1
|
Fu L, Nam HN, Zhou J, Kang Y, Wang K, Zhou Z, Zhao Y, Zhu L, Nandan R, Eguchi M, Phung QM, Yokoshima T, Wu K, Yamauchi Y. Mesoporous High-Entropy Alloy Films. ACS NANO 2024; 18:27617-27629. [PMID: 39324413 DOI: 10.1021/acsnano.4c08929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
High-entropy alloys (HEAs) are promising materials for electrochemical energy applications due to their excellent catalytic performance and durability. However, the controlled synthesis of HEAs with a well-defined structure and a uniform composition distribution remains a challenge. Herein, a soft template-assisted electrodeposition technique is used to fabricate a mesoporous HEA (m-HEA) film with a uniform composition distribution of Pt, Pd, Rh, Ru, and Cu, providing a suitable platform for investigating structure-performance relationships. Electrochemical deposition enables the uniform nucleation and grain growth of m-HEA, which can be deposited onto many conductive substrates. The m-HEA film exhibits an enhanced mass activity of 4.2 A mgPt-1 toward methanol oxidation reaction (MOR), which is 7.2-fold and 35-fold higher than a mesoporous Pt film and commercial Pt black, respectively. Experimental characterization indicates that structural defects and a low work function of the m-HEA film offer sufficient active sites and fast electron-transfer kinetics. Furthermore, theoretical calculations demonstrate that the variety of favorable adsorption sites on multimetallic elements of HEA reduces the barriers for dehydration pathways and *CO species removal, ensuring optimal performance for complex MOR reactions. This work provides an effective approach to designing a variety of HEA catalysts with well-controlled porous structures for targeted electrocatalytic applications.
Collapse
Affiliation(s)
- Lei Fu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Ho Ngoc Nam
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Jun Zhou
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yunqing Kang
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
| | - Kaiteng Wang
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zilin Zhou
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yingji Zhao
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Liyang Zhu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Ravi Nandan
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Miharu Eguchi
- Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quan Manh Phung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tokihiko Yokoshima
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kai Wu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
2
|
Wieser P, Moser D, Gollas B, Amenitsch H. Monitoring of Pore Orientation by in Operando Grazing Incidence Small-Angle X-ray Scattering during Templated Electrodeposition of Mesoporous Pt Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47604-47614. [PMID: 37769130 PMCID: PMC10571001 DOI: 10.1021/acsami.3c03316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
We have used in operando grazing incidence small-angle X-ray scattering (GISAXS) to monitor structural changes during templated electrodeposition of mesoporous platinum films on gold electrodes from a ternary lyotropic liquid crystalline mixture of aqueous hexachloroplatinic acid and the diblock copolymer surfactant Brij56. While the cylindrical micelles of the lyotropic liquid crystal (LLC) in the hexagonal phase have a center-to-center distance of 7.5 nm with a preferential alignment parallel to the electrode surface, the electrodeposited platinum films contain highly ordered mesopores arranged in a 2D hexagonal structure, with a center-to-center distance of about 8.5 nm and a preferential orientation perpendicular to the electrode surface. The progression of structural changes of the LLC template and the deposited mesoporous Pt could be monitored for the first time in operando by GISAXS: within the first 14 s of deposition, a nucleation burst of Pt coincides with a loss of preferential alignment of the LLC. Initially, the morphology of the 2-dimensionally nucleated Pt replicates the Au substrate. During the following 5 to 7 min, the growth morphology of the Pt film changes, and vertically aligned mesopores form. Our results indicate mutual interaction between the species involved in the electrodeposition and the LLC template, leading to a partial loss of horizontal orientation of the LLC during Pt nucleation before vertical rearrangement of the micelles to the electrode surface. The vertically aligned mesopores in the Pt and the possibility to produce freestanding films make these materials interesting in fields such as electrocatalysis, energy harvesting, and nanofluidics.
