jms.3947] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
Digital polymers are monodisperse chains with a controlled sequence of co-monomers, defined as letters of an alphabet, and are used to store information at the molecular level. Reading such messages is hence a sequencing task that can be efficiently achieved by tandem mass spectrometry. To improve their readability, structure of sequence-controlled synthetic polymers can be optimized, based on considerations regarding their fragmentation behavior. This strategy is described here for poly(phosphodiester)s, which were synthesized as monodisperse chains with more than 100 units but exhibited extremely complex dissociation spectra. In these polymers, two repeating units that differ by a simple H/CH3 variation were defined as the 0 and 1 bit of the ASCII code and spaced by a phosphate moiety. They were readily ionized in negative ion mode electrospray but dissociated via cleavage at all phosphate bonds upon collisional activation. Although allowing a complete sequence coverage of digital poly(phosphodiester)s, this fragmentation behavior was not efficient for macromolecules with more than 50 co-monomers, and data interpretation was very tedious. The structure of these polymers was then modified by introducing alkoxyamine linkages at appropriate location throughout the chain. A first design consisted of placing these low dissociation energy bonds between each monomeric bit: while cleavage of this sole bond greatly simplified MS/MS spectra, efficient sequencing was limited to chains with up to about 50 units. In contrast, introduction of alkoxyamine bonds between each byte (i.e. a set of eight co-monomers) was a more successful strategy. Long messages (so far, up to 8 bytes) could be read in MS3 experiments, where single-byte containing fragments released during the first activation stage were further dissociated for sequencing. The whole sequence of such byte-truncated poly(phosphodiester)s could be easily re-constructed based on a mass tagging system which permits to determine the original location of each byte in the chain. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- J-A Amalian
- Aix Marseille Univ, CNRS, UMR 7273, Institut de Chimie Radicalaire, 13397 Marseille Cedex 20, France
| | - A Al Ouahabi
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| | - G Cavallo
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| | - N F König
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| | - S Poyer
- Aix Marseille Univ, CNRS, UMR 7273, Institut de Chimie Radicalaire, 13397 Marseille Cedex 20, France
| | - J-F Lutz
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| | - L Charles
- Aix Marseille Univ, CNRS, UMR 7273, Institut de Chimie Radicalaire, 13397 Marseille Cedex 20, France
| |
Collapse
|
22
|
Al Ouahabi A, Amalian JA, Charles L, Lutz JF. Mass spectrometry sequencing of long digital polymers facilitated by programmed inter-byte fragmentation. Nat Commun 2017; 8:967. [PMID: 29042552 PMCID: PMC5645402 DOI: 10.1038/s41467-017-01104-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/18/2017] [Indexed: 11/08/2022] Open
Abstract
In the context of data storage miniaturization, it was recently shown that digital information can be stored in the monomer sequences of non-natural macromolecules. However, the sequencing of such digital polymers is currently limited to short chains. Here, we report that intact multi-byte digital polymers can be sequenced in a moderate resolution mass spectrometer and that full sequence coverage can be attained without requiring pre-analysis digestion or the help of sequence databases. In order to do so, the polymers are designed to undergo controlled fragmentations in collision-induced dissociation conditions. Each byte of the sequence is labeled by an identification tag and a weak alkoxyamine group is placed between 2 bytes. As a consequence of this design, the NO-C bonds break first upon collisional activation, thus leading to a pattern of mass tag-shifted intact bytes. Afterwards, each byte is individually sequenced in pseudo-MS3 conditions and the whole sequence is found.Digital information can be stored in monomer sequences of non-natural macromolecules, but only short chains can be read. Here the authors show long multi-byte digital polymers sequenced in a moderate resolution mass spectrometer. Full sequence coverage can be attained without pre-analysis digestion or the help from sequence databases.
Collapse
Affiliation(s)
- Abdelaziz Al Ouahabi
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034, Strasbourg, France
| | - Jean-Arthur Amalian
- Aix-Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397, Marseille, France
| | - Laurence Charles
- Aix-Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397, Marseille, France.
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034, Strasbourg, France.
| |
Collapse
|
23
|
König NF, Al Ouahabi A, Poyer S, Charles L, Lutz JF. A Simple Post-Polymerization Modification Method for Controlling Side-Chain Information in Digital Polymers. Angew Chem Int Ed Engl 2017; 56:7297-7301. [DOI: 10.1002/anie.201702384] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Niklas Felix König
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Abdelaziz Al Ouahabi
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Salomé Poyer
- Aix Marseille Univ, CNRS; ICR UMR7273; 13397 Marseille France
| | | | - Jean-François Lutz
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| |
Collapse
|
24
|
König NF, Al Ouahabi A, Poyer S, Charles L, Lutz JF. Eine einfache Methode der nachträglichen Modifizierung zur Kontrolle der Seitenketteninformation digitaler Polymere. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Niklas Felix König
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 Frankreich
| | - Abdelaziz Al Ouahabi
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 Frankreich
| | - Salomé Poyer
- Aix Marseille Univ, CNRS; ICR UMR7273; 13397 Marseille Frankreich
| | - Laurence Charles
- Aix Marseille Univ, CNRS; ICR UMR7273; 13397 Marseille Frankreich
| | - Jean-François Lutz
- Université de Strasbourg, CNRS; Institut Charles Sadron UPR22; 23 rue du Loess 67034 Strasbourg Cedex 2 Frankreich
| |
Collapse
|
25
|
First Air Liquide Awards on Essential Small Molecules: K. Sivula, S.Kitagawa, R. Matsuda, J.-M. Savéant, M. Robert, and C. Costentin / Wolf Prize in Chemistry: R. G. Bergman / Swiss Chemical Society Awards: K. Sivula, C. Sparr, and R. R. Knowles / Knighth. Angew Chem Int Ed Engl 2017; 56:2539-2540. [DOI: 10.1002/anie.201700844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Erste Preise von Air Liquide für essenzielle kleine Moleküle: K. Sivula, S.Kitagawa, R. Matsuda, J.-M. Savéant, M. Robert und C. Costentin / Wolf-Preis für Chemie: R. G. Bergman / Preise der Schweizerischen Chemischen Gesellschaft: K. Sivula, C. Sparr und. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
|
28
|
Mayer C, McInroy GR, Murat P, Van Delft P, Balasubramanian S. An Epigenetics-Inspired DNA-Based Data Storage System. Angew Chem Int Ed Engl 2016; 55:11144-8. [PMID: 27440712 PMCID: PMC5113786 DOI: 10.1002/anie.201605531] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Indexed: 12/22/2022]
Abstract
Biopolymers are an attractive alternative to store and circulate information. DNA, for example, combines remarkable longevity with high data storage densities and has been demonstrated as a means for preserving digital information. Inspired by the dynamic, biological regulation of (epi)genetic information, we herein present how binary data can undergo controlled changes when encoded in synthetic DNA strands. By exploiting differential kinetics of hydrolytic deamination reactions of cytosine and its naturally occurring derivatives, we demonstrate how multiple layers of information can be stored in a single DNA template. Moreover, we show that controlled redox reactions allow for interconversion of these DNA-encoded layers of information. Overall, such interlacing of multiple messages on synthetic DNA libraries showcases the potential of chemical reactions to manipulate digital information on (bio)polymers.
Collapse
Affiliation(s)
- Clemens Mayer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Gordon R McInroy
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Pierre Murat
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Pieter Van Delft
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cancer Research, UK, Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK.
| |
Collapse
|