1
|
Amemiya E, Zheng SL, Betley TA. C-H Insertion from Isolable Copper Benzylidenes. J Am Chem Soc 2024. [PMID: 39441198 DOI: 10.1021/jacs.4c12325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Despite the utility of copper catalysts for the insertion of carbene moieties into C-H bonds, the copper carbene intermediate often invoked in these transformations has not been isolated. Herein, we describe the synthesis and structural characterization of a series of copper benzylidenes utilizing the sterically encumbered dipyrrin ligand (EmL)H. These isolated copper carbenes demonstrate intramolecular insertion into the primary C(sp3)-H bond of the ligand (EmL)H and intermolecular insertion into ethereal and allylic C-H bonds. The copper carbenes isolated are best described as Cu(I) carbene adducts akin to canonical Fischer carbenes, given their diamagnetic ground state and electrophilic carbene reactivity. Furthermore, the insertion chemistry can be rendered catalytic utilizing a more sterically exposed dipyrrin ligand (ArFL)H. The ability to isolate and observe stoichiometric C-H insertion and olefin cyclopropanation from well-characterized copper benzylidenes illuminates their viability as catalytic intermediates and their participation in potential catalyst deactivation pathways.
Collapse
Affiliation(s)
- Erika Amemiya
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Jenek NA, Helbig A, Boyt SM, Kaur M, Sanderson HJ, Reeksting SB, Kociok-Köhn G, Helten H, Hintermair U. Understanding and tuning the electronic structure of pentalenides. Chem Sci 2024; 15:12765-12779. [PMID: 39148775 PMCID: PMC11323301 DOI: 10.1039/d3sc04622b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
Here we report the first example of systematic tuning of the electronic properties of dianionic pentalenides through a straightforward synthetic protocol which allows the controlled variation of substituents in the 1,3,4,6-positions to produce nine new compounds, representing the largest pentalenide study to date. Both electron-withdrawing as well as electron-donating aromatics have been incorporated to achieve different polarisations of the bicyclic 10π aromatic core as indicated by characteristic 1H and 13C NMR shifts and evaluated by DFT calculations including nucleus-independent chemical shift (NICS) scans, anisotropy of the induced current density (ACID) calculations, and natural bond orbital (NBO) charge distribution analysis. The introduction of methyl substituents to the pentalenide core required positional control in the dihydropentalene precursor to avoid exocyclic deprotonation during the metalation. Frontier orbital analyses showed arylated pentalenides to be slightly weaker donors but much better acceptor ligands than unsubstituted pentalenide. The coordination chemistry potential of our new ligands has been exemplified by the straightforward synthesis of a polarised anti-dirhodium(i) complex.
Collapse
Affiliation(s)
- Niko A Jenek
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Andreas Helbig
- Institute of Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland D-97074 Würzburg Germany
| | - Stuart M Boyt
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Mandeep Kaur
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Hugh J Sanderson
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Shaun B Reeksting
- Chemical Characterisation Facility, University of Bath Claverton Down Bath BA2 7AY UK
| | - Gabriele Kociok-Köhn
- Chemical Characterisation Facility, University of Bath Claverton Down Bath BA2 7AY UK
| | - Holger Helten
- Institute of Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland D-97074 Würzburg Germany
| | - Ulrich Hintermair
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
3
|
Kakiuchi Y, Docherty SR, Berkson ZJ, Yakimov AV, Wörle M, Copéret C, Aghazada S. Origin of Reactivity Trends of an Elusive Metathesis Intermediate from NMR Chemical Shift Analysis of Surrogate Analogues. J Am Chem Soc 2024; 146:20168-20182. [PMID: 38980045 DOI: 10.1021/jacs.4c05193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Olefin metathesis has become an efficient tool in synthetic organic chemistry to build carbon-carbon bonds, thanks to the development of Grubbs- and Schrock-type catalysts. Olefin coordination, a key and often rate-determining elementary step for d0 Schrock-type catalysts, has been rarely explored due to the lack of accessible relevant molecular analogues. Herein, we present a fully characterized surrogate of this key olefin-coordination intermediate, namely, a cationic d0 tungsten oxo-methylidene complex bearing two N-heterocyclic carbene ligands─[WO(CH2)Cl(IMes)2](OTf) (1) (IMes = 1,3-dimesitylimidazole-2-ylidene, OTf-triflate counteranion), resulting in a trigonal bipyramidal (TBP) geometry, along with its neutral octahedral analogue [WO(CH2)Cl2(IMes)2] (2)─and an isostructural oxo-methylidyne derivative [WO(CH)Cl(IMes)2] (3). The analysis of their solid-state 13C and 183W MAS NMR signatures, along with computed 17O NMR parameters, helps to correlate their electronic structures with NMR patterns and evidences the importance of the competition among the three equatorial ligands in the TBP complexes. Anchored on experimentally obtained NMR parameters for 1, computational analysis of a series of olefin coordination intermediates highlights the interplay between σ- and π-donating ligands in modulating their stability and further paralleling their reactivity. NMR spectroscopy descriptors reveal the origin for the advantage of the dissymmetry in σ-donating abilities of ancillary ligands in Schrock-type catalysts: weak σ-donors avoid the orbital-competition with the oxo ligand upon formation of a TBP olefin-coordination intermediate, while stronger σ-donors compromise M≡O triple bonding and thus render olefin coordination step energy demanding.
Collapse
Affiliation(s)
- Yuya Kakiuchi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Scott R Docherty
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Zachariah J Berkson
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Alexander V Yakimov
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Michael Wörle
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Sadig Aghazada
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| |
Collapse
|
4
|
Autillo M, Illy MC, Briscese L, Islam MA, Bolvin H, Berthon C. Paramagnetic Properties of [An IV(NO 3) 6] 2- Complexes (An = U, Np, Pu) Probed by NMR Spectroscopy and Quantum Chemical Calculations. Inorg Chem 2024; 63:12969-12980. [PMID: 38951989 DOI: 10.1021/acs.inorgchem.4c01694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Actinide +IV complexes with six nitrates [AnIV(NO3)6]2- (An = Th, U, Np, and Pu) have been studied by 15N and 17O NMR spectroscopy in solution and first-principles calculations. Magnetic susceptibilities were evaluated experimentally using the Evans method and are in good agreement with the ab initio values. The evolution in the series of the crystal field parameters deduced from ab initio calculations is discussed. The NMR paramagnetic shifts are analyzed based on ab initio calculations. Because the cubic symmetry of the complex quenches the dipolar contribution, they are only of Fermi contact origin. They are evaluated from first-principles based on a complete active space/density functional theory (DFT) strategy, in good accordance with the experimental one. The ligand hyperfine coupling constants are deduced from paramagnetic shifts and calculated using unrestricted DFT. The latter are decomposed in terms of the contribution of molecular orbitals. It highlights two pathways for the delocalization of the spin density from the metallic open-shell 5f orbitals to the NMR active nuclei, either through the valence 5f hybridized with 6d to the valence 2p molecular orbitals of the ligands, or by spin polarization of the metallic 6p orbitals which interact with the 2s-based molecular orbitals of the ligands.
Collapse
Affiliation(s)
- Matthieu Autillo
- CEA, DES, ISEC, DPME, Univ. Montpellier, Bagnols-sur-Cèze 30207, France
| | - Marie-Claire Illy
- CEA, DES, ISEC, DMRC, Univ. Montpellier, Bagnols-sur-Cèze 30207, France
| | - Luca Briscese
- CEA, DES, ISEC, DMRC, Univ. Montpellier, Bagnols-sur-Cèze 30207, France
| | - Md Ashraful Islam
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs─CRMN, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Hélène Bolvin
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France
| | - Claude Berthon
- CEA, DES, ISEC, DMRC, Univ. Montpellier, Bagnols-sur-Cèze 30207, France
| |
Collapse
|
5
|
Baker CF, Seed JA, Adams RW, Lee D, Liddle ST. 13C carbene nuclear magnetic resonance chemical shift analysis confirms Ce IV[double bond, length as m-dash]C double bonding in cerium(iv)-diphosphonioalkylidene complexes. Chem Sci 2023; 15:238-249. [PMID: 38131084 PMCID: PMC10732143 DOI: 10.1039/d3sc04449a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Diphosphonioalkylidene dianions have emerged as highly effective ligands for lanthanide and actinide ions, and the resulting formal metal-carbon double bonds have challenged and developed conventional thinking about f-element bond multiplicity and covalency. However, f-element-diphosphonioalkylidene complexes can be represented by several resonance forms that render their metal-carbon double bond status unclear. Here, we report an experimentally-validated 13C Nuclear Magnetic Resonance computational assessment of two cerium(iv)-diphosphonioalkylidene complexes, [Ce(BIPMTMS)(ODipp)2] (1, BIPMTMS = {C(PPh2NSiMe3)2}2-; Dipp = 2,6-diisopropylphenyl) and [Ce(BIPMTMS)2] (2). Decomposing the experimental alkylidene chemical shifts into their corresponding calculated shielding (σ) tensor components verifies that these complexes exhibit Ce[double bond, length as m-dash]C double bonds. Strong magnetic coupling of Ce[double bond, length as m-dash]C σ/π* and π/σ* orbitals produces strongly deshielded σ11 values, a characteristic hallmark of alkylidenes, and the largest 13C chemical shift tensor spans of any alkylidene complex to date (1, 801 ppm; 2, 810 ppm). In contrast, the phosphonium-substituent shielding contributions are much smaller than the Ce[double bond, length as m-dash]C σ- and π-bond components. This study confirms significant Ce 4f-orbital contributions to the Ce[double bond, length as m-dash]C bonding, provides further support for a previously proposed inverse-trans-influence in 2, and reveals variance in the 4f spin-orbit contributions that relate to the alkylidene hybridisation. This work thus confirms the metal-carbon double bond credentials of f-element-diphosphonioalkylidenes, providing quantified benchmarks for understanding diphosphonioalkylidene bonding generally.
