1
|
Nam K, Thodika ARA, Tischlik S, Phoeurk C, Nagy TM, Schierholz L, Ådén J, Rogne P, Drescher M, Sauer-Eriksson AE, Wolf-Watz M. Magnesium induced structural reorganization in the active site of adenylate kinase. SCIENCE ADVANCES 2024; 10:eado5504. [PMID: 39121211 PMCID: PMC11313852 DOI: 10.1126/sciadv.ado5504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Phosphoryl transfer is a fundamental reaction in cellular signaling and metabolism that requires Mg2+ as an essential cofactor. While the primary function of Mg2+ is electrostatic activation of substrates, such as ATP, the full spectrum of catalytic mechanisms exerted by Mg2+ is not known. In this study, we integrate structural biology methods, molecular dynamic (MD) simulations, phylogeny, and enzymology assays to provide molecular insights into Mg2+-dependent structural reorganization in the active site of the metabolic enzyme adenylate kinase. Our results demonstrate that Mg2+ induces a conformational rearrangement of the substrates (ATP and ADP), resulting in a 30° adjustment of the angle essential for reversible phosphoryl transfer, thereby optimizing it for catalysis. MD simulations revealed transitions between conformational substates that link the fluctuation of the angle to large-scale enzyme dynamics. The findings contribute detailed insight into Mg2+ activation of enzymes and may be relevant for reversible and irreversible phosphoryl transfer reactions.
Collapse
Affiliation(s)
- Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | - Sonja Tischlik
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Chanrith Phoeurk
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Department of Bio-Engineering, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | | | - Léon Schierholz
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Jörgen Ådén
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Per Rogne
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Malte Drescher
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | | | | |
Collapse
|
2
|
Nam K, Shao Y, Major DT, Wolf-Watz M. Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development. ACS OMEGA 2024; 9:7393-7412. [PMID: 38405524 PMCID: PMC10883025 DOI: 10.1021/acsomega.3c09084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes, and allosteric regulation. Beyond mechanistic studies, computational enzyme modeling has emerged as an essential tool for computer-aided enzyme design and the rational discovery of covalent drugs for targeted therapies. Overall, enzyme design/engineering and covalent drug development can greatly benefit from our understanding of the detailed mechanisms of enzymes, such as protein dynamics, entropy contributions, and allostery, as revealed by computational studies. Such a convergence of different research approaches is expected to continue, creating synergies in enzyme research. This review, by outlining the ever-expanding field of enzyme research, aims to provide guidance for future research directions and facilitate new developments in this important and evolving field.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yihan Shao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
3
|
Nam K, Arattu Thodika AR, Grundström C, Sauer UH, Wolf-Watz M. Elucidating Dynamics of Adenylate Kinase from Enzyme Opening to Ligand Release. J Chem Inf Model 2024; 64:150-163. [PMID: 38117131 PMCID: PMC10778088 DOI: 10.1021/acs.jcim.3c01618] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
This study explores ligand-driven conformational changes in adenylate kinase (AK), which is known for its open-to-close conformational transitions upon ligand binding and release. By utilizing string free energy simulations, we determine the free energy profiles for both enzyme opening and ligand release and compare them with profiles from the apoenzyme. Results reveal a three-step ligand release process, which initiates with the opening of the adenosine triphosphate-binding subdomain (ATP lid), followed by ligand release and concomitant opening of the adenosine monophosphate-binding subdomain (AMP lid). The ligands then transition to nonspecific positions before complete dissociation. In these processes, the first step is energetically driven by ATP lid opening, whereas the second step is driven by ATP release. In contrast, the AMP lid opening and its ligand release make minor contributions to the total free energy for enzyme opening. Regarding the ligand binding mechanism, our results suggest that AMP lid closure occurs via an induced-fit mechanism triggered by AMP binding, whereas ATP lid closure follows conformational selection. This difference in the closure mechanisms provides an explanation with implications for the debate on ligand-driven conformational changes of AK. Additionally, we determine an X-ray structure of an AK variant that exhibits significant rearrangements in the stacking of catalytic arginines, explaining its reduced catalytic activity. In the context of apoenzyme opening, the sequence of events is different. Here, the AMP lid opens first while the ATP lid remains closed, and the free energy associated with ATP lid opening varies with orientation, aligning with the reported AK opening and closing rate heterogeneity. Finally, this study, in conjunction with our previous research, provides a comprehensive view of the intricate interplay between various structural elements, ligands, and catalytic residues that collectively contribute to the robust catalytic power of the enzyme.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Abdul Raafik Arattu Thodika
