1
|
Martín-Fernández C, Elguero J, Alkorta I. Beryllium as a Base: Complexes of Be(CO) 3 with HX (X=F, Cl, Br, CN, NC, CCH, OH). Chemphyschem 2024; 25:e202400608. [PMID: 38950128 DOI: 10.1002/cphc.202400608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Beryllium chemistry is typically governed by its electron deficient character, but in some compounds it can act as a base. In order to understand better the unusual basicity of Be, we have systematically explored the complexes of one such compound, Be(CO)3, towards several hydrogen bond donors HX (X=F, Cl, Br, CN, NC, CCH, OH). For all complexes we find three different minima, two hydrogen bonded minima (to the Be or O atoms), and one weak beryllium bonded minimum. Further characterization of the interactions using a topological analysis of the electron density and Symmetry Adapted Perturbation Theory (SAPT) provide insight into the nature of these interactions. Overall these results highlight the capability of certain beryllium compounds to act as either a weak Lewis acid or, unconventionally, a Lewis base whose basicity towards hydrogen bonding is comparable to that of π systems.
Collapse
Affiliation(s)
| | - José Elguero
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006, Madrid, Spain
| |
Collapse
|
2
|
Chan K, Ying F, He D, Yang L, Zhao Y, Xie J, Su JH, Wu B, Yang XJ. One-Electron (2c/1e) Tin···Tin Bond Stabilized by ortho-Phenylenediamido Ligands. J Am Chem Soc 2024; 146:2333-2338. [PMID: 38241610 DOI: 10.1021/jacs.3c11893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Odd-electron bonds, i.e., the two-center, three-electron (2c/3e), or one-electron (2c/1e) bonds, have attracted tremendous interest owing to their novel bonding nature and radical properties. Herein, complex [K(THF)6][LSn:···Sn:L] (1), featuring the first and unsupported 2c/1e Sn···Sn σ-bond with a long distance (3.2155(9) Å), was synthesized by reduction of stannylene [LSn:] (L = N,N-dpp-o-phenylene diamide) with KC8. The one-electron Sn-Sn bond in 1 was confirmed by the crystal structure, DFT calculations, EPR spectroscopy, and reactivity studies. This compound can be viewed as a stabilized radical by delocalizing to two metal centers and can readily mediate radical reactions such as C-C coupling of benzaldehyde.
Collapse
Affiliation(s)
- Kaiyip Chan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Fei Ying
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Dongyu He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Li Yang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Jing Xie
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Ji-Hu Su
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Biao Wu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
3
|
Graziano BJ, Scott TR, Vollmer MV, Dorantes MJ, Young VG, Bill E, Gagliardi L, Lu CC. One-electron Bonds in Copper-Aluminum and Copper-Gallium Complexes. Chem Sci 2022; 13:6525-6531. [PMID: 35756529 PMCID: PMC9176199 DOI: 10.1039/d2sc01998a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Odd-electron bonds have unique electronic structures and are often encountered as transiently stable, homonuclear species. In this study, a pair of copper complexes supported by Group 13 metalloligands, M[N((o-C6H4)NCH2PiPr2)3] (M...
Collapse
Affiliation(s)
- Brendan J Graziano
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis Minnesota 55455 USA
| | - Thais R Scott
- Department of Chemistry, The University of Chicago, Searle Chemistry Laboratory 5735 South Ellis Avenue Chicago Illinois 60637 USA
| | - Matthew V Vollmer
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis Minnesota 55455 USA
| | - Michael J Dorantes
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis Minnesota 55455 USA
| | - Victor G Young
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis Minnesota 55455 USA
| | - Eckhard Bill
- Max Planck Institut für Chemische Energiekonversion Stiftstraβe 34-36 45470 Mülheim an der Ruhr Germany
| | - Laura Gagliardi
- Department of Chemistry, The University of Chicago, Searle Chemistry Laboratory 5735 South Ellis Avenue Chicago Illinois 60637 USA
| | - Connie C Lu
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis Minnesota 55455 USA
- Institut für Anorganische Chemie, Rheinische-Friedrich-Wilhelms Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
4
|
Alkorta I, Elguero J, Del Bene JE. 1,2-Dihydro-1,3,2-diazaborinine tautomer as an electron-pair donor in hydrogen-bonded complexes. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ab initio MP2/aug’-cc-pVTZ calculations have been carried out to investigate 1,2-dihydro-1,3,2-diazaborinine:HX complexes for HX = H+, HF, HCl, H2O, HCN, NH3, HCP, and HCCH. Most complexes are stabilized by linear, traditional hydrogen bonds except for those with H2O and NH3, which have bridging structures and nonlinear hydrogen bonds. H-atom transfer from N to B can occur in complexes with HF and HCl, with formation of a traditional F–H···N bond and a proton-shared Cl···H···N bond. The binding energies of the uncharged complexes range from 25 to 88 kJ mol−1. Spin-spin coupling constants have been used to characterize these hydrogen-bonded complexes.