Collapse
Affiliation(s)
- Cameron F Baker
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - John A Seed
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ralph W Adams
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Daniel Lee
- Department of Chemical Engineering, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
6
|
Atterberry BA, Wimmer E, Estes DP, Rossini AJ. Acceleration of indirect detection 195Pt solid-state NMR experiments by sideband selective excitation or alternative indirect sampling schemes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107457. [PMID: 37163927 DOI: 10.1016/j.jmr.2023.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
The measurement of the of chemical shift (CS) tensors via solid-state NMR (ssNMR) spectroscopy has proven to be a powerful probe of structure for organic molecules, biomolecules, and inorganic materials. However, when measuring the NMR spectra of heavy spin-1/2 isotopes the chemical shift anisotropy (CSA) is commonly on the order of thousands of parts per million, which makes acquisition of NMR spectra difficult due to the low NMR sensitivity imposed by the breadth of the signals and challenges in uniformly exciting the NMR spectrum. We have recently shown that complete 195Pt NMR spectra could be rapidly measured by using 195Pt saturation or excitation selective long pulses (SLP) with multiple rotor-cycle durations and RF fields less than 50 kHz into 1H{195Pt} or 1H-31P{195Pt} PE S-RESPDOR, TONE D-HMQC-4, J-resolved, and J-HMQC pulse sequences. The SLP only provide signal or dephasing when they are applied on resonance with a spinning sideband. The magic angle spinning 195Pt NMR spectrum is reconstructed in the sideband selective NMR experiments by acquiring 1D NMR spectra at variable 195Pt pulse offsets. In this work, we present a detailed investigation of the specific pulse conditions required for the ideal performance of sideband selective experiments. Sideband selective experiments are shown to be able to accurately reproduce MAS NMR spectra with minimal distortions of relative sideband intensities. It is also demonstrated that a 195Pt NMR spectrum indirectly detected with HMQC can be rapidly obtained by acquiring a single rotor cycle of indirect dimension evolution points. We dub this method One Rotor Cycle of Acquisition (ORCA) HMQC. Sideband selective experiments and ORCA HMQC experiments are shown to provide a one order of magnitude improvement in experiment times as compared to conventional wideline HMQC experiments.
Collapse
Affiliation(s)
- Benjamin A Atterberry
- US DOE Ames National Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Erik Wimmer
- University of Stuttgart, Department of Chemistry, Stuttgart, Baden-Württemberg, 70569, Germany
| | - Deven P Estes
- University of Stuttgart, Department of Chemistry, Stuttgart, Baden-Württemberg, 70569, Germany
| | - Aaron J Rossini
- US DOE Ames National Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA.
| |
Collapse
|
7
|
Castro AC, Cascella M, Perutz RN, Raynaud C, Eisenstein O. Solid-State 19F NMR Chemical Shift in Square-Planar Nickel-Fluoride Complexes Linked by Halogen Bonds. Inorg Chem 2023; 62:4835-4846. [PMID: 36920236 PMCID: PMC10052355 DOI: 10.1021/acs.inorgchem.2c04063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 03/16/2023]
Abstract
The halogen bond (XB) is a highly directional class of noncovalent interactions widely explored by experimental and computational studies. However, the NMR signature of the XB has attracted limited attention. The prediction and analysis of the solid-state NMR (SSNMR) chemical shift tensor provide useful strategies to better understand XB interactions. In this work, we employ a computational protocol for modeling and analyzing the 19F SSNMR chemical shifts previously measured in a family of square-planar trans NiII-L2-iodoaryl-fluoride (L = PEt3) complexes capable of forming self-complementary networks held by a NiF···I(C) halogen bond [Thangavadivale, V.; Chem. Sci. 2018, 9, 3767-3781]. To understand how the 19F NMR resonances of the nickel-bonded fluoride are affected by the XB, we investigate the origin of the shielding in trans-[NiF(2,3,5,6-C6F4I)(PEt3)2], trans-[NiF(2,3,4,5-C6F4I)(PEt3)2], and trans-[NiF(C6F5)(PEt3)2] in the solid state, where a XB is present in the two former systems but not in the last. We perform the 19F NMR chemical shift calculations both in periodic and molecular models. The results show that the crystal packing has little influence on the NMR signatures of the XB, and the NMR can be modeled successfully with a pair of molecules interacting via the XB. Thus, the observed difference in chemical shift between solid-state and solution NMR can be essentially attributed to the XB interaction. The very high shielding of the fluoride and its driving contributor, the most shielded component of the chemical shift tensor, are well reproduced at the 2c-ZORA level. Analysis of the factors controlling the shielding shows how the highest occupied Ni/F orbitals shield the fluoride in the directions perpendicular to the Ni-F bond and specifically perpendicular to the coordination plane. This shielding arises from the magnetic coupling of the Ni(3d)/F(2p lone pair) orbitals with the vacant σNi-F* orbital, thereby rationalizing the very highly upfield (shielded) resonance of the component (δ33) along this direction. We show that these features are characteristic of square-planar nickel-fluoride complexes. The deshielding of the fluoride in the halogen-bonded systems is attributed to an increase in the energy gap between the occupied and vacant orbitals that are mostly responsible for the paramagnetic terms, notably along the most shielded direction.
Collapse
Affiliation(s)
- Abril C. Castro
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| | - Michele Cascella
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| | - Robin N. Perutz
- Department
of Chemistry, University of York, Heslington, YO10 5DD York, United Kingdom
| | | | - Odile Eisenstein
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
- ICGM,
Université Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| |
Collapse
|
8
|
Fernández-Alarcón A, Autschbach J. Relativistic Density Functional NMR Tensors Analyzed with Spin-free Localized Molecular Orbitals. Chemphyschem 2023; 24:e202200667. [PMID: 36169984 DOI: 10.1002/cphc.202200667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Indexed: 01/07/2023]
Abstract
The implementation of fast relativistic methods based on density functional theory, in conjunction with localized molecular orbital (LMO) based analysis, allows straightforward interpretations of NMR parameters in terms of contributions from core shells, lone pairs, and bonds, for compounds containing elements from across the periodic table. We present a conceptual review of a frequently used LMO analysis of NMR parameters calculated in the presence of spin-orbit interactions and other relativistic effects. An accompanying example focuses on the 15 N shielding in a heavy metal complex.
Collapse
Affiliation(s)
- Alberto Fernández-Alarcón
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA
| |
Collapse
|
9
|
Lin X, Tian W, Wu W, Mo Y. Evidence for π CHR→d M bonding in transition metal carbene compounds (L nMCHR) and its decisive role in the α-agostic effect. Phys Chem Chem Phys 2022; 24:23420-23426. [PMID: 36128880 DOI: 10.1039/d2cp03870f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has been generally recognized that the α-agostic interaction (M⋯H-C) in transition metal carbene compounds LnMCHR (R = H, Me etc.) can be interpreted with a double metal-carbon bonding model. This bonding model involves the reorganization of the σ component, which can be illustrated in terms of three-center two-electron (3c-2e) M-H-C covalent bond as in transition metal alkyl compounds. Herein, we propose an alternative partial triple metal-carbon bonding model to elucidate the agostic interaction in LnMCHR. Apart from the well-defined σ and π bonds, there exists a seemingly weak but decisive third force, namely the πCHR→dM bonding between an occupied π-like symmetric CHR orbital and a vacant metal d orbital, which is the true origin of the α-agostic effect. This partial triple bonding model is authenticated on both Fischer- and Schrock-type carbenes by an ab initio valence bond (VB) method or the block-localized wavefunction (BLW) method, which has the capability to quantify this notable π bonding and further demonstrate its geometric, energetic and spectral impacts on agostic transition metal carbene compounds. We also show that ancillary ligands can modulate the πCHR→dM bonding through electronic and steric effects.