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | | | - Uwe H. Sauer
- Department
of Chemistry, Umeå University, Umeå 90187, SE, Sweden
| | - Magnus Wolf-Watz
- Department
of Chemistry, Umeå University, Umeå 90187, SE, Sweden
| |
Collapse
|
4
|
Dulko-Smith B, Ojeda-May P, Åden J, Wolf-Watz M, Nam K. Mechanistic Basis for a Connection between the Catalytic Step and Slow Opening Dynamics of Adenylate Kinase. J Chem Inf Model 2023; 63:1556-1569. [PMID: 36802243 PMCID: PMC11779523 DOI: 10.1021/acs.jcim.2c01629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Escherichia coli adenylate kinase (AdK) is a small, monomeric enzyme that synchronizes the catalytic step with the enzyme's conformational dynamics to optimize a phosphoryl transfer reaction and the subsequent release of the product. Guided by experimental measurements of low catalytic activity in seven single-point mutation AdK variants (K13Q, R36A, R88A, R123A, R156K, R167A, and D158A), we utilized classical mechanical simulations to probe mutant dynamics linked to product release, and quantum mechanical and molecular mechanical calculations to compute a free energy barrier for the catalytic event. The goal was to establish a mechanistic connection between the two activities. Our calculations of the free energy barriers in AdK variants were in line with those from experiments, and conformational dynamics consistently demonstrated an enhanced tendency toward enzyme opening. This indicates that the catalytic residues in the wild-type AdK serve a dual role in this enzyme's function─one to lower the energy barrier for the phosphoryl transfer reaction and another to delay enzyme opening, maintaining it in a catalytically active, closed conformation for long enough to enable the subsequent chemical step. Our study also discovers that while each catalytic residue individually contributes to facilitating the catalysis, R36, R123, R156, R167, and D158 are organized in a tightly coordinated interaction network and collectively modulate AdK's conformational transitions. Unlike the existing notion of product release being rate-limiting, our results suggest a mechanistic interconnection between the chemical step and the enzyme's conformational dynamics acting as the bottleneck of the catalytic process. Our results also suggest that the enzyme's active site has evolved to optimize the chemical reaction step while slowing down the overall opening dynamics of the enzyme.
Collapse
Affiliation(s)
- Beata Dulko-Smith
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Pedro Ojeda-May
- High Performance Computing Centre North (HPC2N), Umeå University, Umeå SE-90187, Sweden
| | - Jörgen Åden
- Department of Chemistry, Umeå University, Umeå SE-90187, Sweden
| | | | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
5
|
Nam K, Wolf-Watz M. Protein dynamics: The future is bright and complicated! STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:014301. [PMID: 36865927 PMCID: PMC9974214 DOI: 10.1063/4.0000179] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Biological life depends on motion, and this manifests itself in proteins that display motion over a formidable range of time scales spanning from femtoseconds vibrations of atoms at enzymatic transition states, all the way to slow domain motions occurring on micro to milliseconds. An outstanding challenge in contemporary biophysics and structural biology is a quantitative understanding of the linkages among protein structure, dynamics, and function. These linkages are becoming increasingly explorable due to conceptual and methodological advances. In this Perspective article, we will point toward future directions of the field of protein dynamics with an emphasis on enzymes. Research questions in the field are becoming increasingly complex such as the mechanistic understanding of high-order interaction networks in allosteric signal propagation through a protein matrix, or the connection between local and collective motions. In analogy to the solution to the "protein folding problem," we argue that the way forward to understanding these and other important questions lies in the successful integration of experiment and computation, while utilizing the present rapid expansion of sequence and structure space. Looking forward, the future is bright, and we are in a period where we are on the doorstep to, at least in part, comprehend the importance of dynamics for biological function.
