1
|
Zhong Z, Du G, Ma L, Wang Y, Jiang J. Self-Assembly of Lamellae-in-Lamellae by Double-Tail Cationic Surfactants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401210. [PMID: 38751126 PMCID: PMC11267300 DOI: 10.1002/advs.202401210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Indexed: 07/25/2024]
Abstract
The molecular structures of surfactants play a pivotal role in influencing their self-assembly behaviors. In this work, using simulations and experiments, an unconventional hierarchically layered structure in the didodecyldimethylammonium bromide (DDAB)/water binary system: lamellae-in-lamellae is revealed, a new self-assembly structure in surfactant system. This self-assembly structure refers to a lamellar structure with a shorter periodic length (inner lamellae) embedded in a lamellar phase with a longer periodic length (outer lamellae). The normal vectors of these two lamellar regions orient perpendicularly. In addition, it is observed that this lamellar-in-lamellar phase disappears when the two tails of the cationic surfactants become longer. The formation of the lamellar-in-lamellar architecture arises from multiple interacting factors. The key element is that the short tails of the DDAB surfactants enhance hydrophilicity and rigidity, which facilitates the formation of the inner lamellae. Moreover, the lateral monolayer of the inner lamellae provides shielding from the water and prompts the formation of the outer lamellae. These findings indicate that molecular structures and flexibility can profoundly redirect the hierarchical self-assembly behaviors in amphiphilic systems. More broadly, this work presents a new strategy to deliberately program hierarchical nanomaterials by designing specific surfactant molecules to act as tunable scaffolds, reactors, and carriers.
Collapse
Affiliation(s)
- Zhixuan Zhong
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Guanqun Du
- CAS Key Laboratory of ColloidInterface and Chemical ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesBeijing National Laboratory for Molecular ScienceInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Linbo Ma
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yilin Wang
- University of Chinese Academy of SciencesBeijing100049P. R. China
- CAS Key Laboratory of ColloidInterface and Chemical ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesBeijing National Laboratory for Molecular ScienceInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Jian Jiang
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
2
|
van Westerveld L, Es Sayed J, de Graaf M, Hofman AH, Kamperman M, Parisi D. Hydrophobically modified complex coacervates for designing aqueous pressure-sensitive adhesives. SOFT MATTER 2023; 19:8832-8848. [PMID: 37947361 DOI: 10.1039/d3sm01114c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The rheology of complex coacervates can be elegantly tuned via the design and control of specific non-covalent hydrophobic interactions between the complexed polymer chains. The well-controlled balance between elasticity and energy dissipation makes complex coacervates perfect candidates for pressure-sensitive adhesives (PSAs). In this work, the polyanion poly(3-sulfopropyl methacrylate) (PSPMA) and the polycation quaternized poly(4-vinylpyridine) (QP4VP) were used to prepare complex coacervates in water. Progressive increase of hydrophobicity is introduced to the polyanion via partial deprotection of the protected precursor. Hence, the polymer chains in the complex coacervates can interact via both electrostatic (controlled by the amount of salt) and hydrophobic (controlled by the deprotection degree) interactions. It was observed that: (i) a rheological time-salt-hydrophobicity superposition principle is applicable, and can be used as a predictive tool for rheology, (ii) the slowdown of the stress relaxation dynamics, due to the increase of hydrophobic stickers (lower deprotection degree), can be captured by the sticky-Rouse model, and (iii) the systematic variation of hydrophobic stickers, amount of salt, and molecular weight of the polymers, enables the identification of optimizing parameters to design aqueous PSA systems. The presented results offer new pathways to control the rheology of complex coacervates and their applicability as PSAs.
Collapse
Affiliation(s)
- Larissa van Westerveld
- Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Julien Es Sayed
- Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Marijn de Graaf
- Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Anton H Hofman
- Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Marleen Kamperman
- Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Daniele Parisi
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
3
|
Shao Y, Hou B, Li W, Yan X, Wang X, Xu Y, Dong Q, Li W, He J, Zhang WB. Three-Component Bolaform Giant Surfactants Forming Lamellar Nanopatterns with Sub-5 nm Feature Sizes. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Yu Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Bo Hou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Weiyi Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiaojin Yan
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoge Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yuchun Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Qingshu Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
4
|
Competitive hydrogen bonding induced phase separation in supramolecular comb-shaped diblock copolymer. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Golkaram M, Portale G, Mulder P, Maniar D, Faraji S, Loos K. Order–disorder transition in supramolecular polymer combs/brushes with polymeric side chains. Polym Chem 2020. [DOI: 10.1039/c9py01915d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three groups of supramolecular comb/brush polymers with polymeric side chains are developed, showing different mechanical properties and morphologies.
