1
|
O’Reilly RJ, Karton A. A Systematic Exploration of B-F Bond Dissociation Enthalpies of Fluoroborane-Type Molecules at the CCSD(T)/CBS Level. Molecules 2023; 28:5707. [PMID: 37570677 PMCID: PMC10420309 DOI: 10.3390/molecules28155707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Fluoroborane-type molecules (R1R2B-F) are of interest in synthetic chemistry, but to date, apart from a handful of small species (such as H2BF, HBF2, and BF3), little is known concerning the effect of substituents in governing the strength of the B-F bonds of such species toward homolytic dissociation in the gas phase. In this study, we have calculated the bond dissociation enthalpies (BDEs) of thirty unique B-F bonds at the CCSD(T)/CBS level using the high-level W1w thermochemical protocol. The B-F bonds in all species considered are very strong, ranging from 545.9 kJ mol-1 in (H2B)2B-F to 729.2 kJ mol-1 HBF2. Nevertheless, these BDEs still vary over a wide range of 183.3 kJ mol-1. The structural properties that affect the BDEs are examined in detail, and the homolytic BDEs are rationalized based on molecule stabilization enthalpies and radical stabilization enthalpies. Since polar B-F bonds may represent a challenging test case for density functional theory (DFT) methods, we proceed to examine the performance of a wide range of DFT methods across the rungs of Jacob's Ladder for their ability to compute B-F BDEs. We find that only a handful of DFT methods can reproduce the CCSD(T)/CBS BDEs with mean absolute deviations (MADs) below the threshold of chemical accuracy (i.e., with average deviations below 4.2 kJ mol-1). The only functionals capable of achieving this feat were (MADs given in parentheses): ωB97M-V (4.0), BMK (3.5), DSD-BLYP (3.8), and DSD-PBEB95 (1.8 kJ mol-1).
Collapse
Affiliation(s)
- Robert J. O’Reilly
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Amir Karton
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
2
|
Henkel S, Merini MP, Mendez-Vega E, Sander W. Lewis acid catalyzed heavy atom tunneling - the case of 1 H-bicyclo[3.1.0]-hexa-3,5-dien-2-one. Chem Sci 2021; 12:11013-11019. [PMID: 34522298 PMCID: PMC8386641 DOI: 10.1039/d1sc02853g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022] Open
Abstract
For many thermal reactions, the effects of catalysis or the influence of solvents on reaction rates can be rationalized by simple transition state models. This is not the case for reactions controlled by quantum tunneling, which do not proceed via transition states, and therefore lack the simple concept of transition state stabilization. 1H-Bicyclo[3.1.0]-hexa-3,5-dien-2-one is a highly strained cyclopropene that rearranges to 4-oxocyclohexa-2,5-dienylidene via heavy-atom tunneling. H2O, CF3I, or BF3 form Lewis acid–base complexes with both reactant and product, and the influence of these intermolecular complexes on the tunneling rates for this rearrangement was studied. The tunneling rate increases by a factor of 11 for the H2O complex, by 23 for the CF3I complex, and is too fast to be measured for the BF3 complex. These observations agree with quantum chemical calculations predicting a decrease in both barrier height and barrier width upon complexation with Lewis acids, resulting in the observed Lewis acid catalysis of the tunneling rearrangement. The ring-opening of a highly strained cyclopropene to a carbene proceeds via heavy-atom tunneling. This rearrangement is accelerated in the presence of H2O, ICF3 or BF3, resulting in a novel Lewis-acid catalyzed tunneling reaction.![]()
Collapse
Affiliation(s)
- Stefan Henkel
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum 44801 Bochum Germany
| | - Melania Prado Merini
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum 44801 Bochum Germany
| | - Enrique Mendez-Vega
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum 44801 Bochum Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum 44801 Bochum Germany
| |
Collapse
|
3
|
I-Ting T, Montero-Campillo MM, Alkorta I, Elguero J, Yáñez M. Large Stabilization Effects by Intramolecular Beryllium Bonds in Ortho-Benzene Derivatives. Molecules 2021; 26:molecules26113401. [PMID: 34199746 PMCID: PMC8199991 DOI: 10.3390/molecules26113401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Intramolecular interactions are shown to be key for favoring a given structure in systems with a variety of conformers. In ortho-substituted benzene derivatives including a beryllium moiety, beryllium bonds provide very large stabilizations with respect to non-bound conformers and enthalpy differences above one hundred kJ·mol−1 are found in the most favorable cases, especially if the newly formed rings are five or six-membered heterocycles. These values are in general significantly larger than hydrogen bonds in 1,2-dihidroxybenzene. Conformers stabilized by a beryllium bond exhibit the typical features of this non-covalent interaction, such as the presence of a bond critical point according to the topology of the electron density, positive Laplacian values, significant geometrical distortions and strong interaction energies between the donor and acceptor quantified by using the Natural Bond Orbital approach. An isodesmic reaction scheme is used as a tool to measure the strength of the beryllium bond in these systems in terms of isodesmic energies (analogous to binding energies), interaction energies and deformation energies. This approach shows that a huge amount of energy is spent on deforming the donor–acceptor pairs to form the new rings.
