1
|
Fan X, Zhai S, Xue S, Zhi L. Enzyme Immobilization using Covalent Organic Frameworks: From Synthetic Strategy to COFs Functional Role. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39072501 DOI: 10.1021/acsami.4c06556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Enzymes, a class of biocatalysts, exhibit remarkable catalytic efficiency, specificity, and selectivity, governing many reactions that are essential for various cascades within living cells. The immobilization of structurally flexible enzymes on appropriate supports holds significant importance in facilitating biomimetic transformations in extracellular environments. Covalent organic frameworks (COFs) have emerged as ideal candidates for enzyme immobilization due to high surface tunability, diverse chemical/structural designs, exceptional stability, and metal-free nature. Various immobilization techniques have been proposed to fabricate COF-enzyme biocomposites, offering significant enhancements in activity and reusability for COF-immobilized enzymes as well as new insights into developing advanced enzyme-based applications. In this review, we provide a comprehensive overview of state-of-the-art strategies for immobilizing enzymes within COFs by focusing on their applicability and versatility. These strategies are systematically summarized and compared by categorizing them into postsynthesis immobilization and in situ immobilization, where their respective strengths and limitations are thoroughly discussed. Combined with an overview of critical emerging applications, we further elucidate the multifaceted roles of COFs in enzyme immobilization and subsequent applications, highlighting the advanced biofunctionality achievable through COFs.
Collapse
Affiliation(s)
- Xiying Fan
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Shibo Zhai
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Song Xue
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Linjie Zhi
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
2
|
Jeong D, Oh W, Park JW. 3D-Continuous Nanoporous Covalent Framework Membrane Nanoreactors with Quantitatively Loaded Ultrafine Pd Nanocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309490. [PMID: 38651888 DOI: 10.1002/smll.202309490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/07/2024] [Indexed: 04/25/2024]
Abstract
The confinement effect of catalytic nanoreactors containing metal catalysts within nanometer-sized volumes has attracted significant attention for their potential to enhance reaction rate and selectivity. Nevertheless, unregulated catalyst loading, aggregation, leaching, and limited reusability remain obstacles to achieving an efficient nanoreactor. A robust and durable catalytic membrane nanoreactor prepared by incorporating palladium nanocatalysts within a 3D-continuous nanoporous covalent framework membrane is presented. The reduction of palladium precursor occurs on the pore surface within 3D nanochannels, producing ultrafine palladium nanoparticles (Pd NPs) with their number density adjustable by varying metal precursor concentrations. The precise catalyst loading enables controlling the catalytic activity of the reactor while preventing excess metal usage. The facile preparation of Pd NP-loaded free-standing membrane materials allows hydrodechlorination in both batch and continuous flow modes. In batch mode, the catalytic activity is proportional to the loaded Pd amount and membrane area, while the membrane retains its activity upon repeated use. In continuous mode, the conversion remains above 95% for over 100 h, with the reactant solution passing through a single 50 µm-thick Pd-loaded membrane. The efficient nanoporous film-type catalytic nanoreactor may find applications in catalytic reactions for small chemical devices as well as in conventional chemistry and processes.
