1
|
Wang J, Wang W, Huang H, Ma Z, Chang M. Direct synthesis of chiral β-arylamines via additive-free asymmetric reductive amination enabled by tunable bulky phosphoramidite ligands. Chem Sci 2024:d4sc04416a. [PMID: 39268211 PMCID: PMC11388092 DOI: 10.1039/d4sc04416a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
This report describes an additive-free iridium-catalyzed direct asymmetric reductive amination that enables the efficient synthesis of chiral β-arylamines, which are important pharmacophores present in a wide variety of pharmaceutical drugs. The reaction makes use of bulky and tunable phosphoramidite ligands for high levels of enantiomeric control, even for alkylamino coupling partners which lack secondary coordinating sites. The synthetic value of this succinct procedure is demonstrated by single-step synthesis of multiple drugs, analogs and key intermediates. Mechanistic investigations reveal an enamine-reduction pathway, in which H-bonding, steric repulsion, and CH-π and electrostatic interactions play important roles in defining the spatial environment for the "outer-sphere" hydride addition.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry & Pharmacy, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 PR China
| | - Wenji Wang
- College of Chemistry & Pharmacy, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 PR China
| | - Haizhou Huang
- College of Chemistry & Pharmacy, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 PR China
| | - Zhiqing Ma
- College of Plant Protection, Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 PR China
| | - Mingxin Chang
- College of Chemistry & Pharmacy, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 PR China
- College of Plant Protection, Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 PR China
| |
Collapse
|
2
|
Li B, Zhou G, Zhang D, Yao L, Li M, Yang G, Zhang S, Nie H. Spiro-Josiphos Ligands for the Ir-Catalyzed Asymmetric Synthesis of Chiral Amines under Hydrogenation Conditions. Org Lett 2024; 26:2097-2102. [PMID: 38437523 DOI: 10.1021/acs.orglett.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Transition metal-catalyzed asymmetric hydrogenation possesses unparalleled advantages to prepare chiral amines. Here we reported a novel ligand that combined Josiphos and a spirobiindane scaffold and simultaneously investigated its application in Ir-catalyzed asymmetric hydrogenation for the synthesis of chiral amines. Excellent catalytic activity (5000 TON), high enantioselectivity (up to 99% ee), and broad substrate scope (different C═N substrates) make it highly promising for both academic research and industrial applications.
Collapse
Affiliation(s)
- Bin Li
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiao-tong University, Xi'an 710049, China
| | - Gang Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Dongxu Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Lin Yao
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Muqiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Guidong Yang
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiao-tong University, Xi'an 710049, China
| | - Shengyong Zhang
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiao-tong University, Xi'an 710049, China
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Huifang Nie
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
3
|
Xie J, Long ZQ, Chen AQ, Ding YG, Liu ST, Zhou X, Liu LW, Yang S. Novel Sulfonamide Derivatives Containing a Piperidine Moiety as New Bactericide Leads for Managing Plant Bacterial Diseases. Int J Mol Sci 2023; 24:ijms24065861. [PMID: 36982936 PMCID: PMC10054644 DOI: 10.3390/ijms24065861] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Plant bacterial diseases are an intractable problem due to the fact that phytopathogens have acquired strong resistances for traditional pesticides, resulting in restricting the quality and yield of agricultural products around the world. To develop new agrochemical alternatives, we prepared a novel series of sulfanilamide derivatives containing piperidine fragments and assessed their antibacterial potency. The bioassay results revealed that most molecules displayed excellent in vitro antibacterial potency towards Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas axonopodis pv. citri (Xac). In particular, molecule C4 exhibited outstanding inhibitory activity toward Xoo with EC50 value of 2.02 µg mL-1, which was significantly better than those of the commercial agents bismerthiazol (EC50 = 42.38 µg mL-1) and thiodiazole copper (EC50 = 64.50 µg mL-1). A series of biochemical assays confirmed that compound C4 interacted with dihydropteroate synthase, and irreversibly damaged the cell membrane. In vivo assays showed that the molecule C4 presented acceptable curative and protection activities of 34.78% and 39.83%, respectively, at 200 µg mL-1, which were greater than those of thiodiazole and bismerthiazol. This study highlights the valuable insights for the excavation and development of new bactericides that can concurrently target dihydropteroate synthase and bacterial cell membranes.
Collapse
Affiliation(s)
- Jiao Xie
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhou-Qing Long
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ai-Qun Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ying-Guo Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shi-Tao Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Xie R, Liu C, Lin R, Zhang R, Huang H, Chang M. 1,2-Diamines as the Amine Sources in Amidation and Rhodium-Catalyzed Asymmetric Reductive Amination Cascade Reactions. Org Lett 2022; 24:5646-5650. [PMID: 35916628 DOI: 10.1021/acs.orglett.2c01728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sturdy chelation of 1,2-diamines and transition-metals would retard or even interrupt the routine catalytic cycles. In the amidation and asymmetric reductive amination (ARA) cascade reactions of diamines and ketoesters, we deployed sets of additives to ensure a smooth transformation catalyzed by the complexes of rhodium and versatile and highly modular phosphoramidite-phosphine ligands. The tunability of the ligands was fully exploited to accommodate various diamines and α-ketoesters for the efficient synthesis of chiral 3,4-dihydroquinoxalinones.