Collapse
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, Madrid E-28006, Spain
| | - José Elguero
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, Madrid E-28006, Spain
| | - Janet E. Del Bene
- Department of Chemistry, Youngstown State University, Youngstown, OH 44555, USA
| |
Collapse
|
5
|
Furan S, Molkenthin M, Winkels K, Lork E, Mebs S, Hupf E, Beckmann J. Tris(6-diphenylphosphinoacenaphth-5-yl)gallium: Z-Type Ligand and Transmetalation Reagent. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sinas Furan
- Institut für Anorganische Chemie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Martin Molkenthin
- Institut für Anorganische Chemie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Konrad Winkels
- Institut für Anorganische Chemie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Enno Lork
- Institut für Anorganische Chemie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Stefan Mebs
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Emanuel Hupf
- Institut für Anorganische Chemie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Jens Beckmann
- Institut für Anorganische Chemie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany
| |
Collapse
|
6
|
Abstract
AbstractIn this short review, different phenomena that are triggered by the interaction of different compounds or clusters of compounds with electron-deficient systems, in particular beryllium and boron compounds, have been discussed in some detail. Particular attention was devoted to the huge acidity enhancements that can be induced through the interaction of conventional bases with B or Be containing compounds, which change these conventional bases in extremely strong proton donors. We have paid also attention to the cooperativity between Be bonds with other weak interactions, which results in a substantial increase of their strength, that can lead in some specific cases to the spontaneous formation of ion-pairs in the gas phase. Finally, the behavior of different Be derivatives as electron and anion sponges is discussed as well as the conditions needed to have clusters exhibiting rather strong Be–Be bonds, even though the Be–Be interaction in Be2 dimer is extremely weak. Finally, some attention was paid to systems with extremely short Be–Be distances but without a bond.
Collapse
Affiliation(s)
- Otilia Mó
- Departamento de Química, Módulo 13, Facultad de Ciencias and Institute of Advanced Chemical Sciences (IadChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
7
|
Ferrer M, Montero-Campillo MM, Mó O, Yáñez M, Alkorta I, Elguero J. Bonding between electron-deficient atoms: strong Lewis-acid character preserved in X–Y–X (X = B, Al; Y = Be, Mg) bridges. NEW J CHEM 2020. [DOI: 10.1039/d0nj01803a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Beryllium bis(diazaborolyl) derivatives and their Mg and Al-containing analogues are stable compounds stabilized through covalent bonds between electron-deficient atoms, and behave as good Lewis acids.
Collapse
Affiliation(s)
- Maxime Ferrer
- Departamento de Química
- Facultad de Ciencias
- Módulo 13, and Institute of Advanced Chemical Sciences (IadChem). Universidad Autónoma de Madrid
- E-28049 Madrid
- Spain
| | - M. Merced Montero-Campillo
- Departamento de Química
- Facultad de Ciencias
- Módulo 13, and Institute of Advanced Chemical Sciences (IadChem). Universidad Autónoma de Madrid
- E-28049 Madrid
- Spain
| | - Otilia Mó
- Departamento de Química
- Facultad de Ciencias
- Módulo 13, and Institute of Advanced Chemical Sciences (IadChem). Universidad Autónoma de Madrid
- E-28049 Madrid
- Spain
| | - Manuel Yáñez
- Departamento de Química
- Facultad de Ciencias
- Módulo 13, and Institute of Advanced Chemical Sciences (IadChem). Universidad Autónoma de Madrid
- E-28049 Madrid
- Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC)
- E-28006 Madrid
- Spain
| | - José Elguero
- Instituto de Química Médica (CSIC)
- E-28006 Madrid
- Spain
| |
Collapse
|
8
|
Nance PJ, Thompson NB, Oyala PH, Peters JC. Zerovalent Rhodium and Iridium Silatranes Featuring Two-Center, Three-Electron Polar σ Bonds. Angew Chem Int Ed Engl 2019; 58:6220-6224. [PMID: 30759317 DOI: 10.1002/anie.201814206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/26/2019] [Indexed: 12/19/2022]
Abstract
Species with 2-center, 3-electron (2c/3e- ) σ bonds are of interest owing to their fascinating electronic structures and potential for interesting reactivity patterns. Report here is the synthesis and characterization of a pair of zerovalent (d9 ) trigonal pyramidal Rh and Ir complexes that feature 2c/3e- σ bonds to the Si atom of a tripodal tris(phosphine)silatrane ligand. X-ray diffraction, continuous wave and pulse electron paramagnetic resonance, density-functional theory calculations, and reactivity studies have been used to characterize these electronically distinctive compounds. The data available highlight a 2c/3e- bonding framework with a σ*-SOMO of metal 4- or 5dz 2 parentage that is partially stabilized by significant mixing with Si (3pz ) and metal (5- or 6pz ) orbitals. Metal-ligand covalency thus buffers the expected destabilization of transition-metal (TM)-silyl σ*-orbitals by d-p mixing, affording well-characterized examples of TM-main group, and hence polar, 2c/3e- σ "half-bonds".