Collapse
Affiliation(s)
- Xuhui Lin
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Weiqin Tian
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA.
| |
Collapse
|
10
|
Venkatesh A, Gioffrè D, Atterberry BA, Rochlitz L, Carnahan SL, Wang Z, Menzildjian G, Lesage A, Copéret C, Rossini AJ. Molecular and Electronic Structure of Isolated Platinum Sites Enabled by the Expedient Measurement of 195Pt Chemical Shift Anisotropy. J Am Chem Soc 2022; 144:13511-13525. [PMID: 35861681 DOI: 10.1021/jacs.2c02300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Techniques that can characterize the molecular structures of dilute surface species are required to facilitate the rational synthesis and improvement of Pt-based heterogeneous catalysts. 195Pt solid-state NMR spectroscopy could be an ideal tool for this task because 195Pt isotropic chemical shifts and chemical shift anisotropy (CSA) are highly sensitive probes of the local chemical environment and electronic structure. However, the characterization of Pt surface-sites is complicated by the typical low Pt loadings that are between 0.2 and 5 wt% and broadening of 195Pt solid-state NMR spectra by CSA. Here, we introduce a set of solid-state NMR methods that exploit fast MAS and indirect detection using a sensitive spy nucleus (1H or 31P) to enable the rapid acquisition of 195Pt MAS NMR spectra. We demonstrate that high-resolution wideline 195Pt MAS NMR spectra can be acquired in minutes to a few hours for a series of molecular and single-site Pt species grafted on silica with Pt loading of only 3-5 wt%. Low-power, long-duration, sideband-selective excitation, and saturation pulses are incorporated into t1-noise eliminated dipolar heteronuclear multiple quantum coherence, perfect echo resonance echo saturation pulse double resonance, or J-resolved pulse sequences. The complete 195Pt MAS NMR spectrum is then reconstructed by recording a series of 1D NMR spectra where the offset of the 195Pt pulses is varied in increments of the MAS frequency. Analysis of the 195Pt MAS NMR spectra yields the 195Pt chemical shift tensor parameters. Zeroth order approximation density functional theory calculations accurately predict 195Pt CS tensor parameters. Simple and predictive orbital models relate the CS tensor parameters to the Pt electronic structure and coordination environment. The methodology developed here paves the way for the detailed structural and electronic analysis of dilute platinum surface-sites.
Collapse
Affiliation(s)
- Amrit Venkatesh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Domenico Gioffrè
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Benjamin A Atterberry
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Lukas Rochlitz
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Scott L Carnahan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Zhuoran Wang
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, UMR 5082, F-69100 Villeurbanne, France
| | - Georges Menzildjian
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, UMR 5082, F-69100 Villeurbanne, France
| | - Anne Lesage
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, UMR 5082, F-69100 Villeurbanne, France
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Aaron J Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
11
|
Nasrallah DJ, Zehnder TE, Ludwig JR, Steigerwald DC, Kiernicki JJ, Szymczak NK, Schindler CS. Hydrazone and Oxime Olefination via Ruthenium Alkylidenes. Angew Chem Int Ed Engl 2022; 61:e202112101. [DOI: 10.1002/anie.202112101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel J. Nasrallah
- Department of Chemistry University of Michigan Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
| | - Troy E. Zehnder
- Department of Chemistry University of Michigan Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
| | - Jacob R. Ludwig
- Department of Chemistry University of Michigan Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
| | - Daniel C. Steigerwald
- Department of Chemistry University of Michigan Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
| | - John J. Kiernicki
- Department of Chemistry University of Michigan Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
- Present address: Drury University Department of Chemistry and Physics 900 North Benton Ave. Springfield MO 65802 USA
| | - Nathaniel K. Szymczak
- Department of Chemistry University of Michigan Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
| | - Corinna S. Schindler
- Department of Chemistry University of Michigan Willard Henry Dow Laboratory 930 North University Ave. Ann Arbor MI 48109 USA
| |
Collapse
|
12
|
Nasrallah DJ, Zehnder TE, Ludwig JR, Kiernicki JJ, Steigerwald DC, Schindler CS, Szymczak NK. Hydrazone and Oxime Olefination via Ruthenium Alkylidenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Eisenstein O. From the Felkin‐Anh Rule to the Grignard Reaction: an Almost Circular 50 Year Adventure in the World of Molecular Structures and Reaction Mechanisms with Computational Chemistry**. Isr J Chem 2022. [DOI: 10.1002/ijch.202100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Odile Eisenstein
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34095 France Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences University of Oslo Oslo 0315 Norway
| |
Collapse
|
14
|
Musso JV, Schowner R, Falivene L, Frey W, Cavallo L, Buchmeiser MR. Predicting Catalytic Activity from
13
C
CH
Alkylidene Chemical Shift in Cationic Tungsten Oxo Alkylidene N‐Heterocyclic Carbene Complexes. ChemCatChem 2021. [DOI: 10.1002/cctc.202101510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Janis V. Musso
- Institut für Polymerchemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Roman Schowner
- Institut für Polymerchemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Laura Falivene
- Dipartimento di Chimica e Biologia University of Salerno Via Papa Paolo Giovanni II I-84084 Fisciano Italy
| | - Wolfgang Frey
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Luigi Cavallo
- KAUST Catalysis Center Physical Sciences and Engineering Division King Abdullah University of Science and Technology 23955-6900 Thuwal Saudi Arabia
| | - Michael R. Buchmeiser
- Institut für Polymerchemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
- German Institutes of Textile and Fiber Research (DITF) Denkendorf Körschtalstr. 26 73770 Denkendorf Germany
| |
Collapse
|
15
|
Huynh W, Taylor JW, Harman WH, Conley MP. Solid-state 11B NMR studies of coinage metal complexes containing a phosphine substituted diboraanthracene ligand. Dalton Trans 2021; 50:14855-14863. [PMID: 34604875 DOI: 10.1039/d1dt02981a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal interactions with Lewis acids (M → Z linkages) are fundamentally interesting and practically important. The most common Z-type ligands contain boron, which contains an NMR active 11B nucleus. We measured solid-state 11B{1H} NMR spectra of copper, silver, and gold complexes containing a phosphine substituted 9,10-diboraanthracene ligand (B2P2) that contain planar boron centers and weak M → BR3 linkages ([(B2P2)M][BArF4] (M = Cu (1), Ag (2), Au (3)) characterized by large quadrupolar coupling (CQ) values (4.4-4.7 MHz) and large span (Ω) values (93-139 ppm). However, the solid-state 11B{1H} NMR spectrum of K[Au(B2P2)]- (4), which contains tetrahedral borons, is narrow and characterized by small CQ and Ω values. DFT analysis of 1-4 shows that CQ and Ω are expected to be large for planar boron environments and small for tetrahedral boron, and that the presence of a M → BR3 linkage relates to the reduction in CQ and 11B NMR shielding properties. Thus solid-state 11B NMR spectroscopy contains valuable information about M → BR3 linkages in complexes containing the B2P2 ligand.