Collapse
Affiliation(s)
- Philipp
Aldo Wieser
- Institute
of Inorganic Chemistry, Graz University
of Technology, Graz 8010, Austria
| | - David Moser
- Institute
of Electron Microscopy and Nanoanalysis, Graz University of Technology, Graz 8010, Austria
| | - Bernhard Gollas
- Institute
for Chemistry and Technology of Materials, Graz University of Technology, Graz 8010, Austria
| | - Heinz Amenitsch
- Institute
of Inorganic Chemistry, Graz University
of Technology, Graz 8010, Austria
| |
Collapse
|
3
|
Gu BS, Dutta S, Hong YR, Ngome Okello OF, Im H, Ahn S, Choi SY, Woo Han J, Ryu S, Lee IS. Harmonious Heterointerfaces Formed on 2D-Pt Nanodendrites by Facet-Respective Stepwise Metal Deposition for Enhanced Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2023; 62:e202307816. [PMID: 37335309 DOI: 10.1002/anie.202307816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
The performance of nanocrystal (NC) catalysts could be maximized by introducing rationally designed heterointerfaces formed by the facet- and spatio-specific modification with other materials of desired size and thickness. However, such heterointerfaces are limited in scope and synthetically challenging. Herein, we applied a wet chemistry method to tunably deposit Pd and Ni on the available surfaces of porous 2D-Pt nanodendrites (NDs). Using 2D silica nanoreactors to house the 2D-PtND, an 0.5-nm-thick epitaxial Pd or Ni layer (e-Pd or e-Ni) was exclusively formed on the flat {110} surface of 2D-Pt, while a non-epitaxial Pd or Ni layer (n-Pd or n-Ni) was typically deposited at the {111/100} edge in absence of nanoreactor. Notably, these differently located Pd/Pt and Ni/Pt heterointerfaces experienced distinct electronic effect to influence unequally in electrocatalytic synergy for hydrogen evolution reaction (HER). For instance, an enhanced H2 generation on the Pt{110} facet with 2D-2D interfaced e-Pd deposition and faster water dissociation on the edge-located n-Ni overpowered their facet-located counterparts in respective HER catalysis. Therefore, a feasible assembling of the valuable heterointerfaces in the optimal 2D n-Ni/e-Pd/Pt catalyst overcame the sluggish alkaline HER kinetics, with a catalytic activity 7.9 times higher than that of commercial Pt/C.
Collapse
Affiliation(s)
- Byeong Su Gu
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Soumen Dutta
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Yu-Rim Hong
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Odongo Francis Ngome Okello
- Department of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Current address: Samsung Electronics, Suwon, Korea
| | - Hyeonae Im
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Seungil Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Si-Young Choi
- Department of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Sunmin Ryu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - In Su Lee
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
4
|
Yang H, Zhang A, Bai Y, Chu M, Li H, Liu Y, Zhu P, Chen X, Deng C, Yuan X. One Stone Two Birds: Unlocking the Synergy between Amorphous Ni(OH) 2 and Pd Nanocrystals toward Ethanol and Formic Acid Oxidation. Inorg Chem 2022; 61:14419-14427. [PMID: 36037068 DOI: 10.1021/acs.inorgchem.2c02307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Even though extensive efforts have been devoted to mixing Pd nanocrystals with Ni(OH)2 for the enhanced synergy, it remains a great challenge to incorporate nanosized Ni(OH)2 species on the Pd electrode and reveal their synergy. Herein, we present spongelike Pd nanocrystals with the modification of amorphous Ni(OH)2 species. The catalyst configuration is first considered by compositing Pd with Ni(OH)2 species to optimize the Pd-Pd interatomic distance and then constructing a strongly coupled interface between Pd nanostructures and Ni(OH)2 species. For the ethanol oxidation reaction (EOR) and the formic acid oxidation reaction (FAOR), Pd-Ni(OH)2 composites exhibit an impressive mass activity of 4.98 and 2.65 A mgPd-1, respectively. Most impressively, there is no significant decrease in the EOR activity during five consecutive cycles (50 000 s). A series of CO-poisoning tests have proved that the enhanced EOR and FAOR performances involve synergy between Pd nanostructures and Ni(OH)2 species.