Collapse
Affiliation(s)
- Rongrong Xie
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cungang Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Renwei Lin
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Runchen Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haizhou Huang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxin Chang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.,College of Plant Protection, Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Liu Y, Wang L, Li Y, Ma B, Chen GQ, Zhang X. Highly efficient synthesis of chiral β-amino phosphine derivatives via direct asymmetric reductive amination with ammonium salts and H2. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
6
|
Hu L, Wang Y, Xu L, Yin Q, Zhang X. Highly Enantioselective Synthesis of N‐Unprotected Unnatural α‐Amino Acid Derivatives by Ruthenium‐Catalyzed Direct Asymmetric Reductive Amination. Angew Chem Int Ed Engl 2022; 61:e202202552. [DOI: 10.1002/anie.202202552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Le'an Hu
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- Medi-X Pingshan Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Yuan‐Zheng Wang
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- Medi-X Pingshan Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Lei Xu
- Shenzhen Institute of Advanced Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Shenzhen Guangdong 518055 P. R. China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Shenzhen Guangdong 518055 P. R. China
| | - Xumu Zhang
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- Medi-X Pingshan Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
7
|
Wu Z, Wang W, Guo H, Gao G, Huang H, Chang M. Iridium-catalyzed direct asymmetric reductive amination utilizing primary alkyl amines as the N-sources. Nat Commun 2022; 13:3344. [PMID: 35688909 PMCID: PMC9187633 DOI: 10.1038/s41467-022-31045-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Direct asymmetric reductive amination is one of the most efficient methods for the construction of chiral amines, in which the scope of the applicable amine coupling partners remains a significant challenge. In this study we describe primary alkyl amines effectively serve as the N-sources in direct asymmetric reductive amination catalyzed by the iridium precursor and sterically tunable chiral phosphoramidite ligands. The density functional theory studies of the reaction mechanism imply the alkyl amine substrates serve as a ligand of iridium strengthened by a (N)H-O(P) hydrogen-bonding attraction, and the hydride addition occurs via an outer-sphere transition state, in which the Cl-H H-bonding plays an important role. Through this concise procedure, cinacalcet, tecalcet, fendiline and many other related chiral amines have been synthesized in one single step with high yields and excellent enantioselectivity. Direct asymmetric reductive amination is one of the most efficient methods for obtaining chiral amines. Here the authors show how primary alkyl amines can undergo this transformation in the presence of an iridium catalyst with sterically tuneable chiral phosphoramidite ligands, achieving the synthesis of pharmaceutical compounds.
Collapse
Affiliation(s)
- Zitong Wu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.,College of Plant Protection, Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenji Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haodong Guo
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guorui Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, 88 Wenhuadong Road, Jinan, 250014, China
| | - Haizhou Huang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingxin Chang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China. .,College of Plant Protection, Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Hu L, Wang YZ, Xu L, Yin Q, Zhang X. Highly Enantioselective Synthesis of N‐Unprotected Unnatural α‐Amino Acid Derivatives by Ruthenium‐Catalyzed Direct Asymmetric Reductive Amination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Le’an Hu
- Southern University of Science and Technology Chemistry CHINA
| | - Yuan-Zheng Wang
- Southern University of Science and Technology Chemistry CHINA
| | - Lei Xu
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Faculty of Pharmaceutical Sciences CHINA
| | - Qin Yin
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Faculty of Pharmaceutical Sciences CHINA
| | - Xumu Zhang
- Southern University of Science and Technology Chemistry 1088 Xueyuan Avenue 518055 Shenzhen CHINA
| |
Collapse
|
9
|
Cabré A, Verdaguer X, Riera A. Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation. Chem Rev 2022; 122:269-339. [PMID: 34677059 PMCID: PMC9998038 DOI: 10.1021/acs.chemrev.1c00496] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chiral amines are key structural motifs present in a wide variety of natural products, drugs, and other biologically active compounds. During the past decade, significant advances have been made with respect to the enantioselective synthesis of chiral amines, many of them based on catalytic asymmetric hydrogenation (AH). The present review covers the use of AH in the synthesis of chiral amines bearing a stereogenic center either in the α, β, or γ position with respect to the nitrogen atom, reported from 2010 to 2020. Therefore, we provide an overview of the recent advances in the AH of imines, enamides, enamines, allyl amines, and N-heteroaromatic compounds.
Collapse
Affiliation(s)
- Albert Cabré
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Xavier Verdaguer
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Antoni Riera
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| |
Collapse
|
10
|
Shi Y, Wang J, Yang F, Wang C, Zhang X, Chiu P, Yin Q. Direct asymmetric reductive amination of α-keto acetals: a platform for synthesizing diverse α-functionalized amines. Chem Commun (Camb) 2021; 58:513-516. [PMID: 34897338 DOI: 10.1039/d1cc06601c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report an efficient and straightforward method to synthesize enantio-enriched N-unprotected α-amino acetals via ruthenium-catalyzed direct asymmetric reductive amination. The α-amino acetal products are versatile and valuable platform molecules that can be converted to the corresponding α-amino acids, amino alcohols, and other derivatives by convenient transformations.