Collapse
Affiliation(s)
- Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, USA
| | | |
Collapse
|
6
|
Kancherla AK, Marincin KA, Mishra SH, Frueh DP. Minimizing Pervasive Artifacts in 4D Covariance Maps for Protein Side Chain NMR Assignments. J Phys Chem A 2021; 125:8313-8323. [PMID: 34510900 PMCID: PMC8480538 DOI: 10.1021/acs.jpca.1c05507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Indexed: 01/23/2023]
Abstract
Nuclear magnetic resonance (NMR) is a mainstay of biophysical studies that provides atomic level readouts to formulate molecular mechanisms. Side chains are particularly important to derive mechanisms involving proteins as they carry functional groups, but NMR studies of side chains are often limited by challenges in assigning their signals. Here, we designed a novel computational method that combines spectral derivatives and matrix square-rooting to produce reliable 4D covariance maps from routinely acquired 3D spectra and facilitates side chain resonance assignments. Thus, we generate two 4D maps from 3D-HcccoNH and 3D-HCcH-TOCSY spectra that each help overcome signal overlap or sensitivity losses. These 4D maps feature HC-HSQCs of individual side chains that can be paired to assigned backbone amide resonances of individual aliphatic signals, and both are obtained from a single modified covariance calculation. Further, we present 4D maps produced using conventional triple resonance experiments to easily assign asparagine side chain amide resonances. The 4D covariance maps encapsulate the lengthy manual pattern recognition used in traditional assignment methods and distill the information as correlations that can be easily visualized. We showcase the utility of the 4D covariance maps with a 10 kDa peptidyl carrier protein and a 52 kDa cyclization domain from a nonribosomal peptide synthetase.
Collapse
Affiliation(s)
- Aswani K. Kancherla
- Department
of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Room 701 Hunterian, Baltimore, Maryland 21205, United States
| | - Kenneth A. Marincin
- Department
of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Room 701 Hunterian, Baltimore, Maryland 21205, United States
| | - Subrata H. Mishra
- Department
of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Room 701 Hunterian, Baltimore, Maryland 21205, United States
| | - Dominique P. Frueh
- Department
of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Room 701 Hunterian, Baltimore, Maryland 21205, United States
| |
Collapse
|
7
|
Ojeda-May P, Mushtaq AU, Rogne P, Verma A, Ovchinnikov V, Grundström C, Dulko-Smith B, Sauer UH, Wolf-Watz M, Nam K. Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions. Biochemistry 2021; 60:2246-2258. [PMID: 34250801 PMCID: PMC8297476 DOI: 10.1021/acs.biochem.1c00221] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Enzymes employ a wide range of protein motions to achieve efficient catalysis of
chemical reactions. While the role of collective protein motions in substrate binding,
product release, and regulation of enzymatic activity is generally understood, their
roles in catalytic steps per se remain uncertain. Here, molecular dynamics simulations,
enzyme kinetics, X-ray crystallography, and nuclear magnetic resonance spectroscopy are
combined to elucidate the catalytic mechanism of adenylate kinase and to delineate the
roles of catalytic residues in catalysis and the conformational change in the enzyme.
This study reveals that the motions in the active site, which occur on a time scale of
picoseconds to nanoseconds, link the catalytic reaction to the slow conformational
dynamics of the enzyme by modulating the free energy landscapes of subdomain motions. In
particular, substantial conformational rearrangement occurs in the active site following
the catalytic reaction. This rearrangement not only affects the reaction barrier but
also promotes a more open conformation of the enzyme after the reaction, which then
results in an accelerated opening of the enzyme compared to that of the reactant state.
The results illustrate a linkage between enzymatic catalysis and collective protein
motions, whereby the disparate time scales between the two processes are bridged by a
cascade of intermediate-scale motion of catalytic residues modulating the free energy
landscapes of the catalytic and conformational change processes.
Collapse
Affiliation(s)
- Pedro Ojeda-May
- Department of Chemistry, Umeå University, Umeå SE-90187, Sweden.,High Performance Computing Centre North (HPC2N), Umeå University, Umeå SE-90187, Sweden
| | | | - Per Rogne
- Department of Chemistry, Umeå University, Umeå SE-90187, Sweden
| | - Apoorv Verma
- Department of Chemistry, Umeå University, Umeå SE-90187, Sweden
| | - Victor Ovchinnikov
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | | | - Beata Dulko-Smith
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Uwe H Sauer
- Department of Chemistry, Umeå University, Umeå SE-90187, Sweden
| | | | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
8
|
Serine protease dynamics revealed by NMR analysis of the thrombin-thrombomodulin complex. Sci Rep 2021; 11:9354. [PMID: 33931701 PMCID: PMC8087772 DOI: 10.1038/s41598-021-88432-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023] Open
Abstract
Serine proteases catalyze a multi-step covalent catalytic mechanism of peptide bond cleavage. It has long been assumed that serine proteases including thrombin carry-out catalysis without significant conformational rearrangement of their stable two-β-barrel structure. We present nuclear magnetic resonance (NMR) and hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments on the thrombin-thrombomodulin (TM) complex. Thrombin promotes procoagulative fibrinogen cleavage when fibrinogen engages both the anion binding exosite 1 (ABE1) and the active site. It is thought that TM promotes cleavage of protein C by engaging ABE1 in a similar manner as fibrinogen. Thus, the thrombin-TM complex may represent the catalytically active, ABE1-engaged thrombin. Compared to apo- and active site inhibited-thrombin, we show that thrombin-TM has reduced μs-ms dynamics in the substrate binding (S1) pocket consistent with its known acceleration of protein C binding. Thrombin-TM has increased μs-ms dynamics in a β-strand connecting the TM binding site to the catalytic aspartate. Finally, thrombin-TM had doublet peaks indicative of dynamics that are slow on the NMR timescale in residues along the interface between the two β-barrels. Such dynamics may be responsible for facilitating the N-terminal product release and water molecule entry that are required for hydrolysis of the acyl-enzyme intermediate.