Collapse
Affiliation(s)
- Milad Golkaram
- Macromolecular Chemistry and New Polymeric Materials
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Giuseppe Portale
- Macromolecular Chemistry and New Polymeric Materials
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Pascal Mulder
- Macromolecular Chemistry and New Polymeric Materials
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Dina Maniar
- Macromolecular Chemistry and New Polymeric Materials
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Shirin Faraji
- Theoretical Chemistry Group
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Katja Loos
- Macromolecular Chemistry and New Polymeric Materials
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
6
|
Organic acids interacting with block copolymers have broadened the window that retains isoporous structures. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Quintieri G, Saccone M, Spengler M, Giese M, Gröschel AH. Supramolecular Modification of ABC Triblock Terpolymers in Confinement Assembly. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1029. [PMID: 30544769 PMCID: PMC6315710 DOI: 10.3390/nano8121029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/18/2022]
Abstract
The self-assembly of AB diblock copolymers in three-dimensional (3D) soft confinement of nanoemulsions has recently become an attractive bottom up route to prepare colloids with controlled inner morphologies. In that regard, ABC triblock terpolymers show a more complex morphological behavior and could thus give access to extensive libraries of multicompartment microparticles. However, knowledge about their self-assembly in confinement is very limited thus far. Here, we investigated the confinement assembly of polystyrene-block-poly(4-vinylpyridine)-block-poly(tert-butyl methacrylate) (PS-b-P4VP-b-PT or SVT) triblock terpolymers in nanoemulsion droplets. Depending on the block weight fractions, we found spherical microparticles with concentric lamella⁻sphere (ls) morphology, i.e., PS/PT lamella intercalated with P4VP spheres, or unusual conic microparticles with concentric lamella⁻cylinder (lc) morphology. We further described how these morphologies can be modified through supramolecular additives, such as hydrogen bond (HB) and halogen bond (XB) donors. We bound donors to the 4VP units and analyzed changes in the morphology depending on the binding strength and the length of the alkyl tail. The interaction with the weaker donors resulted in an increase in volume of the P4VP domains, which depends upon the molar fraction of the added donor. For donors with a high tendency of intermolecular packing, a visible change in the morphology was observed. This ultimately caused a shape change in the microparticle. Knowledge about how to control inner morphologies of multicompartment microparticles could lead to novel carbon supports for catalysis, nanoparticles with unprecedented topologies, and potentially, reversible shape changes by light actuation.
Collapse
Affiliation(s)
- Giada Quintieri
- Physical Chemistry, University of Duisburg-Essen, 47057 Duisburg, Germany.
| | - Marco Saccone
- Organic Chemistry, University of Duisburg-Essen, 41125 Essen, Germany.
| | - Matthias Spengler
- Organic Chemistry, University of Duisburg-Essen, 41125 Essen, Germany.
| | - Michael Giese
- Organic Chemistry, University of Duisburg-Essen, 41125 Essen, Germany.
| | - André H Gröschel
- Physical Chemistry, University of Duisburg-Essen, 47057 Duisburg, Germany.
- Center for Nanointegration Duisburg Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany.
| |
Collapse
|
8
|
Hofman A, Terzic I, Stuart MCA, ten Brinke G, Loos K. Hierarchical Self-Assembly of Supramolecular Double-Comb Triblock Terpolymers. ACS Macro Lett 2018; 7:1168-1173. [PMID: 30356968 PMCID: PMC6195812 DOI: 10.1021/acsmacrolett.8b00570] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Involving supramolecular chemistry in self-assembling block copolymer systems enables design of macromolecular architectures that are challenging to obtain through conventional all-covalent routes. In this work we present supramolecular double-comb triblock terpolymers in which both outer blocks are able to interact with a surfactant via hydrogen bonding and thereby form a comb-shaped architecture upon complexation. While the neat triblock terpolymer only formed a triple lamellar morphology, multiple hierarchical structures were observed in these supramolecular comb-coil-comb triblock terpolymers by simply adjusting the surfactant concentration. Structures included spheres on tetragonally packed cylinders-in-lamellae and spheres on double parallel lamellae-in-lamellae, as evidenced by electron microscopy and X-ray scattering. Incorporation of a middle coil block thus allowed an even higher macromolecular complexity than the previously reported double-comb diblock copolymers.
Collapse
Affiliation(s)
- Anton
H. Hofman
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ivan Terzic
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marc C. A. Stuart
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Electron
Microscopy Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Gerrit ten Brinke
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Katja Loos
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Wu Y, Tan H, Yang Y, Li Y, Xu J, Zhang L, Zhu J. Regulating Block Copolymer Assembly Structures in Emulsion Droplets through Metal Ion Coordination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11495-11502. [PMID: 30149715 DOI: 10.1021/acs.langmuir.8b02135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this report, we demonstrate the metal ion coordination-induced morphological transition of block copolymer assemblies under three-dimensional (3D) confinement. Polystyrene- block-poly(4-vinyl pyridine) (PS- b-P4VP) aggregates with various morphologies can be obtained by emulsion-solvent evaporation in the presence of metal ions (e.g., Pb(II) or Fe(III) ions) in the aqueous phase. Due to the coordination interaction between 4VP units and metal ions, the overall shape, internal structure, and surface composition of the particles can be tailored by varying the type and concentration of the metal ions. For example, when Pb(II) ions were employed, morphological transition of the assemblies occurred due to the formation of P4VP-Pb(II) complexes. More interestingly, when Fe(III) ions were added, hydrolysis of Fe(III) caused the reduction of the pH value of the aqueous phase, leading to the protonation of 4VP units. As a result, interfacial instability took place to trigger the splitting of emulsion droplets and then formation of nanosized micelles. Therefore, metal ion coordination is a facile strategy to tune the structure of assemblies under 3D confinement and offers an alternative approach for the design of organic-inorganic hybrid assemblies with well-tunable structures.