Collapse
Affiliation(s)
- Yongjie Shi
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China. .,Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
| | - Jingxin Wang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Feifan Yang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chenhan Wang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China. .,Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pauline Chiu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
11
|
Reshi NUD, Saptal VB, Beller M, Bera JK. Recent Progress in Transition-Metal-Catalyzed Asymmetric Reductive Amination. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04208] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Noor U Din Reshi
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Vitthal B. Saptal
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Matthias Beller
- Leibniz-Institut fr Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Jitendra K. Bera
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
12
|
|
13
|
Yang WL, Liu TT, Ni T, Zhu B, Luo X, Deng WP. Iridium-Catalyzed Asymmetric Cascade Allylation/Pictet-Spengler Cyclization Reaction for the Enantioselective Synthesis of 1,3,4-Trisubstituted Tetrahydroisoquinolines. Org Lett 2021; 23:2790-2796. [PMID: 33734718 DOI: 10.1021/acs.orglett.1c00709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An iridium-catalyzed trifluoroacetic acid-promoted asymmetric cascade allylation/Pictet-Spengler cyclization reaction of azomethine ylides with aromatic allylic alcohols is reported. This protocol provides a facile and scalable method for the construction of 1,3,4-trisubstituted tetrahydroisoquinolines containing two stereogenic centers in good yields (up to 96%) with generally excellent diastereo- and enantioselectivities (up to >20:1 dr and >99% ee). Furthermore, a series of aromatic heterocycle-fused piperidines were also obtained with excellent enantiocontrol by this methodology.
Collapse
|
14
|
Li WS, Kuo TS, Wu PY, Chen CT, Wu HL. Enantioselective Synthesis of 1-Aryl Tetrahydroisoquinolines by the Rhodium-Catalyzed Reaction of 3,4-Dihydroisoquinolinium Tetraarylborates. Org Lett 2021; 23:1141-1146. [PMID: 33492973 DOI: 10.1021/acs.orglett.1c00198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 1-aryl tetrahydroisoquinolines (1-aryl THIQs) are omnipresent in biologically active molecules. Here we report on the direct asymmetric synthesis of these valuable compounds via the reaction of 3,4-dihydroisoquinolinium tetraarylborates. The dual roles of anionic tetraarylborates, which function as both prenucleophiles and stabilizers of 3,4-dihydroisoquinolinium cations, enable this rhodium(I)-catalyzed protocol to convergently provide enantioenriched 1-aryl THIQs in good yields (≤95%) with ≤97% ee, as demonstrated by the formal synthesis of (-)-solifenacin and the facile synthesis of (-)-Cryptostyline I.
Collapse
Affiliation(s)
- Wei-Sian Li
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ting-Shen Kuo
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ping-Yu Wu
- Oleader Technologies, Company, Ltd., 1F, No. 8, Aly. 29, Ln. 335, Chenggong Road, Hukou Township, Hsinchu 30345, Taiwan
| | - Chien-Tien Chen
- Department of Chemistry, National Tsing-Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| |
Collapse
|
15
|
Mou ZD, Zhang X, Niu D. Catalytic asymmetric umpolung reaction of imines to synthesize isoindolinones and tetrahydroisoquinolines. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
16
|
Liu R, Han J, Li B, Liu X, Wei Z, Wang J, Wang Q, Jiang R, Nie H, Zhang S. Enantioselective synthesis of tetrahydroisoquinolines via catalytic intramolecular asymmetric reductive amination. Org Chem Front 2021. [DOI: 10.1039/d0qo01554g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A highly efficient intramolecular asymmetric reductive amination transformation catalyzed by an iridium complex of tBu-ax-Josiphos has been realized, providing an efficient access to various THIQ alkaloids.
Collapse
Affiliation(s)
- Ruixia Liu
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- PR China
| | - Jingkuo Han
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- PR China
| | - Bin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China
- Ministry of Education
- The College of Life Sciences
- Northwest University
- Xi'an 710069
| | - Xian Liu
- Beijing Institute of Radiation Medicine
- Beijing
- PR China
| | - Zhao Wei
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- PR China
| | - Jiaxin Wang
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- PR China
| | - Qiaofeng Wang
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- PR China
- Xi'an Peihua University
| | - Ru Jiang
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- PR China
| | - Huifang Nie
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- PR China
| | - Shengyong Zhang
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- PR China
| |
Collapse
|
17
|
Tian Y, Hu L, Wang YZ, Zhang X, Yin Q. Recent advances on transition-metal-catalysed asymmetric reductive amination. Org Chem Front 2021. [DOI: 10.1039/d1qo00300c] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focuses on the recent progress of homogeneous transition-metal-catalysed asymmetric reductive amination of ketones with diverse nitrogen sources.