Collapse
Affiliation(s)
- Winn Huynh
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - Jordan W Taylor
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - W Hill Harman
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| |
Collapse
|
16
|
Liu S, Boudjelel M, Schrock RR, Conley MP, Tsay C. Interconversion of Molybdenum or Tungsten d 2 Styrene Complexes with d 0 1-Phenethylidene Analogues. J Am Chem Soc 2021; 143:17209-17218. [PMID: 34633807 DOI: 10.1021/jacs.1c08086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Upon addition of 5-15% PhNMe2H+X- (X = B(3,5-(CF3)2C6H3)4 or B(C6F5)4) to Mo(NAr)(styrene)(OSiPh3)2 (Ar = N-2,6-i-Pr2C6H3) in C6D6 an equilibrium mixture of Mo(NAr)(styrene)(OSiPh3)2 and Mo(NAr)(CMePh)(OSiPh3)2 is formed over 36 h at 45 °C (Keq = 0.36). A plausible intermediate in the interconversion of the styrene and 1-phenethylidene complexes is the 1-phenethyl cation, [Mo(NAr)(CHMePh)(OSiPh3)2]+, which can be generated using [(Et2O)2H][B(C6F5)4] as the acid. The interconversion can be modeled as two equilibria involving protonation of Mo(NAr)(styrene)(OSiPh3)2 or Mo(NAr)(CMePh)(OSiPh3)2 and deprotonation of the α or β phenethyl carbon atom in [Mo(NAr)(CHMePh)(OSiPh3)2]+. The ratio of the rate of deprotonation of [Mo(NAr)(CHMePh)(OSiPh3)2]+ by PhNMe2 in the α position versus the β position is ∼10, or ∼30 per Hβ. The slow step is protonation of Mo(NAr)(styrene)(OSiPh3)2 (k1 = 0.158(4) L/(mol·min)). Proton sources such as (CF3)3COH or Ph3SiOH do not catalyze the interconversion of Mo(NAr)(styrene)(OSiPh3)2 and Mo(NAr)(CMePh)(OSiPh3)2, while the reaction of Mo(NAr)(styrene)(OSiPh3)2 with pyridinium salts generates only a trace (∼2%) of Mo(NAr)(CMePh)(OSiPh3)2 and forms a monopyridine adduct, [Mo(NAr)(CHMePh)(OSiPh3)2(py)]+ (two diastereomers). The structure of [Mo(NAr)(CHMePh)(OSiPh3)2]+ has been confirmed in an X-ray study; there is no structural indication that a β proton is activated through a CHβ interaction with the metal. W(NAr)(CMePh)(OSiPh3)2 is also converted into a mixture of W(NAr)(CMePh)(OSiPh3)2 and W(NAr)(styrene)(OSiPh3)2 (Keq = 0.47 at 45 °C in favor of the styrene complex) with 10% [PhNMe2H][B(C6F5)4] as the catalyst; the time required to reach equilibrium is approximately the same as in the Mo system.
Collapse
Affiliation(s)
- Sumeng Liu
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Maxime Boudjelel
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Richard R Schrock
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Matthew P Conley
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Charlene Tsay
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| |
Collapse
|
17
|
Aghazada S, Munz D, Heinemann FW, Scheurer A, Meyer K. A Crystalline Iron Terminal Methylidene. J Am Chem Soc 2021; 143:17219-17225. [PMID: 34613738 DOI: 10.1021/jacs.1c08202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron methylidene species are alleged intermediates in the Fischer-Tropsch process and in olefin cyclopropanation, yet iron methylidene complexes with unambiguously established molecular and electronic structures remain elusive. In this study, we characterize an iron terminal methylidene complex by single-crystal X-ray diffractometry (scXRD), CHN combustion elemental analysis, 1H/13C/31P/1H-13C NMR, and zero-field 57Fe Mössbauer spectroscopy and study its reactivity. A series of closely related complexes in different oxidation states were synthesized, isolated and characterized in order to validate the electronic structure of the title methylidene complex. The computational analysis substantiates the proposed Fischer-type electronic description while emphasizing high Fe═CH2 bond covalency, considerable double bond order, and thus, substantial alkylidene character.
Collapse
Affiliation(s)
- Sadig Aghazada
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Inorganic Chemistry, Egerlandstrasse 1, D-91058 Erlangen, Germany
| | - Dominik Munz
- Saarland University, Inorganic Chemistry: Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Frank W Heinemann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Inorganic Chemistry, Egerlandstrasse 1, D-91058 Erlangen, Germany
| | - Andreas Scheurer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Inorganic Chemistry, Egerlandstrasse 1, D-91058 Erlangen, Germany
| | - Karsten Meyer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Inorganic Chemistry, Egerlandstrasse 1, D-91058 Erlangen, Germany
| |
Collapse
|
18
|
Mandal U, Ghiviriga I, Abboud KA, Lester DW, Veige AS. Double Tethered Metallacyclobutane Catalyst for Cyclic Polymer Synthesis. J Am Chem Soc 2021; 143:17276-17283. [PMID: 34618432 DOI: 10.1021/jacs.1c08806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work outlines an approach to creating a catalyst for cyclic polymer synthesis using readily available materials in only one or two steps. Combining commercially available molybdenum-alkylidene 1 with two equivalents of ene-ol proligand 2 rapidly produces, in quantitative yield (1H NMR spectroscopy), the double tethered metallacyclobutane complex 3. Characterized by variable temperature NMR studies and nuclear Overhauser effect spectroscopy (NOESY) experiments, complex 3 exhibits fluxional behavior in solution. Determined by single crystal X-ray diffraction, the solid-state structure of complex 3 reveals metrical parameters indicating that the metallacyclobutane is not predicted to undergo rapid retro-cycloaddition. However, complex 3 is a precatalyst for the polymerization of norbornene to produce cyclic polynorbornene. An NMR spectrum of a test polymerization indicates that only a small fraction of the precatalyst is activated upon exposure to monomer. Quantifying the active catalyst is possible by measuring vinyl resonances that appear in the 1H NMR spectrum. The vinyl resonances are attributable to the release of one of the tethers upon norbornene addition. Confirmation of the polymer cyclic topology comes from gel permeation chromatography (GPC), dynamic light scattering (DLS), and intrinsic viscosity (η) measurements. The double tethered metallacyclobutane complex is a novel design for catalytic cyclic polymer synthesis. The synthetic approach suggests that catalyst tuning is possible by a choice of the commercial alkylidene and alteration of the ene-ol proligand.
Collapse
Affiliation(s)
- Ushnish Mandal
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Department of Chemistry, Center for NMR Spectroscopy, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Khalil A Abboud
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Daniel W Lester
- Polymer Characterization Research Technology Platform, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Adam S Veige
- Department of Chemistry, Center for Catalysis, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
19
|
Mames A, Pietrzak M, Bernatowicz P, Kubas A, Luboradzki R, Ratajczyk T. NMR Crystallography Enhanced by Quantum Chemical Calculations and Liquid State NMR Spectroscopy for the Investigation of Se-NHC Adducts*. Chemistry 2021; 27:16477-16487. [PMID: 34606111 DOI: 10.1002/chem.202102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Indexed: 11/11/2022]
Abstract
N-heterocyclic carbene ligands (NHC) are widely utilized in catalysis and material science. They are characterized by their steric and electronic properties. Steric properties are usually quantified on the basis of their static structure, which can be determined by X-ray diffraction. The electronic properties are estimated in the liquid state; for example, via the 77 Se liquid state NMR of Se-NHC adducts. We demonstrate that 77 Se NMR crystallography can contribute to the characterization of the structural and electronic properties of NHC in solid and liquid states. Selected Se-NHC adducts are investigated via 77 Se solid state NMR and X-ray crystallography, supported by quantum chemical calculations. This investigation reveals a correlation between the molecular structure of adducts and NMR parameters, including not only isotropic chemical shifts but also the other chemical shift tensor components. Afterwards, the liquid state 77 Se NMR data is presented and interpreted in terms of the quantum chemistry modelling. The discrepancy between the structural and electronic properties, and in particular the π-accepting abilities of adducts in the solid and liquid states is discussed. Finally, the 13 C isotropic chemical shift from the liquid state NMR and the 13 C tensor components are also discussed, and compared with their 77 Se counterparts. 77 Se NMR crystallography can deliver valuable information about NHC ligands, and together with liquid state 77 Se NMR can provide an in-depth outlook on the properties of NHC ligands.
Collapse
Affiliation(s)
- Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Piotr Bernatowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Roman Luboradzki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
20
|
Du J, Seed JA, Berryman VEJ, Kaltsoyannis N, Adams RW, Lee D, Liddle ST. Exceptional uranium(VI)-nitride triple bond covalency from 15N nuclear magnetic resonance spectroscopy and quantum chemical analysis. Nat Commun 2021; 12:5649. [PMID: 34561448 PMCID: PMC8463702 DOI: 10.1038/s41467-021-25863-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
Determining the nature and extent of covalency of early actinide chemical bonding is a fundamentally important challenge. Recently, X-ray absorption, electron paramagnetic, and nuclear magnetic resonance spectroscopic studies have probed actinide-ligand covalency, largely confirming the paradigm of early actinide bonding varying from ionic to polarised-covalent, with this range sitting on the continuum between ionic lanthanide and more covalent d transition metal analogues. Here, we report measurement of the covalency of a terminal uranium(VI)-nitride by 15N nuclear magnetic resonance spectroscopy, and find an exceptional nitride chemical shift and chemical shift anisotropy. This redefines the 15N nuclear magnetic resonance spectroscopy parameter space, and experimentally confirms a prior computational prediction that the uranium(VI)-nitride triple bond is not only highly covalent, but, more so than d transition metal analogues. These results enable construction of general, predictive metal-ligand 15N chemical shift-bond order correlations, and reframe our understanding of actinide chemical bonding to guide future studies.