Collapse
Affiliation(s)
- Tsai I-Ting
- Departamento de Química, Módulo 13, Facultad de Ciencias, and Institute of Advanced Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain;
| | - M. Merced Montero-Campillo
- Departamento de Química, Módulo 13, Facultad de Ciencias, and Institute of Advanced Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain;
- Correspondence: (M.M.M.-C.); (I.A.); (M.Y.)
| | - Ibon Alkorta
- Instituto de Química Médica, IQM-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain;
- Correspondence: (M.M.M.-C.); (I.A.); (M.Y.)
| | - José Elguero
- Instituto de Química Médica, IQM-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain;
| | - Manuel Yáñez
- Departamento de Química, Módulo 13, Facultad de Ciencias, and Institute of Advanced Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain;
- Correspondence: (M.M.M.-C.); (I.A.); (M.Y.)
| |
Collapse
|
4
|
Raut AH, Costa P, Sander W. Reactions of Arylcarbenes with Lewis Acids. Chemistry 2018; 24:18043-18051. [PMID: 30230615 DOI: 10.1002/chem.201803695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 11/10/2022]
Abstract
The reactions of the three triplet ground state arylcarbenes diphenylcarbene 1, fluorenylidene 2, and dibenzocycloheptadienylidene 3 with the Lewis acids H2 O, ICF3 , and BF3 were studied under the conditions of matrix isolation. H2 O was selected as typical hydrogen bond donor, ICF3 as halogen bond donor, and BF3 as strong Lewis acid. H2 O forms hydrogen-bonded complexes of the singlet carbenes with 1 and 2, but not with 3. This is rationalized by the larger singlet-triplet gap of 3, which does not allow to stabilize the singlet state below the triplet state by hydrogen bonding. With ICF3 , both 1 and 3 form halogen-bonded complexes of the singlet states of the carbenes. This indicates that halogen bonding stabilizes singlet carbenes more than hydrogen bonding. Carbene 2 reacts differently from 1 and 3 by forming an iodonium ylide, thus avoiding antiaromatic destabilization of the fluorenyl unit. With BF3 , all three carbenes form zwitterionic Lewis acid/base complexes.