Collapse
Affiliation(s)
- Hu Yang
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Aichuang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Yunfei Bai
- Space Power Technology State Key Laboratory, Shanghai Institute of Space Power-Sources, 2965 Dongchuan Road, Shanghai 200245, China
| | - Mingyu Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Han Li
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Yuan Liu
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Peng Zhu
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Xiaolei Chen
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Chengwei Deng
- Space Power Technology State Key Laboratory, Shanghai Institute of Space Power-Sources, 2965 Dongchuan Road, Shanghai 200245, China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| |
Collapse
|
5
|
Ashok A, Vasanth A, Nagaura T, Eguchi M, Motta N, Phan H, Nguyen N, Shapter JG, Na J, Yamauchi Y. Plasma-Induced Nanocrystalline Domain Engineering and Surface Passivation in Mesoporous Chalcogenide Semiconductor Thin Films. Angew Chem Int Ed Engl 2022; 61:e202114729. [PMID: 35080101 PMCID: PMC9305943 DOI: 10.1002/anie.202114729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 11/17/2022]
Abstract
The synthesis of highly crystalline mesoporous materials is key to realizing high-performance chemical and biological sensors and optoelectronics. However, minimizing surface oxidation and enhancing the domain size without affecting the porous nanoarchitecture are daunting challenges. Herein, we report a hybrid technique that combines bottom-up electrochemical growth with top-down plasma treatment to produce mesoporous semiconductors with large crystalline domain sizes and excellent surface passivation. By passivating unsaturated bonds without incorporating any chemical or physical layers, these films show better stability and enhancement in the optoelectronic properties of mesoporous copper telluride (CuTe) with different pore diameters. These results provide exciting opportunities for the development of long-term, stable, and high-performance mesoporous semiconductor materials for future technologies.
Collapse
Affiliation(s)
- Aditya Ashok
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueensland4072Australia
- Queensland Micro- and Nanotechnology CentreGriffith UniversityNathanQueensland4111Australia
| | - Arya Vasanth
- Amrita Center for Nanosciences and Molecular MedicineAmrita Vishwa VidyapeethamKochiKerala682041India
| | - Tomota Nagaura
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueensland4072Australia
| | - Miharu Eguchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueensland4072Australia
- JST-ERATO Yamauchi Material Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science1-1 Namiki, TsukubaIbaraki305-0044Japan
| | - Nunzio Motta
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George StreetBrisbaneQueensland4001Australia
| | - Hoang‐Phuong Phan
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueensland4072Australia
- Queensland Micro- and Nanotechnology CentreGriffith UniversityNathanQueensland4111Australia
| | - Nam‐Trung Nguyen
- Queensland Micro- and Nanotechnology CentreGriffith UniversityNathanQueensland4111Australia
| | - Joseph G. Shapter
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueensland4072Australia
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueensland4072Australia
- Research and Development (R&D) DivisionGreen Energy InstituteMokpoJeollanamdo58656Republic of Korea
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueensland4072Australia
- JST-ERATO Yamauchi Material Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science1-1 Namiki, TsukubaIbaraki305-0044Japan
| |
Collapse
|
6
|
Ashok A, Vasanth A, Nagaura T, Eguchi M, Motta N, Phan H, Nguyen N, Shapter JG, Na J, Yamauchi Y. Plasma‐Induced Nanocrystalline Domain Engineering and Surface Passivation in Mesoporous Chalcogenide Semiconductor Thin Films. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Aditya Ashok
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland 4072 Australia
- Queensland Micro- and Nanotechnology Centre Griffith University Nathan Queensland 4111 Australia
| | - Arya Vasanth
- Amrita Center for Nanosciences and Molecular Medicine Amrita Vishwa Vidyapeetham Kochi Kerala 682041 India
| | - Tomota Nagaura
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland 4072 Australia
| | - Miharu Eguchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland 4072 Australia
- JST-ERATO Yamauchi Material Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan
| | - Nunzio Motta
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane Queensland 4001 Australia
| | - Hoang‐Phuong Phan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland 4072 Australia
- Queensland Micro- and Nanotechnology Centre Griffith University Nathan Queensland 4111 Australia
| | - Nam‐Trung Nguyen
- Queensland Micro- and Nanotechnology Centre Griffith University Nathan Queensland 4111 Australia
| | - Joseph G. Shapter
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland 4072 Australia
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland 4072 Australia
- Research and Development (R&D) Division Green Energy Institute Mokpo Jeollanamdo 58656 Republic of Korea
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland 4072 Australia
- JST-ERATO Yamauchi Material Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
7
|
Gayrard M, Marmiroli B, Chancerel F, Decorse P, Amenitsch H, Peron J, Cattoni A, Faustini M. Deep X-ray lithography on "sol-gel" processed noble metal mesoarchitectured films. NANOSCALE 2022; 14:1706-1712. [PMID: 35043816 DOI: 10.1039/d1nr07455e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Noble metal coordination xerogel films (mesostructured with block-copolymers) exhibit solubility switching with increasing X-ray irradiation. Different from other sol-gel systems, these are attributed to film deconstruction under irradiation. These materials can be used as recyclable negative tone resists for deep X-ray lithography that can be further converted into metallic nanoarchitectured films.