Collapse
Affiliation(s)
- Jingzhen Du
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - John A Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Victoria E J Berryman
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Nikolas Kaltsoyannis
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ralph W Adams
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Daniel Lee
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, UK.
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
21
|
De Jesus Silva J, Pucino M, Zhai F, Mance D, Berkson ZJ, Nater DF, Hoveyda AH, Copéret C, Schrock RR. Boosting the Metathesis Activity of Molybdenum Oxo Alkylidenes by Tuning the Anionic Ligand σ Donation. Inorg Chem 2021; 60:6875-6880. [PMID: 33475353 DOI: 10.1021/acs.inorgchem.0c03173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic performances of molecular and silica-supported molybdenum oxo alkylidene species bearing anionic O ligands [ORF9, OTPP, OHMT - where ORF9 = OC(CF3)3, OTPP = 2,3,5,6-tetraphenylphenoxy, OHMT = hexamethylterphenoxy] with different σ-donation abilities and sizes are evaluated in the metathesis of both internal and terminal olefins. Here, we show that the presence of the anionic nonafluoro-tert-butoxy X ligand in Mo(O){═CH-4-(MeO)C6H4}(THF)2{X}2 (1; X = ORF9) significantly increases the catalytic performances in the metathesis of both terminal and internal olefins. Its silica-supported equivalent displays slightly lower activity, albeit with improved stability. In sharp contrast, the molecular complexes with large aryloxy anionic X ligands show little activity, whereas the activity of the corresponding silica-supported systems is greatly improved, illustrating that surface siloxy groups are significantly smaller anionic ligands. Of all of the systems, compound 1 stands out because of its unique high activity for both terminal and internal olefins. Density functional theory modeling indicates that the ORF9 ligand is ideal in this series because of its weak σ-donating ability, avoiding overstabilization of the metallacyclobutane intermediates while keeping low barriers for [2 + 2] cycloaddition and turnstile isomerization.
Collapse
Affiliation(s)
- Jordan De Jesus Silva
- Department of Chemistry and Applied Biosciences, ETH Zürich (ETHZ), Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Margherita Pucino
- Department of Chemistry and Applied Biosciences, ETH Zürich (ETHZ), Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Feng Zhai
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Deni Mance
- Department of Chemistry and Applied Biosciences, ETH Zürich (ETHZ), Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Zachariah J Berkson
- Department of Chemistry and Applied Biosciences, ETH Zürich (ETHZ), Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Darryl F Nater
- Department of Chemistry and Applied Biosciences, ETH Zürich (ETHZ), Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich (ETHZ), Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Richard R Schrock
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Gordon CP, Lätsch L, Copéret C. Nuclear Magnetic Resonance: A Spectroscopic Probe to Understand the Electronic Structure and Reactivity of Molecules and Materials. J Phys Chem Lett 2021; 12:2072-2085. [PMID: 33617260 DOI: 10.1021/acs.jpclett.0c03520] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This Perspective focuses on the ability of chemical shift to identify and characterize the electronic structure and associated reactivity of molecules and materials. After a general introduction on NMR parameters, we will show selected examples where the chemical shift of various NMR active nuclei has been used to investigate and understand electronic properties, with a particular focus on organometallic compounds and inorganic materials with relevance to catalysis. We will demonstrate how the NMR parameter of probe molecules and ligands can be used to elucidate the nature of active sites and how they can help to understand and predict their reactivity. Lastly, we will give an overview over recent advances in deciphering metal NMR parameters. Overall, we show how chemical shift is a reactivity descriptor that can be analyzed and understood on a molecular level.
Collapse
Affiliation(s)
- Christopher P Gordon
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich, Switzerland
| | - Lukas Lätsch
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich, Switzerland
| | - Christophe Copéret
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich, Switzerland
| |
Collapse
|
23
|
Raynaud C, Norbert-Agaisse E, James BR, Eisenstein O. 31P Chemical Shifts in Ru(II) Phosphine Complexes. A Computational Study of the Influence of the Coordination Sphere. Inorg Chem 2020; 59:17038-17048. [PMID: 33156986 DOI: 10.1021/acs.inorgchem.0c02256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The NMR chemical shift has been the most versatile marker of chemical structures, by reflecting global and local electronic structures, and is very sensitive to any change within the chemical species. In this work, Ru(II) complexes with the same five ligands and a variable sixth ligand L (none, H2O, H2S, CH3SH, H2, N2, N2O, NO+, C═CHPh, and CO) are studied by using as the NMR reporter the phosphorus PA of a coordinated bidentate PA-N ligand (PA-N = o-diphenylphosphino-N,N'-dimethylaniline). The chemical shift of PA in RuCl2(PA-N)(PR3)(L) (R = phenyl, p-tolyl, or p-FC6H4) was shown to increase as the Ru-PA bond distance decreases, an observation that was not rationalized. This work, using density functional theory (DFT) calculations, reproduces reasonably well the observed 31P chemical shifts for these complexes and the correlation between the shifts and the Ru-PA bond distance as L varies. An interpretation of this correlation is proposed by using a natural chemical shift (NCS) analysis based on the natural bonding orbital (NBO) method. This analysis of the principal components of the chemical shift tensors shows how the σ-donating properties of L have a particularly high influence on the phosphine chemical shifts.
Collapse
Affiliation(s)
| | | | - Brian R James
- Department of Chemistry, University of Vancouver, Vancouver, BC V6T 1Z1, Canada
| | - Odile Eisenstein
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier 34095, France.,Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo 0315, Norway
| |
Collapse
|
24
|
Milovanović MR, Zarić SD, Cornaton Y, Djukic JP. Joint Isotherm Calorimetric Titration–DFT Investigation of the Demethoxy-Amination of Fischer Carbenes. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Poater A, D'Alterio MC, Talarico G, Chauvin R. Arene vs. Alkene Substrates in Ru-Catalyzed Olefin Metathesis: a DFT Investigation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química; Universitat de Girona; 17003 Girona Catalonia Spain
| | - Massimo Christian D'Alterio
- Institut de Química Computacional i Catàlisi and Departament de Química; Universitat de Girona; 17003 Girona Catalonia Spain
- Dipartimento di Scienze Chimiche; Università di Napoli Federico II; Via Cintia 80126 Napoli Italy
| | - Giovanni Talarico
- Dipartimento di Scienze Chimiche; Università di Napoli Federico II; Via Cintia 80126 Napoli Italy
| | - Remi Chauvin
- UPS, ICT-FR 2599; Université de Toulouse; 118 route de Narbonne 31062 Toulouse Cedex 9 France
- LCC (Laboratoire de Chimie de Coordination); CNRS; 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| |
Collapse
|
26
|
Lätsch L, Lam E, Copéret C. Electronegativity and location of anionic ligands drive yttrium NMR for molecular, surface and solid-state structures. Chem Sci 2020; 11:6724-6735. [PMID: 33033594 PMCID: PMC7504898 DOI: 10.1039/d0sc02321c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/12/2020] [Indexed: 11/21/2022] Open
Abstract
Yttrium is present in various forms in molecular compounds and solid-state structures; it typically provides specific mechanical and optical properties. Hence, yttrium containing compounds are used in a broad range of applications such as catalysis, lasers and optical devices. Obtaining descriptors that can provide access to a detailed structure-property relationship would therefore be a strong base for the rational design of such applications. Towards this goal, 89Y (100% abundant spin ½ nucleus), is associated with a broad range of NMR chemical shifts that greatly depend on the coordination environment of Y, rendering 89Y NMR an attractive method for the characterization of yttrium containing compounds. However, to date, it has been difficult to obtain a direct relationship between 89Y chemical shifts and its coordination environment. Here, we use computational chemistry to model the chemical shift of a broad range of Y(iii) molecular compounds with the goal to reveal the underlying factors that determine the 89Y chemical shift. We show through natural chemical shift (NCS)-analysis that isotropic chemical shifts can easily help to distinguish between different types of ligands solely based on the electronegativity of the central atom of the anionic ligands directly bound to Y(iii). NCS-analysis further demonstrates that the second most important parameter is the degree of pyramidalization of the three anionic ligands imposed by additional neutral ligands. While isotropic chemical shifts can be similar due to compensating effects, investigation of the chemical shift anisotropy (CSA) enables discriminating between the coordination environment of Y.