Collapse
Affiliation(s)
- Dawoon Jeong
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Bukgu, Gwangju, 61005, South Korea
| | - Wangsuk Oh
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Bukgu, Gwangju, 61005, South Korea
| | - Ji-Woong Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Bukgu, Gwangju, 61005, South Korea
| |
Collapse
|
3
|
Synthesis of reverse-selective nanoporous ultrafiltration membranes using dual phase separations of ionic liquid and Poly(ethylene glycol) from the gelating urea-linked covalent network. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Chau Nguyen TT, Shin CM, Lee SJ, Koh ES, Kwon HH, Park H, Kim DH, Choi CH, Oh SH, Kim DW, Yang SY. Ultrathin Nanostructured Films of Hyaluronic Acid and Functionalized β-Cyclodextrin Polymer Suppress Bacterial Infection and Capsular Formation of Medical Silicone Implants. Biomacromolecules 2022; 23:4547-4561. [PMID: 36130109 PMCID: PMC9667880 DOI: 10.1021/acs.biomac.2c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Indexed: 11/29/2022]
Abstract
A type of ultrathin films has been developed for suppressing capsule formation induced by medical silicone implants and hence reducing the inflammation response to such formation and the differentiation to myofibroblasts. The films were each fabricated from hyaluronic acid (HA) and modified β-cyclodextrin (Mod-β-CyD) polymer which was synthesized with a cyclodextrin with partially substituted quaternary amine. Ultrathin films comprising HA and Mod-β-CyD or poly(allylamine hydrochloride) (PAH) were fabricated by using a layer-by-layer dipping method. The electrostatic interactions produced from the functional groups of Mod-β-CyD and HA influenced the surface morphology, wettability, and bio-functional activity of the film. Notably, medical silicone implants coated with PAH/HA and Mod-β-CyD multilayers under a low pH condition exhibited excellent biocompatibility and antibiofilm and anti-inflammation properties. Implantation of these nanoscale film-coated silicones showed a reduced capsular thickness as well as reduced TGFβ-SMAD signaling, myofibroblast differentiation, biofilm formation, and inflammatory response levels. We expect our novel coating system to be considered a strong candidate for use in various medical implant applications in order to decrease implant-induced capsule formation.
Collapse
Affiliation(s)
- Thi Thuy Chau Nguyen
- Department
of Polymer Science and Engineering, Graduate
School of Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Republic
of Korea
| | - Chung Min Shin
- Department
of Plastic Surgery, Chungnam National University
School of Medicine, 266 Munhwa-Ro, Chung-Gu, Daejeon 35015, Republic of Korea
| | - Su Jin Lee
- Department
of Polymer Science and Engineering, Graduate
School of Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Republic
of Korea
| | - Eun Seo Koh
- Department
of Polymer Science and Engineering, Graduate
School of Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Republic
of Korea
| | - Hyeok Hee Kwon
- Department
of Medical Science, Chungnam National University
School of Medicine, 266
Munhwa-Ro, Chung-Gu, Daejeon 35015, Republic of Korea
| | - Hyewon Park
- Department
of Medical Science, Chungnam National University
School of Medicine, 266
Munhwa-Ro, Chung-Gu, Daejeon 35015, Republic of Korea
| | - Dong Ho Kim
- Department
of Microbiology, Chungnam National University
School of Medicine, 266
Munhwa-Ro, Chung-Gu, Daejeon 35015, Republic of Korea
- Department
of Medical Science, Chungnam National University
School of Medicine, 266
Munhwa-Ro, Chung-Gu, Daejeon 35015, Republic of Korea
| | - Chul Hee Choi
- Department
of Microbiology, Chungnam National University
School of Medicine, 266
Munhwa-Ro, Chung-Gu, Daejeon 35015, Republic of Korea
- Department
of Medical Science, Chungnam National University
School of Medicine, 266
Munhwa-Ro, Chung-Gu, Daejeon 35015, Republic of Korea
| | - Sang-Ha Oh
- Department
of Plastic Surgery, Chungnam National University
School of Medicine, 266 Munhwa-Ro, Chung-Gu, Daejeon 35015, Republic of Korea
| | - Dong Woon Kim
- Department
of Anatomy and Cell Biology, Chungnam National
University School of Medicine, 266 Munhwa-Ro, Chung-Gu, Daejeon 35015, Republic of Korea
| | - Sung Yun Yang
- Department
of Polymer Science and Engineering, Graduate
School of Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Republic
of Korea
| |
Collapse
|
5
|
Yang X, Qiu P, Yang J, Fan Y, Wang L, Jiang W, Cheng X, Deng Y, Luo W. Mesoporous Materials-Based Electrochemical Biosensors from Enzymatic to Nonenzymatic. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1904022. [PMID: 31643131 DOI: 10.1002/smll.201904022] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/07/2019] [Indexed: 05/04/2023]
Abstract
Mesoporous materials have drawn more and more attention in the field of biosensors due to their high surface areas, large pore volumes, tunable pore sizes, as well as abundant frameworks. In this review, the progress on mesoporous materials-based biosensors from enzymatic to nonenzymatic are highlighted. First, recent advances on the application of mesoporous materials as supports to stabilize enzymes in enzymatic biosensing technology are summarized. Special emphasis is placed on the effect of pore size, pore structure, and surface functional groups of the support on the immobilization efficiency of enzymes and the biosensing performance. Then, the development of a nonenzymatic strategy that uses the intrinsic property of mesoporous materials (carbon, silica, metals, and composites) to mimic the behavior of enzymes for electrochemical sensing of some biomolecules is discussed. Finally, the challenges and perspective on the future development of biosensors based on mesoporous materials are proposed.