Collapse
Affiliation(s)
- Yingying Tian
- Medi-X Pingshan
- Southern University of Science and Technology
- Shenzhen 518000
- China
| | - Le'an Hu
- Medi-X Pingshan
- Southern University of Science and Technology
- Shenzhen 518000
- China
| | - Yuan-Zheng Wang
- Medi-X Pingshan
- Southern University of Science and Technology
- Shenzhen 518000
- China
| | - Xumu Zhang
- Medi-X Pingshan
- Southern University of Science and Technology
- Shenzhen 518000
- China
- Shenzhen Key Laboratory of Small Molecule Drug Discovery
| | - Qin Yin
- Medi-X Pingshan
- Southern University of Science and Technology
- Shenzhen 518000
- China
- Academy for Advanced Interdisciplinary Studies
| |
Collapse
|
18
|
Li B, Liu R, Yang J, Luo J, Yao L, Li M, Zheng X, Jiang R, Nie H, Zhang S. Iridium-Catalyzed Asymmetric Hydrogenation of Sterically Hindered Cyclic Imines for Enantioselective Synthesis of Tetrahydroisoquinolines. Org Lett 2020; 23:140-144. [PMID: 33351639 DOI: 10.1021/acs.orglett.0c03858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An efficient enantioselective hydrogenation of sterically hindered cyclic imines catalyzed by the Ir-tBu-ax-Josiphos complex has been described, producing a series of useful chiral bulky tetrahydroisoquinoline analogs in high isolated yields (85-96%) with good to excellent enantioselectivities (74-99% ee). This transformation provided highly straightforward access to the useful derivatives of tetrahydroisoquinolines, which are of great potential value in drug molecule and natural product research.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Ruixia Liu
- School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Jing Yang
- School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Jingyuan Luo
- School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Lin Yao
- School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Muqiong Li
- School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Ru Jiang
- School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Huifang Nie
- School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Shengyong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China.,School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
19
|
Zhang Y, Liu YQ, Hu L, Zhang X, Yin Q. Asymmetric Reductive Amination/Ring-Closing Cascade: Direct Synthesis of Enantioenriched Biaryl-Bridged NH Lactams. Org Lett 2020; 22:6479-6483. [PMID: 32806148 DOI: 10.1021/acs.orglett.0c02282] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here a Ru-catalyzed enantioselective synthesis of biaryl-bridged NH lactams through asymmetric reductive amination and a spontaneous ring-closing cascade from keto esters and NH4OAc with H2 as reductant. The reaction features broad substrate generality and high enantioselectivities (up to >99% ee). To showcase the practical utility, a highly enantioselective synthesis of 5-ethylindolobenzazepinone C, a promising antimitotic agent, has been rapidly completed. Furthermore, the amide group in the products enables versatile elaborations through directed C-H functionalization.
Collapse
Affiliation(s)
- Yao Zhang
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun-Qi Liu
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Le'an Hu
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xumu Zhang
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qin Yin
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518000, China
| |
Collapse
|
20
|
Hu LA, Zhang Y, Zhang Q, Yin Q, Zhang X. Ruthenium‐Catalyzed Direct Asymmetric Reductive Amination of Diaryl and Sterically Hindered Ketones with Ammonium Salts and H
2. Angew Chem Int Ed Engl 2020; 59:5321-5325. [DOI: 10.1002/anie.201915459] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/09/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Le' an Hu
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of Macau Macao P. R. China
| | - Yao Zhang
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Qing‐Wen Zhang
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of Macau Macao P. R. China
| | - Qin Yin
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
21
|
Shi Y, Tan X, Gao S, Zhang Y, Wang J, Zhang X, Yin Q. Direct Synthesis of Chiral NH Lactams via Ru-Catalyzed Asymmetric Reductive Amination/Cyclization Cascade of Keto Acids/Esters. Org Lett 2020; 22:2707-2713. [DOI: 10.1021/acs.orglett.0c00669] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yongjie Shi
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Xuefeng Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuang Gao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yao Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingxin Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qin Yin
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518000, China
| |
Collapse
|
22
|
Zhang D, Zhou X, Liu R, Li M, Li X, Jiang R, Nie H, Zhang S. Josiphos-type binaphane ligands for the asymmetric Ir-catalyzed hydrogenation of acyclic aromatic N-aryl imines. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
23
|
Hu LA, Zhang Y, Zhang Q, Yin Q, Zhang X. Ruthenium‐Catalyzed Direct Asymmetric Reductive Amination of Diaryl and Sterically Hindered Ketones with Ammonium Salts and H
2. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Le' an Hu
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of Macau Macao P. R. China
| | - Yao Zhang
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Qing‐Wen Zhang
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of Macau Macao P. R. China
| | - Qin Yin
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
24
|
Yuan S, Gao G, Wang L, Liu C, Wan L, Huang H, Geng H, Chang M. The combination of asymmetric hydrogenation of olefins and direct reductive amination. Nat Commun 2020; 11:621. [PMID: 32001706 PMCID: PMC6992772 DOI: 10.1038/s41467-020-14475-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/13/2020] [Indexed: 11/16/2022] Open
Abstract
Asymmetric hydrogenation (AH) and direct reductive amination (DRA) are both efficient transformations frequently utilized in industry. Here we combine the asymmetric hydrogenation of prochiral olefins and direct reductive amination of aldehydes in one step using hydrogen gas as the common reductant and a rhodium-Segphos complex as the catalyst. With this strategy, the efficiency for the synthesis of the corresponding chiral amino compounds is significantly improved. The practical application of this synthetic approach is demonstrated by the facile synthesis of chiral 3-phenyltetrahydroquinoline and 3-benzylindoline compounds.