Collapse
Affiliation(s)
- Lukas Lätsch
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir-Prelog-Weg 1-5 , CH-8093 , Zürich , Switzerland .
| | - Erwin Lam
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir-Prelog-Weg 1-5 , CH-8093 , Zürich , Switzerland .
| | - Christophe Copéret
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir-Prelog-Weg 1-5 , CH-8093 , Zürich , Switzerland .
| |
Collapse
|
27
|
Sergentu DC, Kent GT, Staun SL, Yu X, Cho H, Autschbach J, Hayton TW. Probing the Electronic Structure of a Thorium Nitride Complex by Solid-State 15N NMR Spectroscopy. Inorg Chem 2020; 59:10138-10145. [DOI: 10.1021/acs.inorgchem.0c01263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Greggory T. Kent
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Selena L. Staun
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Herman Cho
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 908 Battelle Boulevard, Richland, Washington 99354, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
28
|
Hillenbrand J, Leutzsch M, Yiannakas E, Gordon CP, Wille C, Nöthling N, Copéret C, Fürstner A. "Canopy Catalysts" for Alkyne Metathesis: Molybdenum Alkylidyne Complexes with a Tripodal Ligand Framework. J Am Chem Soc 2020; 142:11279-11294. [PMID: 32463684 PMCID: PMC7322728 DOI: 10.1021/jacs.0c04742] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
A new family of structurally well-defined
molybdenum alkylidyne
catalysts for alkyne metathesis, which is distinguished by a tripodal
trisilanolate ligand architecture, is presented. Complexes of type 1 combine the virtues of previous generations of silanolate-based
catalysts with a significantly improved functional group tolerance.
They are easy to prepare on scale; the modularity of the ligand synthesis
allows the steric and electronic properties to be fine-tuned and hence
the application profile of the catalysts to be optimized. This opportunity
is manifested in the development of catalyst 1f, which
is as reactive as the best ancestors but exhibits an unrivaled scope.
The new catalysts work well in the presence of unprotected alcohols
and various other protic groups. The chelate effect entails even a
certain stability toward water, which marks a big leap forward in
metal alkylidyne chemistry in general. At the same time, they tolerate
many donor sites, including basic nitrogen and numerous heterocycles.
This aspect is substantiated by applications to polyfunctional (natural)
products. A combined spectroscopic, crystallographic, and computational
study provides insights into structure and electronic character of
complexes of type 1. Particularly informative are a density
functional theory (DFT)-based chemical shift tensor analysis of the
alkylidyne carbon atom and 95Mo NMR spectroscopy; this
analytical tool had been rarely used in organometallic chemistry before
but turns out to be a sensitive probe that deserves more attention.
The data show that the podand ligands render a Mo-alkylidyne a priori
more electrophilic than analogous monodentate triarylsilanols; proper
ligand tuning, however, allows the Lewis acidity as well as the steric
demand about the central atom to be adjusted to the point that excellent
performance of the catalyst is ensured.
Collapse
Affiliation(s)
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Ektoras Yiannakas
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Christopher P Gordon
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093 Zürich, Switzerland
| | - Christian Wille
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093 Zürich, Switzerland
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
29
|
Pucino M, Liao W, Chan KW, Lam E, Schowner R, Zhizhko PA, Buchmeiser MR, Copéret C. Metal‐Surface Interactions and Surface Heterogeneity in ‘Well‐Defined’ Silica‐Supported Alkene Metathesis Catalysts: Evidences and Consequences. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Margherita Pucino
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1–5 CH-8093 Zürich Switzerland
| | - Wei‐Chih Liao
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1–5 CH-8093 Zürich Switzerland
| | - Ka Wing Chan
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1–5 CH-8093 Zürich Switzerland
| | - Erwin Lam
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1–5 CH-8093 Zürich Switzerland
| | - Roman Schowner
- Institute of Polymer ChemistryUniversity of Stuttgart Pfaffenwaldring 55 DE-70569 Stuttgart Germany
| | - Pavel A. Zhizhko
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1–5 CH-8093 Zürich Switzerland
| | - Michael R. Buchmeiser
- Institute of Polymer ChemistryUniversity of Stuttgart Pfaffenwaldring 55 DE-70569 Stuttgart Germany
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1–5 CH-8093 Zürich Switzerland
| |
Collapse
|
30
|
Viesser RV, Tormena CF. Counterintuitive deshielding on the 13 C NMR chemical shift for the trifluoromethyl anion. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:540-547. [PMID: 31705544 DOI: 10.1002/mrc.4958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
The trifluoromethyl anion (CF3 - ) displays 13 C NMR chemical shift (175.0 ppm) surprisingly larger than neutral (CHF3 , 122.2 ppm) and cation (CF3 + , 150.7 ppm) compounds. This unexpected deshielding effect for a carbanion is investigated by density functional theory calculations and decomposition analyses of the 13 C shielding tensor into localized molecular orbital contributions. The present work determines the shielding mechanisms involved in the observed behaviour of the fluorinated anion species, shedding light on the experimental NMR data and demystify the classical correlation between electron density and NMR chemical shift. The presence of fluorine atoms induces the carbon lone pair to create a paramagnetic shielding on the carbon nucleus.
Collapse
Affiliation(s)
- Renan V Viesser
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Cláudio F Tormena
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
31
|
Yakimov AV, Mance D, Searles K, Copéret C. A Formulation Protocol with Pyridine to Enable Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy on Reactive Surface Sites: Case Study with Olefin Polymerization and Metathesis Catalysts. J Phys Chem Lett 2020; 11:3401-3407. [PMID: 32271018 DOI: 10.1021/acs.jpclett.0c00716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP-SENS) has emerged as a powerful characterization tool in material chemistry and heterogeneous catalysis by dramatically increasing, by up to 2 orders of magnitude, the NMR signals associated with surface sites. DNP-SENS mostly relies on using exogenous polarizing agents (PAs), typically dinitroxyl radicals, to boost the NMR signals. However, the PAs may interact with the surface or even react with surface sites, thus leading to loss or quenching of DNP enhancements. Herein, we describe the development of a DNP-SENS formulation that allows broadening the application of DNP-SENS to samples containing highly reactive surface sites, namely a Ziegler-Natta propylene polymerization catalyst, a sulfated zirconia-supported metallocene, and a silica-supported cationic Mo alkylidene. The protocol consists of adsorbing pyridine prior to the DNP formulation (TEKPol/TCE). The addition of pyridine not only preserves the PAs and thereby restores the DNP enhancement but also allows probing Lewis/Brønsted acid surface sites that are often present on these catalysts.
Collapse
Affiliation(s)
| | - Deni Mance
- ETH Zurich, Vladimir-Prelog Weg 1-5/10, 8093 Zurich, Switzerland
| | - Keith Searles
- ETH Zurich, Vladimir-Prelog Weg 1-5/10, 8093 Zurich, Switzerland
| | | |
Collapse
|
32
|
Renom-Carrasco M, Mania P, Sayah R, Veyre L, Occhipinti G, Jensen VR, Thieuleux C. Silica-supported Z-selective Ru olefin metathesis catalysts. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Burt LK, Hill AF. Heterobimetallic μ2-carbido complexes of platinum and tungsten. Dalton Trans 2020; 49:8143-8161. [DOI: 10.1039/d0dt01617a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The tungsten–platinum μ-carbido complex [WPt(μ-C)Br(CO)2(PPh3)2(Tp*)] (Tp* = hydrotris(dimethylpyrazol-1-yl)borate) undergoes facile substitution of both bromide and phosphine ligands to afford a diverse library of μ-carbido complexes.
