1
|
Fischer JC, Steentjes R, Chen DH, Richards BS, Zojer E, Wöll C, Howard IA. Determining Structures of Layer-by-Layer Spin-Coated Zinc Dicarboxylate-Based Metal-Organic Thin Films. Chemistry 2024; 30:e202400565. [PMID: 38642002 DOI: 10.1002/chem.202400565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/22/2024]
Abstract
Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn-based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer-by-layer spin-coating using Zn acetate dihydrate and benzene-1,4-dicarboxylic acid (H2BDC) and biphenyl-4,4'-dicarboxylic acid (H2BPDC) linkers readily produces crystalline thin films. However, analysis of the grazing-incidence wide-angle X-ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and with the metal-to-linker molar ratio used for fabrication. Under equimolar conditions, H2BPDC creates a type of structure like that proposed for SURMOF-2, whereas H2BDC generates a different metal-hydroxide-organic framework. Large excess of Zn2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structure determination, e. g., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal-organic thin films, such that properties can be rationally engineered and explained.
Collapse
Affiliation(s)
- Jan C Fischer
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Robbin Steentjes
- Institute for Solid-State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16/II, 8010, Graz, Austria
| | - Dong-Hui Chen
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Egbert Zojer
- Institute for Solid-State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16/II, 8010, Graz, Austria
| | - Christof Wöll
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ian A Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| |
Collapse
|
2
|
Yang XX, Li C, Chen SM, Gu ZG, Zhang J. Layer by Layer Spraying Fabrication of Aggregation-Induced Emission Metal-Organic Frameworks Thin Film. Chemistry 2024; 30:e202400350. [PMID: 38407517 DOI: 10.1002/chem.202400350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
The development of new metal-organic frameworks (MOFs) thin films is important for expanding their functions and applications. Herein, we first report a new kind of MOF thin film by using aggregation-induced emission (AIE) dicarboxyl ligand through a liquid-phase epitaxial (LPE) layer-by-layer (LBL) spraying method (named AIE surface-coordinated metal-organic frameworks thin film, AIE-SURMOF). The obtained AIE-SURMOF Zn4O(TPE)3 (ZnTPE) has highly growth orientation and homogeneous thin film, showing strong fluorescent property. Furthermore, by loading chiral guest in the MOF pore, the formed chiral encapsulated AIE-SURMOF can clearly indicate obvious circularly polarized luminescence performance with glum of 0.01. This study provides new MOF thin film and new strategy for expanding function and application of MOF materials.
Collapse
Affiliation(s)
- Xue-Xian Yang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chong Li
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Shu-Mei Chen
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zhi-Gang Gu
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Chen DH, Vankova N, Jha G, Yu X, Wang Y, Lin L, Kirschhöfer F, Greifenstein R, Redel E, Heine T, Wöll C. Ultrastrong Electron-Phonon Coupling in Uranium-Organic Frameworks Leading to Inverse Luminescence Temperature Dependence. Angew Chem Int Ed Engl 2024; 63:e202318559. [PMID: 38153004 DOI: 10.1002/anie.202318559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 12/29/2023]
Abstract
Electron-phonon interactions, crucial in condensed matter, are rarely seen in Metal-Organic Frameworks (MOFs). Detecting these interactions typically involves analyzing luminescence in lanthanide- or actinide-based compounds. Prior studies on Ln- and Ac-based MOFs at high temperatures revealed additional peaks, but these were too faint for thorough analysis. In our research, we fabricated a high-quality, crystalline uranium-based MOF (KIT-U-1) thin film using a layer-by-layer method. Under UV light, this film showed two distinct "hot bands," indicating a strong electron-phonon interaction. At 77 K, these bands were absent, but at 300 K, a new emission band appeared with half the intensity of the main luminescence. Surprisingly, a second hot band emerged above 320 K, deviating from previous findings in rare-earth compounds. We conducted a detailed ab-initio analysis employing time-dependent density functional theory to understand this unusual behaviour and to identify the lattice vibration responsible for the strong electron-phonon coupling. The KIT-U-1 film's hot-band emission was then utilized to create a highly sensitive, single-compound optical thermometer. This underscores the potential of high-quality MOF thin films in exploiting the unique luminescence of lanthanides and actinides for advanced applications.
Collapse
Affiliation(s)
- Dong-Hui Chen
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Nina Vankova
- Fakultät für Chemie und Lebensmittelchemie, TU Dresden, Bergstraße 66c, 01069, Dresden, Germany
| | - Gautam Jha
- Fakultät für Chemie und Lebensmittelchemie, TU Dresden, Bergstraße 66c, 01069, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ressourcenökologie, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Xiaojuan Yu
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Yuemin Wang
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Ling Lin
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Frank Kirschhöfer
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Raphael Greifenstein
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Engelbert Redel
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Thomas Heine
- Fakultät für Chemie und Lebensmittelchemie, TU Dresden, Bergstraße 66c, 01069, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ressourcenökologie, Bautzner Landstraße 400, 01328, Dresden, Germany
- Forschungsstelle Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318, Leipzig, Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Klyatskaya S, Kanj AB, Molina-Jirón C, Heidrich S, Velasco L, Natzeck C, Gliemann H, Heissler S, Weidler P, Wenzel W, Bufon CCB, Heinke L, Wöll C, Ruben M. Conductive Metal-Organic Framework Thin Film Hybrids by Electropolymerization of Monosubstituted Acetylenes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30972-30979. [PMID: 32573186 DOI: 10.1021/acsami.0c07036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
1-Hexyne monomers were potentiostatically electropolymerized upon confinement in 1D channels of a surface-mounted metal-organic framework Cu(BDC) (SURMOF-2). A layer-by-layer deposition method allowed for SURMOF depostition on substrates with prepatterned electrodes, making it possible to characterize electrical conductivity in situ, i.e., without having to delaminate the conductive polymer thin film. Successful polymerization was evidenced by mass spectroscopy, and the electrical measurements demonstrated an increase of the electrical conductivity of the MOF material by 8 orders of magnitude. Extensive DFT calculations revealed that the final conductivity is limited by electron hopping between the conductive oligomers.