Collapse
Affiliation(s)
- Shuai Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Guorui Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, 88 Wenhuadong Road, 250014, Jinan, China
| | - Lili Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Cungang Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Lei Wan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Haizhou Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Huiling Geng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Mingxin Chang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
25
|
Liu R, Li B, Han J, Zhang D, Li M, Yao L, Zhao W, Wang Q, Jiang R, Nie H. Iridium-catalyzed enantioselective reductive amination of aromatic ketones. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01271h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A highly efficient catalytic system of direct asymmetric reductive amination of aromatic ketones.
Collapse
Affiliation(s)
- Ruixia Liu
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- China
| | - Bin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China
- Ministry of Education
- The College of Life Sciences
- Northwest University
- Xi'an 710069
| | - Jingkuo Han
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- China
| | - Dongxu Zhang
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- China
| | - Muqiong Li
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- China
| | - Lin Yao
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- China
| | - Wei Zhao
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- China
| | - Qiaofeng Wang
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- China
| | - Ru Jiang
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- China
| | - Huifang Nie
- School of Pharmacy
- Fourth Military Medical University
- Xi'an
- China
| |
Collapse
|
26
|
Barrios-Rivera J, Xu Y, Wills M, Vyas VK. A diversity of recently reported methodology for asymmetric imine reduction. Org Chem Front 2020. [DOI: 10.1039/d0qo00794c] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review describes recent developments in enantioselective imine reduction, including related substrates in which a CN bond is the target for reduction, and in situ methods.
Collapse
Affiliation(s)
| | - Yingjian Xu
- GoldenKeys High-tech Materials Co
- Ltd
- Guian New Area
- China
| | - Martin Wills
- Department of Chemistry
- The University of Warwick
- Coventry
- UK
| | | |
Collapse
|
27
|
Nie H, Zhu Y, Hu X, Wei Z, Yao L, Zhou G, Wang P, Jiang R, Zhang S. Josiphos-Type Binaphane Ligands for Iridium-Catalyzed Enantioselective Hydrogenation of 1-Aryl-Substituted Dihydroisoquinolines. Org Lett 2019; 21:8641-8645. [DOI: 10.1021/acs.orglett.9b03251] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huifang Nie
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Yupu Zhu
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Xiaomu Hu
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Zhao Wei
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Lin Yao
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Gang Zhou
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Pingan Wang
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Ru Jiang
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Shengyong Zhang
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| |
Collapse
|
28
|
Zhang S, Chen F, He YM, Fan QH. Asymmetric Hydrogenation of Dibenzo[c,e]azepine Derivatives with Chiral Cationic Ruthenium Diamine Catalysts. Org Lett 2019; 21:5538-5541. [DOI: 10.1021/acs.orglett.9b01859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shanshan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), and University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fei Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), and University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yan-Mei He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), and University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), and University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
29
|
Wu Z, Du S, Gao G, Yang W, Yang X, Huang H, Chang M. Secondary amines as coupling partners in direct catalytic asymmetric reductive amination. Chem Sci 2019; 10:4509-4514. [PMID: 31057780 PMCID: PMC6482873 DOI: 10.1039/c9sc00323a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/12/2019] [Indexed: 01/10/2023] Open
Abstract
The secondary amine participating asymmetric reductive amination remains an unsolved problem in organic synthesis. Here we show for the first time that secondary amines are capable of effectively serving as N-sources in direct asymmetric reductive amination to afford corresponding tertiary chiral amines with the help of a selected additive set under mild conditions (0-25 °C). The applied chiral phosphoramidite ligands are readily prepared from BINOL and easily modified. Compared with common tertiary chiral amine synthetic methods, this procedure is much more concise and scalable, as exemplified by the facile synthesis of rivastigmine and N-methyl-1-phenylethanamine.
Collapse
Affiliation(s)
- Zitong Wu
- Shanxi Key Laboratory of Natural Products & Chemical Biology , College of Chemistry & Pharmacy , Northwest A&F University , 22 Xinong Road , Yangling , Shanxi 712100 , China . mxchang@@nwsuaf.edu.cn
| | - Shaozhi Du
- Shanxi Key Laboratory of Natural Products & Chemical Biology , College of Chemistry & Pharmacy , Northwest A&F University , 22 Xinong Road , Yangling , Shanxi 712100 , China . mxchang@@nwsuaf.edu.cn
| | - Guorui Gao
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , 88 Wenhuadong Road , Jinan 250014 , China
| | - Wenkun Yang
- Shanxi Key Laboratory of Natural Products & Chemical Biology , College of Chemistry & Pharmacy , Northwest A&F University , 22 Xinong Road , Yangling , Shanxi 712100 , China . mxchang@@nwsuaf.edu.cn
| | - Xiongyu Yang
- Shanxi Key Laboratory of Natural Products & Chemical Biology , College of Chemistry & Pharmacy , Northwest A&F University , 22 Xinong Road , Yangling , Shanxi 712100 , China . mxchang@@nwsuaf.edu.cn