Collapse
Affiliation(s)
- Liam K. Burt
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| | - Anthony F. Hill
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| |
Collapse
|
34
|
Zhizhko PA, Toth F, Gordon CP, Chan KW, Liao W, Mougel V, Copéret C. Molecular and Silica‐Supported Mo and W d
0
Imido‐Methoxybenzylidene Complexes: Structure and Metathesis Activity. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pavel A. Zhizhko
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir Prelog Weg 1–5 CH-8093 Zürich Switzerland
- A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences Vavilov str. 28 RU-119991 Moscow Russia
| | - Florian Toth
- XiMo Hungary Zahony u. 7 HU-1031 Budapest Hungary
| | - Christopher P. Gordon
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir Prelog Weg 1–5 CH-8093 Zürich Switzerland
| | - Ka Wing Chan
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir Prelog Weg 1–5 CH-8093 Zürich Switzerland
| | - Wei‐Chih Liao
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir Prelog Weg 1–5 CH-8093 Zürich Switzerland
- Current address: Department of ChemistryUniversity of California Berkeley Berkeley California 94720 USA
| | - Victor Mougel
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir Prelog Weg 1–5 CH-8093 Zürich Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir Prelog Weg 1–5 CH-8093 Zürich Switzerland
| |
Collapse
|
35
|
Gordon CP, Andersen RA, Copéret C. Metal Olefin Complexes: Revisiting the
Dewar
−
Chatt
−
Duncanson
Model and Deriving Reactivity Patterns from Carbon‐13 NMR Chemical Shift. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900151] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christopher P. Gordon
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog-Weg 1–5 CH-8093 Zürich Switzerland
| | - Richard A. Andersen
- Department of ChemistryUniversity of California Berkeley, California 94720 United States
| | - Christophe Copéret
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog-Weg 1–5 CH-8093 Zürich Switzerland
| |
Collapse
|
36
|
Gordon CP, Raynaud C, Andersen RA, Copéret C, Eisenstein O. Carbon-13 NMR Chemical Shift: A Descriptor for Electronic Structure and Reactivity of Organometallic Compounds. Acc Chem Res 2019; 52:2278-2289. [PMID: 31339693 DOI: 10.1021/acs.accounts.9b00225] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metal-bonded carbon atoms in metal-alkyl, metal-carbene/alkylidene, and metal-carbyne/alkylidyne species often show significantly more deshielded isotropic chemical shifts than their organic counterparts (alkanes, alkenes, and alkynes). While isotropic chemical shift is universally used to characterize a chemical compound in solution, it is an average value of the three principal components of the chemical shift tensor (δ11 > δ22 > δ33). The tensor components, which are accessible by solid-state NMR spectroscopy, can provide detailed information about the electronic structure (frontier molecular orbitals) at the observed nuclei. This information can be accessed in detail by quantum chemical calculations, most notably by an analysis of the paramagnetic contribution to the NMR shielding tensor. The paramagnetic term mainly results from the coupling of occupied and empty molecular orbitals close in energy-the frontier molecular orbitals-under the effect of the external magnetic field (B0). In organometallic compounds, a large deshielding of the isotropic carbon-13 chemical shift of the metal-bonded carbon atom is commonly related to the coupling between the occupied σM-C orbital and low-lying vacant orbitals of πM═C* character. The deshielding at the α-carbon hence probes the extent of σM-C and πM═C* interactions. This molecular orbital view readily explains the strong deshielding and large anisotropy (evidenced by the span Ω = δ11 - δ33) observed in metal alkylidenes and alkylidynes (200 < δiso < 400 ppm). Fischer carbenes are generally more deshielded than Schrock or Grubbs alkylidenes due to their low-lying πM═C* orbital. Chemical shift hence shows their higher electrophilic character, connecting NMR spectroscopy to reactivity patterns. Similarly, the α-carbon of metal-alkyls display deshielded chemical shifts in specific coordination environments. This deshielding, which is often prominently pronounced for cationic species, indicates the presence of partial π-bond character in the metal-carbon bond, making these bonds topologically equivalent to alkylidene π-bonds. The π-character in metal-alkyl bonds favors (i) α-H abstraction processes in metal bis-alkyl compounds yielding metal alkylidenes, (ii) [2 + 2]-retrocyclization of metallacyclobutanes that participate in olefin metathesis, (iii) olefin insertion in cationic metal alkyls thus explaining polymerization activity trends and the importance of α-H agostic interactions, and (iv) C-H bond activation on metal-alkyls via σ-bond metathesis. The presence of π-character in the metal-carbon bonds involved in these processes rationalizes the parallel reactivity patterns of metal-alkyls toward olefin insertion and σ-bond metathesis and the fact that σ-bond metathesis, olefin insertion, and olefin metathesis are commonly observed with metal atoms in the same ligand field. Because of the similarities in the frontier molecular orbitals involved in these processes, these reactions can be viewed as isolobal. This explains why certain fragments, such as bent metallocenes (d0 Cp2M) or T-shaped L3M, are ubiquitous in these reactions.
Collapse
Affiliation(s)
- Christopher P. Gordon
- ETH Zürich, Department of Chemistry and Applied Biosciences, Vladimir Prelog Weg. 1-5, CH-8093 Zürich, Switzerland
| | | | - Richard A. Andersen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christophe Copéret
- ETH Zürich, Department of Chemistry and Applied Biosciences, Vladimir Prelog Weg. 1-5, CH-8093 Zürich, Switzerland
| | - Odile Eisenstein
- ICGM, Université Montpellier, CNRS, ENSCM, 34095 Montpellier, France
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, 0315 Oslo, Norway
| |
Collapse
|
37
|
Biberger T, Gordon CP, Leutzsch M, Peil S, Guthertz A, Copéret C, Fürstner A. Alkyne
gem
‐Hydrogenation: Formation of Pianostool Ruthenium Carbene Complexes and Analysis of Their Chemical Character. Angew Chem Int Ed Engl 2019; 58:8845-8850. [DOI: 10.1002/anie.201904255] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Tobias Biberger
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Christopher P. Gordon
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Sebastian Peil
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | | | - Christophe Copéret
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| |
Collapse
|
38
|
Biberger T, Gordon CP, Leutzsch M, Peil S, Guthertz A, Copéret C, Fürstner A. Alkyne
gem
‐Hydrogenation: Formation of Pianostool Ruthenium Carbene Complexes and Analysis of Their Chemical Character. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tobias Biberger
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Christopher P. Gordon
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Sebastian Peil
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | | | - Christophe Copéret
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| |
Collapse
|
39
|
Wang HX, Wan Q, Wu K, Low KH, Yang C, Zhou CY, Huang JS, Che CM. Ruthenium(II) Porphyrin Quinoid Carbene Complexes: Synthesis, Crystal Structure, and Reactivity toward Carbene Transfer and Hydrogen Atom Transfer Reactions. J Am Chem Soc 2019; 141:9027-9046. [DOI: 10.1021/jacs.9b03357] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hai-Xu Wang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Qingyun Wan
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Kai Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Kam-Hung Low
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chen Yang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Cong-Ying Zhou
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- HKU Shenzhen Institute of Research & Innovation, Shenzhen, China
| |
Collapse
|
40
|
Jamil MSS, Alkaabi S, Brisdon AK. Simple NMR predictors of catalytic hydrogenation activity for [Rh(cod)Cl(NHC)] complexes featuring fluorinated NHC ligands. Dalton Trans 2019; 48:9317-9327. [PMID: 31166334 DOI: 10.1039/c9dt01219b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of imidazolium salts precursors for N-heterocyclic carbenes (NHCs) featuring fluoroaryl substituents have been prepared along with their selenides and rhodium complexes. Tests of the catalytic activity of the [Rh(cod)Cl(NHC)] complexes in the transfer hydrogenation of acetophenone with iPrOH shows that the rhodium complexes bearing fluorinated NHCs are better than their non-fluorinated counterparts. The order of activity being 4-F-C6H4 < 2,4-F2-C6H3 < 2,4,5-F3-C6H2 < 2,6-F2-C6H3 < 2,4,6-F3-C6H2. This order of reactivity is consistent with a number of simple NMR measures of the electronic properties of these systems, including 1JCH of the NHC·HBF4 salts, δ(77Se) of the NHC selenides and 1JRh-C and δ(13Ccarbene) of the [Rh(cod)Cl(NHC)] complexes.
Collapse
|
41
|
Renom-Carrasco M, Mania P, Sayah R, Veyre L, Occhipinti G, Gajan D, Lesage A, Jensen VR, Thieuleux C. Supported Ru olefin metathesis catalysts via a thiolate tether. Dalton Trans 2019; 48:2886-2890. [DOI: 10.1039/c8dt04592e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ruthenium alkylidene complexes can be successfully immobilized on hybrid mesostructured silica via thiolate tethers to give heterogeneous, thiolate-coordinated olefin metathesis catalysts.