Collapse
|
9
|
Kalu GI, Ubochi CI, Onyido I. Reactions of aryl dimethylphosphinothioate esters with anionic oxygen nucleophiles: transition state structure in 70% water-30% ethanol. RSC Adv 2021; 11:8833-8845. [PMID: 35423373 PMCID: PMC8695247 DOI: 10.1039/d0ra10759j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/03/2021] [Indexed: 11/21/2022] Open
Abstract
Aryl dimethylphosphinates, 2, react with anionic oxygen nucleophiles in water via a concerted (ANDN) mechanism. With EtO- in anhydrous ethanol, the mechanism is associative (AN + DN), with rate-limiting pentacoordinate intermediate formation. This change in mechanism with solvent change has been ascribed to changes in the nucleophile and leaving group basicities accompanying solvent change. This paper reports on a kinetic analysis of the reactions of the aryl dimethylphosphinothioates, 3a-g, with oxygen nucleophiles in 70% water-30% ethanol (v/v) solvent at 25 °C, reactions known to proceed by a concerted mechanism in water, to test the rationalization stated above, since the nucleophiles and LGs of interest are more basic in aqueous ethanol than in water. The change in solvent causes an ca. 14 to 320-fold decrease in rate. Hammett and Brønsted-type correlations characterize a concerted TS with less P-LG bonding in aqueous ethanol than in water. Two opposing consequences are associated with the solvent change: (a) increased basicity of nucleophiles and LGs, which lead to a modest tightening of the TS; and (b) better stabilization of the IS relative to the TS in aqueous ethanol, which results in a slower reaction with a more product-like TS. Hammond and anti-Hammond effects on the TS arising from better stabilization of the IS over the TS dominate over the effects of increased nucleophile and LG basicity in determining the looser TS structure in aqueous ethanol. An altered TS structure is consistent with an altered reaction potential energy surface, in this case caused by a change in solvent polarity.
Collapse
Affiliation(s)
- Georgina I Kalu
- Department of Chemistry, Imo State University Owerri Nigeria
| | | | - Ikenna Onyido
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University Awka Nigeria +234-806-268-5122
| |
Collapse
|
10
|
Siemons L, Uluca-Yazgi B, Pritchard RB, McCarthy S, Heise H, Hansen DF. Determining isoleucine side-chain rotamer-sampling in proteins from 13C chemical shift. Chem Commun (Camb) 2019; 55:14107-14110. [PMID: 31642826 PMCID: PMC7138115 DOI: 10.1039/c9cc06496f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A framework is presented to derive the conformational sampling of isoleucine side chains from nuclear magnetic resonance 13C chemical shifts.
Chemical shifts are often the only nuclear magnetic resonance parameter that can be obtained for challenging macromolecular systems. Here we present a framework to derive the conformational sampling of isoleucine side chains from 13C chemical shifts and demonstrate that side-chain conformations in a low-populated folding intermediate can be determined.
Collapse
Affiliation(s)
- Lucas Siemons
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UKWC1E 6BT.
| | - Boran Uluca-Yazgi
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany and Institute of Complex Systems, ICS-6: Structural Biochemistry and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Ruth B Pritchard
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UKWC1E 6BT.
| | - Stephen McCarthy
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Henrike Heise
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany and Institute of Complex Systems, ICS-6: Structural Biochemistry and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - D Flemming Hansen
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UKWC1E 6BT.