| | - Haizhou Huang
- Shanxi Key Laboratory of Natural Products & Chemical Biology , College of Chemistry & Pharmacy , Northwest A&F University , 22 Xinong Road , Yangling , Shanxi 712100 , China . mxchang@@nwsuaf.edu.cn
| | - Mingxin Chang
- Shanxi Key Laboratory of Natural Products & Chemical Biology , College of Chemistry & Pharmacy , Northwest A&F University , 22 Xinong Road , Yangling , Shanxi 712100 , China . mxchang@@nwsuaf.edu.cn
| |
Collapse
|
30
|
Talk RA, El-Tunsi A, Robertson CC, Coldham I. Regioselective Lithiation and Electrophilic Quenching of N
-Boc-3-phenyltetrahydroisoquinoline. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ruaa A. Talk
- Department of Chemistry; University of Sheffield; Brook Hill Sheffield S3 7HF UK
| | - Ashraf El-Tunsi
- Department of Chemistry; University of Sheffield; Brook Hill Sheffield S3 7HF UK
| | - Craig C. Robertson
- Department of Chemistry; University of Sheffield; Brook Hill Sheffield S3 7HF UK
| | - Iain Coldham
- Department of Chemistry; University of Sheffield; Brook Hill Sheffield S3 7HF UK
| |
Collapse
|
31
|
Chen Y, He Y, Zhang S, Miao T, Fan Q. Rapid Construction of Structurally Diverse Quinolizidines, Indolizidines, and Their Analogues via Ruthenium‐Catalyzed Asymmetric Cascade Hydrogenation/Reductive Amination. Angew Chem Int Ed Engl 2019; 58:3809-3813. [DOI: 10.1002/anie.201812647] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Ya Chen
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yan‐Mei He
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shanshan Zhang
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Tingting Miao
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| |
Collapse
|
32
|
Chen Y, He Y, Zhang S, Miao T, Fan Q. Rapid Construction of Structurally Diverse Quinolizidines, Indolizidines, and Their Analogues via Ruthenium‐Catalyzed Asymmetric Cascade Hydrogenation/Reductive Amination. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812647] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ya Chen
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yan‐Mei He
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shanshan Zhang
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Tingting Miao
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| |
Collapse
|
33
|
Yang T, Guo X, Yin Q, Zhang X. Intramolecular asymmetric reductive amination: synthesis of enantioenriched dibenz[ c, e]azepines. Chem Sci 2018; 10:2473-2477. [PMID: 30881676 PMCID: PMC6385856 DOI: 10.1039/c8sc04482a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/21/2018] [Indexed: 01/11/2023] Open
Abstract
An enantioselective synthesis of dibenz[c,e]azepines containing both central and axial chiralities through a one pot N-Boc deprotection/intramolecular asymmetric reductive amination sequence has been achieved with generally excellent enantiocontrol (up to 97% ee).
An Ir-catalyzed intramolecular asymmetric reductive amination (ARA) of bridged biaryl derivatives has been described. Using this unprecedented approach, synthetically useful dibenz[c,e]azepines containing both central and axial chiralities are obtained with excellent enantiocontrol (up to 97% ee). This methodology represents a rare example of enantioselective chemocatalytic synthesis of chiral dibenz[c,e]azepines featuring a broad substrate scope, and their synthetic utilities are exhibited by derivatizing the products into a chiral amino acid derivative and chiral phosphoramidite ligands, which display excellent enantiocontrol in Rh-catalyzed asymmetric hydrogenation of α-dehydroamino acid derivatives. Remarkably, our method is also applicable to enantioselectively synthesize an allocolchicine analogue.
Collapse
Affiliation(s)
- Tao Yang
- Shenzhen Grubbs Institute and Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , People's Republic of China .
| | - Xiaochong Guo
- Shenzhen Grubbs Institute and Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , People's Republic of China .
| | - Qin Yin
- Shenzhen Grubbs Institute and Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , People's Republic of China . .,SUSTech Academy for Advanced Interdisciplinary Studies , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , People's Republic of China .
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , People's Republic of China .
| |
Collapse
|
34
|
Seo CSG, Morris RH. Catalytic Homogeneous Asymmetric Hydrogenation: Successes and Opportunities. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00774] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Chris S. G. Seo
- Department of Chemistry, University of Toronto, M5S3H6 Toronto, Ontario, Canada
| | - Robert H. Morris
- Department of Chemistry, University of Toronto, M5S3H6 Toronto, Ontario, Canada
| |
Collapse
|
35
|
Zhao Y, Jin J, Chan PWH. Gold Catalyzed Photoredox C1‐Alkynylation of
N
‐Alkyl‐1,2,3,4‐tetrahydroisoquinolines by 1‐Bromoalkynes with UVA LED Light. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yichao Zhao
- School of Chemistry Monash University, Clayton Victoria 3800 Australia
| | - Jianwen Jin
- School of Chemistry Monash University, Clayton Victoria 3800 Australia
| | - Philip Wai Hong Chan
- School of Chemistry Monash University, Clayton Victoria 3800 Australia
- Department of Chemistry University of Warwick Coventry CV4 7AL United Kingdom
| |
Collapse
|
36
|
Prasad RRR, Dawson DM, Cox PA, Ashbrook SE, Wright PA, Clarke ML. A Bifunctional MOF Catalyst Containing Metal–Phosphine and Lewis Acidic Active Sites. Chemistry 2018; 24:15309-15318. [DOI: 10.1002/chem.201803094] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Ram R. R. Prasad
- EaStCHEM School of ChemistryUniversity of St Andrews Purdie Building North Haugh St Andrews KY16 9ST UK
| | - Daniel M. Dawson
- EaStCHEM School of ChemistryUniversity of St Andrews Purdie Building North Haugh St Andrews KY16 9ST UK
| | - Paul A. Cox
- School of Pharmacy and Biomedical SciencesUniversity of Portsmouth St Michael's Building, White Swan Road Portsmouth PO1 2DT UK