Collapse
Affiliation(s)
- Patricia J Nance
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Niklas B Thompson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
9
|
Nance PJ, Thompson NB, Oyala PH, Peters JC. Zerovalent Rhodium and Iridium Silatranes Featuring Two‐Center, Three‐Electron Polar σ Bonds. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Patricia J. Nance
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Niklas B. Thompson
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Paul H. Oyala
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Jonas C. Peters
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
10
|
Montero-Campillo MM, Alkorta I, Elguero J. Fostering the Basic Instinct of Boron in Boron-Beryllium Interactions. J Phys Chem A 2018. [PMID: 29537845 DOI: 10.1021/acs.jpca.8b01551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A set of complexes L2HB···BeX2 (L = CNH, CO, CS, N2, NH3, NCCH3, PH3, PF3, PMe3, OH2; X = H, F) containing a boron-beryllium bond is described at the M06-2X/6-311+G(3df,2pd)//M062-2X/6-31+G(d) level of theory. In this quite unusual bond, boron acts as a Lewis base and beryllium as a Lewis acid, reaching binding energies up to -283.3 kJ/mol ((H2O)2HB···BeF2). The stabilization of these complexes is possible thanks to the σ-donor role of the L ligands in the L2HB···BeX2 structures and the powerful acceptor nature of beryllium. According to the topology of the density, these B-Be interactions present positive laplacian values and negative energy densities, covering different degrees of electron sharing. ELF calculations allowed measuring the population in the interboundary B-Be region, which varies between 0.20 and 2.05 electrons upon switching from the weakest ((CS)2HB···BeH2) to the strongest complex ((H2O)2HB···BeF2). These B-Be interactions can be considered as beryllium bonds in most cases.
Collapse
Affiliation(s)
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC) , Juan de la Cierva, 3 , 28006 Madrid , Spain
| | - José Elguero
- Instituto de Química Médica (CSIC) , Juan de la Cierva, 3 , 28006 Madrid , Spain
| |
Collapse
|
11
|
Taylor JW, McSkimming A, Moret ME, Harman WH. A Molecular Boroauride: A Donor-Acceptor Complex of Anionic Gold. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jordan W. Taylor
- Department of Chemistry; University of California-Riverside; Riverside CA 92521 USA
| | - Alex McSkimming
- Department of Chemistry; University of California-Riverside; Riverside CA 92521 USA
| | - Marc-Etienne Moret
- Organic Chemistry & Catalysis; Debye Institute for Nanomaterials Science; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - W. Hill Harman
- Department of Chemistry; University of California-Riverside; Riverside CA 92521 USA
| |
Collapse
|
12
|
Taylor JW, McSkimming A, Moret ME, Harman WH. A Molecular Boroauride: A Donor-Acceptor Complex of Anionic Gold. Angew Chem Int Ed Engl 2017; 56:10413-10417. [PMID: 28589611 DOI: 10.1002/anie.201703235] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Indexed: 11/06/2022]
Abstract
Gold is unique among the transition metals in that it is stable as an isolated anion (auride). Despite this fact, the coordination chemistry of anionic gold is virtually nonexistent, and this unique oxidation state is not readily exploited in conventional solution chemistry owing to its high reactivity. Through the use of a new molecular scaffold based on diboraanthracene (B2 P2 , 1), we have overcome these issues by avoiding the intermediacy of zerovalent gold and stabilizing the highly reduced gold anion through acceptor interactions. We have thus synthesized a molecular boroauride [(B2 P2 )Au]- ([2]- ) and showed its reversible conversion between Au-I and AuI states. Through a combination of spectroscopic and computational studies, we show the neutral state to be a AuI complex with a ligand radical anion. Bonding analyses (NBO and QTAIM) and the isolobal relationship between gold and hydrogen provide support for the description of [2]- as a boroauride complex.
Collapse
Affiliation(s)
- Jordan W Taylor
- Department of Chemistry, University of California-Riverside, Riverside, CA, 92521, USA
| | - Alex McSkimming
- Department of Chemistry, University of California-Riverside, Riverside, CA, 92521, USA
| | - Marc-Etienne Moret
- Organic Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - W Hill Harman
- Department of Chemistry, University of California-Riverside, Riverside, CA, 92521, USA
| |
Collapse
|