Collapse
Affiliation(s)
| | | | | | | | | | - Lixiong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | | |
Collapse
|
10
|
Yu DM, Mapas JKD, Kim H, Choi J, Ribbe AE, Rzayev J, Russell TP. Evaluation of the Interaction Parameter for Poly(solketal methacrylate)-block-polystyrene Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02221] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Duk Man Yu
- Department
of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Jose Kenneth D. Mapas
- Department
of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Hyeyoung Kim
- Department
of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Jaewon Choi
- Department
of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Alexander E. Ribbe
- Department
of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Javid Rzayev
- Department
of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Thomas P. Russell
- Department
of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
- Materials
Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Beijing
Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Lin FY, Cheng CY, Chuang YH, Tung SH. Polymersomes with high loading capacity prepared by direct self-assembly of block copolymers in drugs. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.11.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Wu Y, Wang K, Tan H, Xu J, Zhu J. Emulsion Solvent Evaporation-Induced Self-Assembly of Block Copolymers Containing pH-Sensitive Block. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9889-9896. [PMID: 28836788 DOI: 10.1021/acs.langmuir.7b02330] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A simple yet efficient method is developed to manipulate the self-assembly of pH-sensitive block copolymers (BCPs) confined in emulsion droplets. Addition of acid induces significant variation in morphological transition (e.g., structure and surface composition changes) of the polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) assemblies, due to the hydrophobic-hydrophilic transition of the pH-sensitive P4VP block via protonation. In the case of pH > pKa(P4VP) (pKa (P4VP) = 4.8), the BCPs can self-assemble into pupa-like particles because of the nearly neutral wetting of PS and P4VP blocks at the oil/water interface. As expected, onion-like particles obtained when pH is slightly lower than pKa(P4VP) (e.g., pH = 3.00), due to the interfacial affinity to the weakly hydrophilic P4VP block. Interestingly, when pH was further decreased to ∼2.5, interfacial instability of the emulsion droplets was observed, and each emulsion droplet generated nanoscale assemblies including vesicles, worm-like and/or spherical micelles rather than a nanostructured microparticle. Furthermore, homopolymer with different molecular weights and addition ratio are employed to adjust the interactions among copolymer blocks. By this means, particles with hierarchical structures can be obtained. Moreover, owing to the kinetically controlled processing, we found that temperature and stirring speed, which can significantly affect the kinetics of the evaporation of organic solvent and the formation of particles, played a key role in the morphology of the assemblies. We believe that manipulation of the property for the aqueous phase is a promising strategy to rationally design and fabricate polymeric assemblies with desirable shapes and internal structures.
Collapse
Affiliation(s)
| | | | | | | | - Jintao Zhu
- Shenzhen Research Institute of HUST , Shenzhen 518000, China
| |
Collapse
|
13
|
Dami S, Abetz C, Fischer B, Radjabian M, Georgopanos P, Abetz V. A correlation between structural features of an amphiphilic diblock copolymer in solution and the structure of the porous surface in an integral asymmetric membrane. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.05.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Hofman AH, Reza M, Ruokolainen J, Ten Brinke G, Loos K. The Origin of Hierarchical Structure Formation in Highly Grafted Symmetric Supramolecular Double-Comb Diblock Copolymers. Macromol Rapid Commun 2017; 38. [PMID: 28749009 DOI: 10.1002/marc.201700288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/11/2017] [Indexed: 01/18/2023]
Abstract
Involving supramolecular chemistry in self-assembling block copolymer systems enables design of complex macromolecular architectures that, in turn, could lead to complex phase behavior. It is an elegant route, as complicated and sensitive synthesis techniques can be avoided. Highly grafted double-comb diblock copolymers based on symmetric double hydrogen bond accepting poly(4-vinylpyridine)-block-poly(N-acryloylpiperidine) diblock copolymers and donating 3-nonadecylphenol amphiphiles are realized and studied systematically by changing the molecular weight of the copolymer. Double perpendicular lamellae-in-lamellae are formed in all complexes, independent of the copolymer molecular weight. Temperature-resolved measurements demonstrate that the supramolecular nature and ability to crystallize are responsible for the formation of such multiblock-like structures. Because of these driving forces and severe plasticization of the complexes in the liquid crystalline state, this supramolecular approach can be useful for steering self-assembly of both low- and high-molecular-weight block copolymer systems.
Collapse
Affiliation(s)
- Anton H Hofman
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Mehedi Reza
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076, Aalto, Finland
| | - Janne Ruokolainen
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076, Aalto, Finland
| | - Gerrit Ten Brinke
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Katja Loos
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| |
Collapse
|
15
|
Hofman AH, ten Brinke G, Loos K. Asymmetric supramolecular double-comb diblock copolymers: From plasticization, to confined crystallization, to breakout. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.05.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
|