| | - Sharon E. Ashbrook
- EaStCHEM School of ChemistryUniversity of St Andrews Purdie Building North Haugh St Andrews KY16 9ST UK
| | - Paul A. Wright
- EaStCHEM School of ChemistryUniversity of St Andrews Purdie Building North Haugh St Andrews KY16 9ST UK
| | - Matthew L. Clarke
- EaStCHEM School of ChemistryUniversity of St Andrews Purdie Building North Haugh St Andrews KY16 9ST UK
| |
Collapse
|
37
|
Qian G, Bai M, Gao S, Chen H, Zhou S, Cheng HG, Yan W, Zhou Q. Modular One-Step Three-Component Synthesis of Tetrahydroisoquinolines Using a Catellani Strategy. Angew Chem Int Ed Engl 2018; 57:10980-10984. [PMID: 29956881 DOI: 10.1002/anie.201806780] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 11/06/2022]
Abstract
Reported is a modular one-step three-component synthesis of tetrahydroisoquinolines using a Catellani strategy. This process exploits aziridines as the alkylating reagents, through palladium/norbornene cooperative catalysis, to enable a Catellani/Heck/aza-Michael addition cascade. This mild, chemoselective, and scalable protocol has broad substrate scope (43 examples, up to 90 % yield). The most striking feature of this protocol is the excellent regioselectivity and diastereoselectivity observed for 2-alkyl- and 2-aryl-substituted aziridines to access 1,3-cis-substituted and 1,4-cis-substituted tetrahydroisoquinolines, respectively. Moreover, this is a versatile process with high step and atom economy.
Collapse
Affiliation(s)
- Guangyin Qian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Miao Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Shijun Gao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Han Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Siwei Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hong-Gang Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qianghui Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.,The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
38
|
Qian G, Bai M, Gao S, Chen H, Zhou S, Cheng HG, Yan W, Zhou Q. Modular One-Step Three-Component Synthesis of Tetrahydroisoquinolines Using a Catellani Strategy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guangyin Qian
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Miao Bai
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Shijun Gao
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Han Chen
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Siwei Zhou
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Hong-Gang Cheng
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Wei Yan
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Qianghui Zhou
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
- The Institute for Advanced Studies; Wuhan University; Wuhan 430072 China
| |
Collapse
|
39
|
Zhou W, Zhang YX, Nie XD, Si CM, Sun X, Wei BG. Approach to Chiral 1-Substituted Isoquinolone and 3-Substituted Isoindolin-1-one by Addition-Cyclization Process. J Org Chem 2018; 83:9879-9889. [PMID: 29952568 DOI: 10.1021/acs.joc.8b01282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An approach to access 1-substituted isoquinolones has been developed through the addition-cyclization of imines with Grignard reagents in the presence of 2,2'-dipyridyl. A number of substituted aromatic magnesium reagents were amenable to this process, and the desired products were obtained with excellent yields and outstanding diastereoselectivities ( dr > 99:1). The utility of this convenient approach is demonstrated by the formal synthesis of ( S)-cryptostyline II. Moreover, N-methylmorpholine (NMM) was found to be an effective additive for the formation of 3-substituted isoindolin-1-ones using one-pot addition-cyclization-deprotection of imine with Grignard reagents.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Natural Products Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai , 201203 , The People's Republic of China
| | - Yan-Xue Zhang
- Department of Natural Products Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai , 201203 , The People's Republic of China
| | - Xiao-Di Nie
- Department of Natural Products Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai , 201203 , The People's Republic of China
| | - Chang-Mei Si
- Department of Natural Products Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai , 201203 , The People's Republic of China
| | - Xun Sun
- Department of Natural Products Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai , 201203 , The People's Republic of China
| | - Bang-Guo Wei
- Department of Natural Products Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai , 201203 , The People's Republic of China
| |
Collapse
|
40
|
Tan X, Gao S, Zeng W, Xin S, Yin Q, Zhang X. Asymmetric Synthesis of Chiral Primary Amines by Ruthenium-Catalyzed Direct Reductive Amination of Alkyl Aryl Ketones with Ammonium Salts and Molecular H2. J Am Chem Soc 2018; 140:2024-2027. [DOI: 10.1021/jacs.7b12898] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xuefeng Tan
- Department
of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
| | - Shuang Gao
- Department
of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
| | - Weijun Zeng
- Department
of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
| | - Shan Xin
- Department
of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
| | - Qin Yin
- Department
of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
- Academy
for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
| | - Xumu Zhang
- Department
of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
| |
Collapse
|
41
|
Yang L, Lin J, Kang L, Zhou W, Ma DY. Lewis Acid-Catalyzed Reductive Amination of Aldehydes and Ketones with N
,N
-Dimethylformamide as Dimethylamino Source, Reductant and Solvent. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701221] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luo Yang
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry; Xiangtan University; Hunan 411105 People's Republic of China