Collapse
Affiliation(s)
- Xuanyu Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Pengpeng Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Yuchi Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Xiaowei Cheng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
6
|
Oh W, Bae JS, Park JW. The Interplay between Phase Separation and Gelation Controlling the Morphologies of the Reactive Covalent Network/Polymer Blends. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Wangsuk Oh
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Jae-Sung Bae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Ji-Woong Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| |
Collapse
|
7
|
Zhou F, Luo J, Song S, Wan Y. Nanostructured Polyphenol-Mediated Coating: a Versatile Platform for Enzyme Immobilization and Micropollutant Removal. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05708] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Fangfang Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Siqing Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Oh W, Park JW. Facile Synthesis of Robust and Pore-Size-Tunable Nanoporous Covalent Framework Membrane by Simultaneous Gelation and Phase Separation of Covalent Network/Poly(methyl methacrylate) Mixture. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32398-32407. [PMID: 31393696 DOI: 10.1021/acsami.9b10175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a facile route toward the preparation of organic-solvent-resistant and three-dimensionally continuous nanoporous covalent framework membrane. The membrane was prepared from the blend of linear poly(methyl methacrylate) and the cross-linked polyurea-based organic network, followed by selective removal of the linear polymer part. The pore morphologies, porosity, and solvent permeation properties of the membrane could be simply modified by the initial composition of the poly(methyl methacrylate) added to a sol of the organic network. The pore was three-dimensionally continuous with pore size ranging from 5 nm to tens of nanometers. Despite the broad pore size distribution, ultrafiltration of sub-10 nm solutes was realized with a molecular size cutoff near 5 nm thanks to the bicontinuous pore structure of the membrane. The nanoporous structure exhibited long-term resistance to organic solvents as well as thermal stability and mechanical strength. The separation performance remained unchanged in organic-rich medium for a prolonged time. Our strategy provides a synthetic route to a structurally robust, three-dimensionally continuous nanoporous polymeric membrane for potential application that necessitates the use of organic solvent.
Collapse
Affiliation(s)
- Wangsuk Oh
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro , Bukgu , Gwangju 61005 , Korea
| | - Ji-Woong Park
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , 123 Cheomdan-gwagiro , Bukgu , Gwangju 61005 , Korea
| |
Collapse
|
9
|
Zhang H, Zhang H, Luo J, Wan Y. Enzymatic Cascade Catalysis in a Nanofiltration Membrane: Engineering the Microenvironment by Synergism of Separation and Reaction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22419-22428. [PMID: 31190541 DOI: 10.1021/acsami.9b05371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microenvironment plays a significant role in enzymatic catalysis, which directly influences enzyme activity and stability. It is important to regulate the enzyme microenvironment, especially for the liquid with unfavored properties (e.g., pH and dissolved oxygen). In this work, we propose a methodology that can regulate pH and substrate concentration for enzymatic catalysis by a biocatalytic membrane, which is composed of glucose oxidase (GOx) and horseradish peroxidase (HRP) co-immobilized in a polyamide nanofiltration (NF) membrane (i.e., beneath the separation layer). By virtue of the selective separation function of NF membrane and in situ production of organic acid/electron donor with GOx, a synergism effect of separation and reaction in the liquid/solid interface was manipulated for engineering the microenvironment of HRP to enhance its activity and stability for micropollutant removal in water. The outcome of this work not only provides a new methodology to precisely control enzymatic reaction but also offers a smart membrane system to efficiently and steadily remove the micropollutants in portable water.