| |
Collapse
|
11
|
Pritchard RB, Hansen DF. Characterising side chains in large proteins by protonless 13C-detected NMR spectroscopy. Nat Commun 2019; 10:1747. [PMID: 30988305 PMCID: PMC6465260 DOI: 10.1038/s41467-019-09743-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/28/2019] [Indexed: 11/24/2022] Open
Abstract
Side chains cover protein surfaces and are fundamental to processes as diverse as substrate recognition, protein folding and enzyme catalysis. However, characterisation of side-chain motions has so far been restricted to small proteins and methyl-bearing side chains. Here we present a class of methods, based on 13C-detected NMR spectroscopy, to more generally quantify motions and interactions of side chains in medium-to-large proteins. A single, uniformly isotopically labelled sample is sufficient to characterise the side chains of six different amino acid types. Side-chain conformational dynamics on the millisecond time-scale can be quantified by incorporating chemical exchange saturation transfer (CEST) into the presented methods, whilst long-range 13C-13C scalar couplings reporting on nanosecond to millisecond motions can be quantified in proteins as large as 80 kDa. The presented class of methods promises characterisation of side-chain behaviour at a level that has so far been reserved for the protein backbone. Analysis of side-chain motions by NMR has so far been restricted to small proteins and methyl-bearing side chains. Here, the authors present NMR methods based on 13C direct detection of highly deuterated protein samples that yield sharp and well-resolved signals and allow the characterisation of side-chain conformational dynamics of six different amino acid types in medium-to-large proteins.
Collapse
Affiliation(s)
- Ruth B Pritchard
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK, WC1E 6BT
| | - D Flemming Hansen
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK, WC1E 6BT.
| |
Collapse
|
12
|
Mackenzie HW, Hansen DF. Arginine Side-Chain Hydrogen Exchange: Quantifying Arginine Side-Chain Interactions in Solution. Chemphyschem 2019; 20:252-259. [PMID: 30085401 PMCID: PMC6391956 DOI: 10.1002/cphc.201800598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Indexed: 02/03/2023]
Abstract
The rate with which labile backbone hydrogen atoms in proteins exchange with the solvent has long been used to probe protein interactions in aqueous solutions. Arginine, an essential amino acid found in many interaction interfaces, is capable of an impressive range of interactions via its guanidinium group. The hydrogen exchange rate of the guanidinium hydrogens therefore becomes an important measure to quantify side-chain interactions. Herein we present an NMR method to quantify the hydrogen exchange rates of arginine side-chain 1 Hϵ protons and thus present a method to gauge the strength of arginine side-chain interactions. The method employs 13 C-detection and the one-bond deuterium isotope shift observed for 15 Nϵ to generate two exchanging species in 1 H2 O/2 H2 O mixtures. An application to the protein T4 Lysozyme is shown, where protection factors calculated from the obtained exchange rates correlate well with the interactions observed in the crystal structure. The methodology presented provides an important step towards characterising interactions of arginine side-chains in enzymes, in phase separation, and in protein interaction interfaces in general.
Collapse
Affiliation(s)
- Harold W. Mackenzie
- Institute of Structural and Molecular Biology Division of BiosciencesUniversity College LondonLondon WC1E 6BTUnited Kingdom
| | - D. Flemming Hansen
- Institute of Structural and Molecular Biology Division of BiosciencesUniversity College LondonLondon WC1E 6BTUnited Kingdom
| |
Collapse
|
13
|
Fast CS, Vahidi S, Konermann L. Changes in Enzyme Structural Dynamics Studied by Hydrogen Exchange-Mass Spectrometry: Ligand Binding Effects or Catalytically Relevant Motions? Anal Chem 2017; 89:13326-13333. [DOI: 10.1021/acs.analchem.7b03506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Courtney S. Fast
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Siavash Vahidi
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
14
|
Mackenzie HW, Hansen DF. A 13C-detected 15N double-quantum NMR experiment to probe arginine side-chain guanidinium 15N η chemical shifts. JOURNAL OF BIOMOLECULAR NMR 2017; 69:123-132. [PMID: 29127559 PMCID: PMC5711973 DOI: 10.1007/s10858-017-0137-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/25/2017] [Indexed: 05/25/2023]
Abstract
Arginine side-chains are often key for enzyme catalysis, protein-ligand and protein-protein interactions. The importance of arginine stems from the ability of the terminal guanidinium group to form many key interactions, such as hydrogen bonds and salt bridges, as well as its perpetual positive charge. We present here an arginine 13Cζ-detected NMR experiment in which a double-quantum coherence involving the two 15Nη nuclei is evolved during the indirect chemical shift evolution period. As the precession frequency of the double-quantum coherence is insensitive to exchange of the two 15Nη; this new approach is shown to eliminate the previously deleterious line broadenings of 15Nη resonances caused by the partially restricted rotation about the Cζ-Nε bond. Consequently, sharp and well-resolved 15Nη resonances can be observed. The utility of the presented method is demonstrated on the L99A mutant of the 19 kDa protein T4 lysozyme, where the measurement of small chemical shift perturbations, such as one-bond deuterium isotope shifts, of the arginine amine 15Nη nuclei becomes possible using the double-quantum experiment.