| | - Jie Lin
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry; Xiangtan University; Hunan 411105 People's Republic of China
| | - Lei Kang
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry; Xiangtan University; Hunan 411105 People's Republic of China
| | - Wang Zhou
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry; Xiangtan University; Hunan 411105 People's Republic of China
| | - Da-You Ma
- Xiangya School of Pharmaceutical Sciences; Central South University; Changsha 410013 Hunan People's Republic of China
| |
Collapse
|
42
|
Ji Y, Wang J, Chen M, Shi L, Zhou Y. Dual Stereocontrol for Enantioselective Hydrogenation of Dihydroisoquinolines Induced by Tuning the Amount of N
-Bromosuccinimide. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201700634] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yue Ji
- College of Chemistry, Chemical Engineering and Material Science; Soochow University, 199 Ren'Ai Road; Suzhou Jiangsu 215123 China
| | - Jie Wang
- College of Chemistry, Chemical Engineering and Material Science; Soochow University, 199 Ren'Ai Road; Suzhou Jiangsu 215123 China
| | - Muwang Chen
- College of Chemistry, Chemical Engineering and Material Science; Soochow University, 199 Ren'Ai Road; Suzhou Jiangsu 215123 China
| | - Lei Shi
- College of Chemistry, Chemical Engineering and Material Science; Soochow University, 199 Ren'Ai Road; Suzhou Jiangsu 215123 China
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian Liaoning 116024 China
| | - Yonggui Zhou
- College of Chemistry, Chemical Engineering and Material Science; Soochow University, 199 Ren'Ai Road; Suzhou Jiangsu 215123 China
| |
Collapse
|
43
|
Yang T, Yin Q, Gu G, Zhang X. A one-pot process for the enantioselective synthesis of tetrahydroquinolines and tetrahydroisoquinolines via asymmetric reductive amination (ARA). Chem Commun (Camb) 2018; 54:7247-7250. [DOI: 10.1039/c8cc03586e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric reductive amination for the synthesis of both chiral tetrahydroquinolines and tetrahydroisoquinolines has been realized with an Ir/ZhaoPhos catalytic system via a one-pot N-Boc deprotection/intramolecular asymmetric reductive amination (ARA) sequence.
Collapse
Affiliation(s)
- Tao Yang
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Qin Yin
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Guoxian Gu
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Xumu Zhang
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| |
Collapse
|
44
|
Yu CB, Wang J, Zhou YG. Facile synthesis of chiral indolines through asymmetric hydrogenation of in situ generated indoles. Org Chem Front 2018. [DOI: 10.1039/c8qo00710a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A concise synthesis of chiral indolines has been developed through intramolecular condensation, deprotection and palladium-catalyzed asymmetric hydrogenation in a one-pot process with up to 96% ee. A strong Brønsted acid played an important role in both the formation of indoles and asymmetric hydrogenation process.
Collapse
Affiliation(s)
- Chang-Bin Yu
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Jie Wang
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| |
Collapse
|
45
|
Zhang Y, Yan Q, Zi G, Hou G. Enantioselective Direct Synthesis of Free Cyclic Amines via Intramolecular Reductive Amination. Org Lett 2017; 19:4215-4218. [DOI: 10.1021/acs.orglett.7b01828] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ying Zhang
- Key Laboratory of Radiopharmaceuticals,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qiaozhi Yan
- Key Laboratory of Radiopharmaceuticals,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals,
College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
46
|
Hu FZ, Chen H, Xu XY, Yuan WC, Zhang XM. Dynamic Kinetic Resolution in Enantioselective Reductive Amination ofα-Branched Aldehydes by Lewis Base Organocatalyzed Hydrosilylation. ChemistrySelect 2017. [DOI: 10.1002/slct.201700495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fang-Zhi Hu
- Key Laboratory for Asymmetric Synthesis and Chiraltechnology of Sichuan Province, Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Hui Chen
- Key Laboratory for Asymmetric Synthesis and Chiraltechnology of Sichuan Province, Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Xiao-Ying Xu
- Key Laboratory for Asymmetric Synthesis and Chiraltechnology of Sichuan Province, Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
| | - Wei-Cheng Yuan
- Key Laboratory for Asymmetric Synthesis and Chiraltechnology of Sichuan Province, Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
| | - Xiao-Mei Zhang
- Key Laboratory for Asymmetric Synthesis and Chiraltechnology of Sichuan Province, Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
| |
Collapse
|
47
|
Wei Y, Zhao C, Xuan Q, Song Q. An expedient and novel strategy for reductive amination by employing H2O as both a hydrogen source and solventviaB2(OH)4/H2O systems. Org Chem Front 2017. [DOI: 10.1039/c7qo00769h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient, convenient and mild Ru-catalyzed reductive amination reaction was developed by employing H2O as both hydrogen source and solventviaB2(OH)4/H2O systems. α-Deuterated amines were also obtained expediently by employing D2O in our catalytic systems.
Collapse
Affiliation(s)
- Yahui Wei
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering and College of Material Sciences at Huaqiao University
- Xiamen
- P. R. China
| | - Cong Zhao
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering and College of Material Sciences at Huaqiao University
- Xiamen
- P. R. China
| | - Qingqing Xuan
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering and College of Material Sciences at Huaqiao University
- Xiamen
- P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering and College of Material Sciences at Huaqiao University
- Xiamen
- P. R. China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering
| |
Collapse
|