Collapse
Affiliation(s)
- Huiru Zhang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China
- School of Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100049 , PR China
| | - Hao Zhang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China
- School of Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100049 , PR China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China
- School of Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100049 , PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China
- School of Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100049 , PR China
| |
Collapse
|
10
|
Sun Q, Aguila B, Lan PC, Ma S. Tuning Pore Heterogeneity in Covalent Organic Frameworks for Enhanced Enzyme Accessibility and Resistance against Denaturants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900008. [PMID: 30859646 DOI: 10.1002/adma.201900008] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/02/2019] [Indexed: 05/23/2023]
Abstract
Achieving high-performance biocomposites requires knowledge of the compatability between the immobilized enzyme and its host material. The modular nature of covalent organic frameworks (COFs), as a host, allows their pore geometries and chemical functionalities to be fine-tuned independently, permitting comparative studies between the individual parameters and the performances of the resultant biocomposites. This research demonstrates that dual pores in COFs have profound consequences on the catalytic activity and denaturation of infiltrated enzymes. This approach enforces a constant pore environment by rational building-block design, which enables it to be unequivocally determined that pore heterogeneity is responsible for rate enhancements of up to threefold per enzyme molecule. More so, the enzyme is more tolerant to detrimental by-products when occupying the larger pore in a dual-pore COF compared to a corresponding uniform porous COF. Kinetic studies highlight that pore heterogeneity facilitates mass transfer of both reagents and products. This unparalleled versatility of these materials allows many different aspects to be designed on demand, lending credence to their prospect as next-generation host materials for various enzyme biocomposites catalysts.
Collapse
Affiliation(s)
- Qi Sun
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA
| | - Briana Aguila
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA
| | - Pui Ching Lan
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA
| | - Shengqian Ma
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA
| |
Collapse
|
11
|
Consolati T, Bolivar JM, Petrasek Z, Berenguer J, Hidalgo A, Guisán JM, Nidetzky B. Biobased, Internally pH-Sensitive Materials: Immobilized Yellow Fluorescent Protein as an Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Matrices. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6858-6868. [PMID: 29384355 DOI: 10.1021/acsami.7b16639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The pH is fundamental to biological function and its measurement therefore crucial across all biosciences. Unlike homogenous bulk solution, solids often feature internal pH gradients due to partition effects and confined biochemical reactions. Thus, a full spatiotemporal mapping for pH characterization in solid materials with biological systems embedded in them is essential. In here, therefore, a fully biocompatible methodology for real-time optical sensing of pH within porous materials is presented. A genetically encoded ratiometric pH sensor, the enhanced superfolder yellow fluorescent protein (sYFP), is used to functionalize the internal surface of different materials, including natural and synthetic organic polymers as well as silica frameworks. By using controlled, tailor-made immobilization, sYFP is homogenously distributed within these materials and so enables, via self-referenced imaging analysis, pH measurements in high accuracy and with useful spatiotemporal resolution. Evolution of internal pH is monitored in consequence of a proton-releasing enzymatic reaction, the hydrolysis of penicillin by a penicillin acylase, taking place in solution or confined to the solid surface of the porous matrix. Unlike optochemical pH sensors, which often interfere with biological function, labeling with sYFP enables pH sensing without altering the immobilized enzyme's properties in any of the materials used. Fast response of sYFP to pH change permits evaluation of biochemical kinetics within the solid materials. Thus, pH sensing based on immobilized sYFP represents a broadly applicable technique to the study of biology confined to the internally heterogeneous environment of solid matrices.