Collapse
Affiliation(s)
- Harold W Mackenzie
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - D Flemming Hansen
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
15
|
Gerecht K, Figueiredo AM, Hansen DF. Determining rotational dynamics of the guanidino group of arginine side chains in proteins by carbon-detected NMR. Chem Commun (Camb) 2017; 53:10062-10065. [PMID: 28840203 PMCID: PMC5708338 DOI: 10.1039/c7cc04821a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A new NMR-based method is presented to determine the rotational dynamics around the Nε–Cζ bond of arginine to characterise the interactions mediated by arginine side chains.
Arginine residues are imperative for many active sites and protein-interaction interfaces. A new NMR-based method is presented to determine the rotational dynamics around the Nε–Cζ bond of arginine side chains. An application to a 19 kDa protein shows that the strengths of interactions involving arginine side chains can be characterised.
Collapse
Affiliation(s)
- Karola Gerecht
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| | - Angelo Miguel Figueiredo
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| | - D Flemming Hansen
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
16
|
Biswas A, Shukla A, Chaudhary SK, Santhosh R, Jeyakanthan J, Sekar K. Structural studies of a hyperthermophilic thymidylate kinase enzyme reveal conformational substates along the reaction coordinate. FEBS J 2017. [PMID: 28627020 DOI: 10.1111/febs.14140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Thymidylate kinase (TMK) is a key enzyme which plays an important role in DNA synthesis. It belongs to the family of nucleoside monophosphate kinases, several of which undergo structure-encoded conformational changes to perform their function. However, the absence of three-dimensional structures for all the different reaction intermediates of a single TMK homolog hinders a clear understanding of its functional mechanism. We herein report the different conformational states along the reaction coordinate of a hyperthermophilic TMK from Aquifex aeolicus, determined via X-ray diffraction and further validated through normal-mode studies. The analyses implicate an arginine residue in the Lid region in catalysis, which was confirmed through site-directed mutagenesis and subsequent enzyme assays on the wild-type protein and mutants. Furthermore, the enzyme was found to exhibit broad specificity toward phosphate group acceptor nucleotides. Our comprehensive analyses of the conformational landscape of TMK, together with associated biochemical experiments, provide insights into the mechanistic details of TMK-driven catalysis, for example, the order of substrate binding and the reaction mechanism for phosphate transfer. Such a study has utility in the design of potent inhibitors for these enzymes. DATABASE Structural data are available in the PDB under the accession numbers 2PBR, 4S2E, 5H5B, 5XAI, 4S35, 5XB2, 5H56, 5XB3, 5H5K, 5XB5, and 5XBH.
Collapse
Affiliation(s)
- Ansuman Biswas
- Department of Physics, Indian Institute of Science, Bangalore, India
| | - Arpit Shukla
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | | | - Kanagaraj Sekar
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
17
|
Zeymer C, Werbeck ND, Zimmermann S, Reinstein J, Hansen DF. Characterizing Active Site Conformational Heterogeneity along the Trajectory of an Enzymatic Phosphoryl Transfer Reaction. Angew Chem Int Ed Engl 2016; 55:11533-7. [PMID: 27534930 PMCID: PMC5026167 DOI: 10.1002/anie.201606238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Indexed: 11/24/2022]
Abstract
States along the phosphoryl transfer reaction catalyzed by the nucleoside monophosphate kinase UmpK were captured and changes in the conformational heterogeneity of conserved active site arginine side‐chains were quantified by NMR spin‐relaxation methods. In addition to apo and ligand‐bound UmpK, a transition state analog (TSA) complex was utilized to evaluate the extent to which active site conformational entropy contributes to the transition state free energy. The catalytically essential arginine side‐chain guanidino groups were found to be remarkably rigid in the TSA complex, indicating that the enzyme has evolved to restrict the conformational freedom along its reaction path over the energy landscape, which in turn allows the phosphoryl transfer to occur selectively by avoiding side reactions.
Collapse
Affiliation(s)
- Cathleen Zeymer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Nicolas D Werbeck
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sabine Zimmermann
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Jochen Reinstein
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.
| | - D Flemming Hansen
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|