Collapse
Affiliation(s)
- Marc Renom-Carrasco
- University of Lyon
- Institute of Chemistry of Lyon
- Laboratory C2P2 UMR 5265-CNRS-University Lyon 1-CPE Lyon
- 69616 Villeurbanne
- France
| | - Philipp Mania
- University of Lyon
- Institute of Chemistry of Lyon
- Laboratory C2P2 UMR 5265-CNRS-University Lyon 1-CPE Lyon
- 69616 Villeurbanne
- France
| | - Reine Sayah
- University of Lyon
- Institute of Chemistry of Lyon
- Laboratory C2P2 UMR 5265-CNRS-University Lyon 1-CPE Lyon
- 69616 Villeurbanne
- France
| | - Laurent Veyre
- University of Lyon
- Institute of Chemistry of Lyon
- Laboratory C2P2 UMR 5265-CNRS-University Lyon 1-CPE Lyon
- 69616 Villeurbanne
- France
| | | | - David Gajan
- Institut des Sciences Analytiques UMR 5280 (CNRS/Université Lyon 1/ENS Lyon)
- Université de Lyon
- Centre de RMN à Très Hauts Champs
- 69100 Villeurbanne
- France
| | - Anne Lesage
- Institut des Sciences Analytiques UMR 5280 (CNRS/Université Lyon 1/ENS Lyon)
- Université de Lyon
- Centre de RMN à Très Hauts Champs
- 69100 Villeurbanne
- France
| | - Vidar R. Jensen
- Department of Chemistry
- University of Bergen
- N-5007 Bergen
- Norway
| | - Chloé Thieuleux
- University of Lyon
- Institute of Chemistry of Lyon
- Laboratory C2P2 UMR 5265-CNRS-University Lyon 1-CPE Lyon
- 69616 Villeurbanne
- France
| |
Collapse
|
42
|
Ehinger C, Gordon CP, Copéret C. Oxygen transfer in electrophilic epoxidation probed by 17O NMR: differentiating between oxidants and role of spectator metal oxo. Chem Sci 2018; 10:1786-1795. [PMID: 30842846 PMCID: PMC6369410 DOI: 10.1039/c8sc04868a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/30/2018] [Indexed: 11/21/2022] Open
Abstract
Peroxide compounds are used both in laboratory and industrial processes for the electrophilic epoxidation of olefins. Using NMR-spectroscopy, we investigate why certain peroxides engage in this type of reaction while others require activation by metal catalysts, e.g. methyltrioxorhenium (MTO). More precisely, an analysis of 17O NMR chemical shift and quadrupolar coupling parameters provides insights into the relative energy of specific frontier molecular orbitals relevant for reactivity. For organic peroxides or H2O2 a large deshielding is indicative of an energetically high-lying lone-pair on oxygen in combination with a low-lying σ*(O-O) orbital. This feature is particularly pronounced in species that engage in electrophilic epoxidation, such as peracids or dimethyldioxirane (DMDO), and much less pronounced in unreactive peroxides such as H2O2 and ROOH, which can however be activated by transition-metal catalysts. In fact, for the proposed active peroxo species in MTO-catalyzed electrophilic epoxidation with H2O2 an analysis of the 17O NMR chemical shift highlights specific π- and δ-type orbital interactions between the so-called metal spectator oxo and the peroxo moieties that raise the energy of the high-lying lone-pair on oxygen, thus increasing the reactivity of the peroxo species.
Collapse
Affiliation(s)
- Christian Ehinger
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , 8093 , Zürich , Switzerland .
| | - Christopher P Gordon
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , 8093 , Zürich , Switzerland .
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , 8093 , Zürich , Switzerland .
| |
Collapse
|
43
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Lam E, Copéret C. Understanding Trends in 27
Al Chemical Shifts and Quadrupolar Coupling Constants in Chloroalkyl Aluminum [AlCl
x
(Me)3 − x
]
n
= 1 or 2
Compounds. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Erwin Lam
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir Prelog Weg 1 - 5 8093 Zürich Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir Prelog Weg 1 - 5 8093 Zürich Switzerland
| |
Collapse
|
45
|
Boekhoven J, Didier D. Vereinigung von Kunst und Wissenschaft: Die 53. Bürgenstock-Konferenz. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Job Boekhoven
- Fakultät für Chemie und Institute for Advanced Study; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Dorian Didier
- Fakultät für Chemie und Pharmazie; Ludwig-Maximilians-Universität; Butenandtstraße 5-13 81377 München Deutschland
| |
Collapse
|
46
|
Boekhoven J, Didier D. Merging Art and Science-The 53rd Bürgenstock Conference. Angew Chem Int Ed Engl 2018; 57:10011-10014. [PMID: 30003659 DOI: 10.1002/anie.201806142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For the 53rd time, the Bürgenstock Conference gathered some of the most gifted scientists and rising stars in organic, physical, and bioorganic chemistry. Orchestrated by Ilan Marek (President) and his successor, Véronique Gouverneur, the synergy between art and science took place in Brunnen, Switzerland, with a beatiful view over Lake Lucerne.
Collapse
Affiliation(s)
- Job Boekhoven
- Department of Chemistry and Institute for Advanced Study, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Dorian Didier
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, Munich, Germany
| |
Collapse
|
47
|
Culver DB, Huynh W, Tafazolian H, Ong T, Conley MP. The β‐Agostic Structure in (C
5
Me
5
)
2
Sc(CH
2
CH
3
): Solid‐State NMR Studies of (C
5
Me
5
)
2
Sc−R (R=Me, Ph, Et). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Damien B. Culver
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Winn Huynh
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Hosein Tafazolian
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Ta‐Chung Ong
- Department of Chemistry University of California Los Angeles CA 90095 USA
| | - Matthew P. Conley
- Department of Chemistry University of California Riverside CA 92521 USA
| |
Collapse
|
48
|
Culver DB, Huynh W, Tafazolian H, Ong T, Conley MP. The β‐Agostic Structure in (C
5
Me
5
)
2
Sc(CH
2
CH
3
): Solid‐State NMR Studies of (C
5
Me
5
)
2
Sc−R (R=Me, Ph, Et). Angew Chem Int Ed Engl 2018; 57:9520-9523. [DOI: 10.1002/anie.201805738] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Damien B. Culver
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Winn Huynh
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Hosein Tafazolian
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Ta‐Chung Ong
- Department of Chemistry University of California Los Angeles CA 90095 USA
| | - Matthew P. Conley
- Department of Chemistry University of California Riverside CA 92521 USA
| |
Collapse
|
49
|
Foppa L, Yamamoto K, Liao WC, Comas-Vives A, Copéret C. Electronic Structure-Reactivity Relationship on Ruthenium Step-Edge Sites from Carbonyl 13C Chemical Shift Analysis. J Phys Chem Lett 2018; 9:3348-3353. [PMID: 29851348 DOI: 10.1021/acs.jpclett.8b01332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ru nanoparticles are highly active catalysts for the Fischer-Tropsch and the Haber-Bosch processes. They show various types of surface sites upon CO adsorption according to NMR spectroscopy. Compared to terminal and bridging η1 adsorption modes on terraces or edges, little is known about side-on η2 CO species coordinated to B5 or B6 step-edges, the proposed active sites for CO and N2 cleavage. By using solid-state NMR and DFT calculations, we analyze 13C chemical shift tensors (CSTs) of carbonyl ligands on the molecular cluster model for Ru nanoparticles, Ru6(η2-μ4-CO)2(CO)13(η6-C6Me6), and show that, contrary to η1 carbonyls, the CST principal components parallel to the C-O bond are extremely deshielded in the η2 species due to the population of the C-O π* antibonding orbital, which weakens the bond prior to dissociation. The carbonyl CST is thus an indicator of the reactivity of both Ru clusters and Ru nanoparticles step-edge sites toward C-O bond cleavage.
Collapse
Affiliation(s)
- Lucas Foppa
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , CH-8093 Zürich , Switzerland
| | - Keishi Yamamoto
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , CH-8093 Zürich , Switzerland
| | - Wei-Chih Liao
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , CH-8093 Zürich , Switzerland
| | - Aleix Comas-Vives
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , CH-8093 Zürich , Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , CH-8093 Zürich , Switzerland
| |
Collapse
|
50
|
NMR chemical shift analysis decodes olefin oligo- and polymerization activity of d 0 group 4 metal complexes. Proc Natl Acad Sci U S A 2018; 115:E5867-E5876. [PMID: 29891699 DOI: 10.1073/pnas.1803382115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
d0 metal-alkyl complexes (M = Ti, Zr, and Hf) show specific activity and selectivity in olefin polymerization and oligomerization depending on their ligand set and charge. Here, we show by a combined experimental and computational study that the 13C NMR chemical shift tensors of the α-carbon of metal alkyls that undergo olefin insertion signal the presence of partial alkylidene character in the metal-carbon bond, which facilitates this reaction. The alkylidene character is traced back to the π-donating interaction of a filled orbital on the alkyl group with an empty low-lying metal d-orbital of appropriate symmetry. This molecular orbital picture establishes a connection between olefin insertion into a metal-alkyl bond and olefin metathesis and a close link between the Cossee-Arlmann and Green-Rooney polymerization mechanisms. The 13C NMR chemical shifts, the α-H agostic interaction, and the low activation barrier of ethylene insertion are, therefore, the results of the same orbital interactions, thus establishing chemical shift tensors as a descriptor for olefin insertion.
Collapse
|