Collapse
Affiliation(s)
- Akshay Hemant Raut
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44781, Bochum, Germany
| | - Paolo Costa
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44781, Bochum, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44781, Bochum, Germany
| |
Collapse
|
5
|
Mendez‐Vega E, Maehara M, Raut AH, Mieres‐Perez J, Tsuge M, Lee Y, Sander W. Activation of Molecular Hydrogen by Arylcarbenes. Chemistry 2018; 24:18801-18808. [DOI: 10.1002/chem.201804657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Enrique Mendez‐Vega
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| | - Mika Maehara
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| | - Akshay Hemant Raut
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| | - Joel Mieres‐Perez
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| | - Masashi Tsuge
- Department of Applied Chemistry and Institute of Molecular ScienceNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Yuan‐Pern Lee
- Department of Applied Chemistry and Institute of Molecular ScienceNational Chiao Tung University Hsinchu 30010 Taiwan
- Center for Emergent Functional Matter ScienceNational Chiao Tung University, Hsinchu 30010 (Taiwan)Institute of Atomic and Molecular SciencesAcademia Sinica Taipei 10617 Taiwan
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| |
Collapse
|
6
|
Mieres-Perez J, Costa P, Mendez-Vega E, Crespo-Otero R, Sander W. Switching the Spin State of Pentafluorophenylnitrene: Isolation of a Singlet Arylnitrene Complex. J Am Chem Soc 2018; 140:17271-17277. [DOI: 10.1021/jacs.8b10792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joel Mieres-Perez
- Lehrstuhl für Organische Chemie II, Ruhr Universität Bochum, 44780 Bochum, Germany
| | - Paolo Costa
- Lehrstuhl für Organische Chemie II, Ruhr Universität Bochum, 44780 Bochum, Germany
| | - Enrique Mendez-Vega
- Lehrstuhl für Organische Chemie II, Ruhr Universität Bochum, 44780 Bochum, Germany
| | - Rachel Crespo-Otero
- School of Biological and Chemical Sciences, Queen Mary University London, Mile End Road, London E1 4NS, U.K
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
7
|
Xu ZF, Dai H, Shan L, Li CY. Metal-Free Synthesis of (E)-Monofluoroenamine from 1-Sulfonyl-1,2,3-triazole and Et 2O·BF 3 via Stereospecific Fluorination of α-Diazoimine. Org Lett 2018; 20:1054-1057. [PMID: 29400973 DOI: 10.1021/acs.orglett.7b04014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general, stereospecific, and straightforward method for the rapid preparation of functionalized (E)-monofluoroenamines is reported. Rather than transition metals (Rh, Ni, Pd, Cu, Ag, etc.), Et2O·BF3 was employed to promote the formation of α-diazoimine through the Dimroth equilibrium of common 1-sulfonyl-1,2,3-triazole for the first time. An overall migration of fluoride from boron to the diazo-linked carbon of α-diazoimine was achieved. Derivations and late-stage modification of bioactive molecule were conducted. A plausible mechanism was also proposed.
Collapse
Affiliation(s)
- Ze-Feng Xu
- Department of Chemistry, Zhejiang Sci-Tech University , Xiasha West Higher Education District, Hangzhou, 310018, China
| | - Haican Dai
- Department of Chemistry, Zhejiang Sci-Tech University , Xiasha West Higher Education District, Hangzhou, 310018, China
| | - Lihong Shan
- Department of Chemistry, Zhejiang Sci-Tech University , Xiasha West Higher Education District, Hangzhou, 310018, China
| | - Chuan-Ying Li
- Department of Chemistry, Zhejiang Sci-Tech University , Xiasha West Higher Education District, Hangzhou, 310018, China
| |
Collapse
|
8
|
|
9
|
Costa P, Trosien I, Mieres-Perez J, Sander W. Isolation of an Antiaromatic Singlet Cyclopentadienyl Zwitterion. J Am Chem Soc 2017; 139:13024-13030. [DOI: 10.1021/jacs.7b05807] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paolo Costa
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Iris Trosien
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Joel Mieres-Perez
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
10
|
Braunschweig H, Brückner T, Deißenberger A, Dewhurst RD, Gackstatter A, Gärtner A, Hofmann A, Kupfer T, Prieschl D, Thiess T, Wang SR. Reaction of Dihalodiboranes(4) with a N‐Heterocyclic Silylene: Facile Construction of 1‐Aryl‐2‐Silyl‐1,2‐Diboraindanes. Chemistry 2017; 23:9491-9494. [DOI: 10.1002/chem.201702377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Holger Braunschweig
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry and Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Tobias Brückner
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry and Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Andrea Deißenberger
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry and Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Rian D. Dewhurst
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry and Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Annika Gackstatter
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry and Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Annalena Gärtner
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry and Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexander Hofmann
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry and Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Thomas Kupfer
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry and Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Dominic Prieschl
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry and Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Torsten Thiess
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry and Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Sunewang Rixin Wang
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry and Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|