Collapse
Affiliation(s)
- Svetlana Klyatskaya
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Anemar Bruno Kanj
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Concepción Molina-Jirón
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Shahriar Heidrich
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Leonardo Velasco
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Carsten Natzeck
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Hartmut Gliemann
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Stefan Heissler
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Peter Weidler
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Carlos Cesar Bof Bufon
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, São Paulo Brazil
| | - Lars Heinke
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Mario Ruben
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23 Rue du Loes, Strasbourg Cedex 2 67034, France
| |
Collapse
|
5
|
Yang RX, Lan HM, Zhu PY, Yang LZ, Yu YM, Wang LL, Wang DZ. Synthesis, structures, magnetic and electric properties of four new coordination polymers constructed with heterocyclic nitrogen ligands and multidentate organic acid. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Dong R, Zhang Z, Tranca DC, Zhou S, Wang M, Adler P, Liao Z, Liu F, Sun Y, Shi W, Zhang Z, Zschech E, Mannsfeld SCB, Felser C, Feng X. A coronene-based semiconducting two-dimensional metal-organic framework with ferromagnetic behavior. Nat Commun 2018; 9:2637. [PMID: 29980687 PMCID: PMC6035257 DOI: 10.1038/s41467-018-05141-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/04/2018] [Indexed: 11/10/2022] Open
Abstract
Metal-organic frameworks (MOFs) have so far been highlighted for their potential roles in catalysis, gas storage and separation. However, the realization of high electrical conductivity (>10-3 S cm-1) and magnetic ordering in MOFs will afford them new functions for spintronics, which remains relatively unexplored. Here, we demonstrate the synthesis of a two-dimensional MOF by solvothermal methods using perthiolated coronene as a ligand and planar iron-bis(dithiolene) as linkages enabling a full π-d conjugation. This 2D MOF exhibits a high electrical conductivity of ~10 S cm-1 at 300 K, which decreases upon cooling, suggesting a typical semiconductor nature. Magnetization and 57Fe Mössbauer experiments reveal the evolution of ferromagnetism within nanoscale magnetic clusters below 20 K, thus evidencing exchange interactions between the intermediate spin S = 3/2 iron(III) centers via the delocalized π electrons. Our results illustrate that conjugated 2D MOFs have potential as ferromagnetic semiconductors for application in spintronics.
Collapse
Affiliation(s)
- Renhao Dong
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| | - Zhitao Zhang
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Diana C Tranca
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| | - Shengqiang Zhou
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Mingchao Wang
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| | - Peter Adler
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), 01109, Dresden, Germany
| | - Feng Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yan Sun
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Wujun Shi
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Zhe Zhang
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| | - Ehrenfried Zschech
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), 01109, Dresden, Germany
| | - Stefan C B Mannsfeld
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| | - Claudia Felser
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Xinliang Feng
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|
7
|
Müller K, Fink K, Schöttner L, Koenig M, Heinke L, Wöll C. Defects as Color Centers: The Apparent Color of Metal-Organic Frameworks Containing Cu 2+-Based Paddle-Wheel Units. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37463-37467. [PMID: 28976730 DOI: 10.1021/acsami.7b12045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As in the case of other semiconducting materials, optical and electronic properties of metal-organic frameworks (MOFs) depend critically on defect densities and defect types. We demonstrate here that, in addition to the influence of imperfections on MOF chemical properties like guest binding energies and catalytic activity, the optical properties of these crystalline molecular solids also crucially depend on deviations from the perfect crystalline structure. By recording UV-vis absorption spectra for MOF thin films of particularly high quality, we demonstrate that low-defect samples of an important MOF, HKUST-1, are virtually colorless. Electronic structure calculations of the excited states by employing complete active space self-consistent field (CASSCF) calculations show that the d-d excitations in defects result in the typical green color of the MOF material synthesized by conventional methods.
Collapse
Affiliation(s)
- Kai Müller
- Institute of Functional Interfaces (IFG) and ‡Institute for Nanotechnology (INT), Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Karin Fink
- Institute of Functional Interfaces (IFG) and ‡Institute for Nanotechnology (INT), Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ludger Schöttner
- Institute of Functional Interfaces (IFG) and ‡Institute for Nanotechnology (INT), Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Meike Koenig
- Institute of Functional Interfaces (IFG) and ‡Institute for Nanotechnology (INT), Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Lars Heinke
- Institute of Functional Interfaces (IFG) and ‡Institute for Nanotechnology (INT), Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG) and ‡Institute for Nanotechnology (INT), Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Liu J, Wöll C. Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. Chem Soc Rev 2017; 46:5730-5770. [DOI: 10.1039/c7cs00315c] [Citation(s) in RCA: 435] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Surface-supported metal–organic framework thin films are receiving increasing attention as a novel form of nanotechnology, which hold great promise for photovoltaics, electronic devices, CO2 reduction, energy storage, water splitting and membranes.
Collapse
Affiliation(s)
- Jinxuan Liu
- State Key Laboratory of Fine Chemicals
- Institute of Artificial Photosynthesis
- Dalian University of Technology
- 116024 Dalian
- China
| | - Christof Wöll
- Institute of Functional Interfaces
- Karlsruhe Institute of Technology
- 76344 Eggenstein-Leopoldshafen
- Germany
| |
Collapse
|