Collapse
Affiliation(s)
- Tanja Consolati
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, A-8010 Graz, Austria
| | - Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, A-8010 Graz, Austria
| | - Zdenek Petrasek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, A-8010 Graz, Austria
| | - Jose Berenguer
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology 'Severo-Ochoa' (UAM-CSIC) , Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Aurelio Hidalgo
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology 'Severo-Ochoa' (UAM-CSIC) , Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Jose M Guisán
- Institute of Catalysis and Petroleum Chemistry (ICP-CSIC) , C/Marie Curie, 2, Cantoblanco, 28049 Madrid, Spain
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, A-8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology , Petersgasse 14, A-8010 Graz, Austria
| |
Collapse
|
12
|
Sun Q, Fu CW, Aguila B, Perman J, Wang S, Huang HY, Xiao FS, Ma S. Pore Environment Control and Enhanced Performance of Enzymes Infiltrated in Covalent Organic Frameworks. J Am Chem Soc 2018; 140:984-992. [PMID: 29275637 DOI: 10.1021/jacs.7b10642] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the drive toward green and sustainable methodologies for chemicals manufacturing, biocatalysts are predicted to have much to offer in the years to come. That being said, their practical applications are often hampered by a lack of long-term operational stability, limited operating range, and a low recyclability for the enzymes utilized. Herein, we show how covalent organic frameworks (COFs) possess all the necessary requirements needed to serve as ideal host materials for enzymes. The resultant biocomposites of this study have shown the ability boost the stability and robustness of the enzyme in question, namely lipase PS, while also displaying activities far outperforming the free enzyme and biocomposites made from other types of porous materials, such as mesoporous silica and metal-organic frameworks, exemplified in the kinetic resolution of the alcohol assays performed. The ability to easily tune the pore environment of a COF using monomers bearing specific functional groups can improve its compatibility with a given enzyme. As a result, the orientation of the enzyme active site can be modulated through designed interactions between both components, thus improving the enzymatic activity of the biocomposites. Moreover, in comparison with their amorphous analogues, the well-defined COF pore channels not only make the accommodated enzymes more accessible to the reagents but also serve as stronger shields to safeguard the enzymes from deactivation, as evidenced by superior activities and tolerance to harsh environments. The amenability of COFs, along with our increasing understanding of the design rules for stabilizing enzymes in an accessible fashion, gives great promise for providing "off the shelf" biocatalysts for synthetic transformations.
Collapse
Affiliation(s)
- Qi Sun
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Chung-Wei Fu
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States.,Chung Yuan Christian University 200 , Chung-Pei Road, Chung-Li 32023, Taiwan Republic of China
| | - Briana Aguila
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Jason Perman
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Sai Wang
- Key Laboratory of Applied Chemistry of Zhejiang Province and Department of Chemistry, Zhejiang University , Hangzhou 310028, P. R. China
| | - Hsi-Ya Huang
- Chung Yuan Christian University 200 , Chung-Pei Road, Chung-Li 32023, Taiwan Republic of China
| | - Feng-Shou Xiao
- Key Laboratory of Applied Chemistry of Zhejiang Province and Department of Chemistry, Zhejiang University , Hangzhou 310028, P. R. China
| | - Shengqian Ma
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
13
|
Byeon M, Park JW. Tuning the Pore Size of Nanoporous Membranes Using Layer-by-Layer Cross-Linking Polymerization. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Minseon Byeon
- School of Materials Science and Engineering and Research Institute for Solar and Sustainable Energies; Gwangju Institute of Science and Technology; Gwangju 61005 Korea
| | - Ji-Woong Park
- School of Materials Science and Engineering and Research Institute for Solar and Sustainable Energies; Gwangju Institute of Science and Technology; Gwangju 61005 Korea
| |
Collapse
|
14
|
Wang Z, Liu R, Yang H, Wang Y. Nanoporous polysulfones with in situ PEGylated surfaces by a simple swelling strategy using paired solvents. Chem Commun (Camb) 2017; 53:9105-9108. [DOI: 10.1039/c7cc04091a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strong and ductile nanoporous polymers are obtained from inexpensive PSF-b-PEG block copolymers using a facile and nondestructive swelling method.
Collapse
Affiliation(s)
- Zhaogen Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
| | - Rui Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
| | - Hao Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
| |
Collapse
|