Collapse
Affiliation(s)
- Maxime Gayrard
- Sorbonne Université, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), F-75005 Paris, France.
| | - Benedetta Marmiroli
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
| | - Francois Chancerel
- Sorbonne Université, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), F-75005 Paris, France.
- Institut Photovoltaïque d'Ile-de-France (IPVF), CNRS UMR 9006, Palaiseau, France
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS UMR 9001, Université Paris-Saclay, Palaiseau, France
| | - Philippe Decorse
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
| | - Jennifer Peron
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - Andrea Cattoni
- Institut Photovoltaïque d'Ile-de-France (IPVF), CNRS UMR 9006, Palaiseau, France
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS UMR 9001, Université Paris-Saclay, Palaiseau, France
| | - Marco Faustini
- Sorbonne Université, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), F-75005 Paris, France.
| |
Collapse
|
8
|
Liang W, Wang Y, Zhao L, Guo W, Li D, Qin W, Wu H, Sun Y, Jiang L. 3D Anisotropic Au@Pt-Pd Hemispherical Nanostructures as Efficient Electrocatalysts for Methanol, Ethanol, and Formic Acid Oxidation Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100713. [PMID: 34114275 DOI: 10.1002/adma.202100713] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Anisotropic 3D nanostructures exhibit excellent electrocatalytic activity and stability due to their heterogeneous elemental distribution and unsymmetrical configuration. However, it is still a huge challenge to combine anisotropically distributed elements and anisotropic morphologies within one 3D nanostructure. Herein, 3D Au@Pt-Pd hemispherical nanostructures (Au@Pt-Pd H-Ss) are fabricated as highly efficient electrocatalysts for oxidation reaction, which present heterogenous element distribution and anisotropic morphology. It is demonstrated that the non-uniform adsorption of BO2 - on Au-CTA+ surface, as well as the simulated lower formation energy of Pt-Pd atoms for Au-CTA+ -BO2 - , basically contribute to the eventual formation of Au@Pt-Pd H-Ss. Impressively, the unique anisotropic Au@Pt-Pd H-Ss exhibit superior electrocatalytic activity and durability for methanol, ethanol, and formic acid oxidation reaction compared with commercial Pt/C and previously reported noble-metal based electrocatalysts. Especially, the mass activity of Au@Pt-Pd H-Ss for MOR is 4.38 A mgPt+Pd -1 , which is about 2.0 and 4.7 times that of Au@Pt-Pd spherical nanostructures (Au@Pt-Pd Ss) and commercial Pt/C catalyst, respectively. This work provides an important reference for the design and preparation of 3D anisotropic and high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Wenkai Liang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yawen Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang Zhao
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Guo
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Dong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Wei Qin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Haihua Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yinghui Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Lin Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
9
|
Su Z, Chen T. Porous Noble Metal Electrocatalysts: Synthesis, Performance, and Development. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005354. [PMID: 33733551 DOI: 10.1002/smll.202005354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/25/2020] [Indexed: 06/12/2023]
Abstract
Active sites (intrinsic activity, quantity, and distribution), electron transfer, and mass diffusion are three important factors affecting the performance of electrocatalysts. Composed of highly active components which are built into various network structures, porous noble metal is an inherently promising electrocatalysts. In recent years, great efforts have been made to explore new efficient synthesis methods and establish structural-performance relationships in the field of porous noble metal electrocatalysis. In this review, the very recent progress in strategies for preparing porous noble metal, including innovation and deeper understanding of traditional methods is summarized. A discussion of relationship between porous noble metal structure and electrocatalytic performance, such as accessibility of active sites, connectivity of skeleton structures, channels dimensions, and hierarchical structures, is provided.
Collapse
Affiliation(s)
- Zhipeng Su
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350, P. R. China
| | - Tiehong Chen
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
10
|
Navarro-Senent C, Pané S, Sort J, Pellicer E. The order of addition and time matters: Impact of electrolyte processing on micelle-assisted electrosynthesis of mesoporous alloys. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Mao X, Mao D, Chen T, Jalalah M, Al-Assiri MS, Harraz FA, Zhu X, Li G. DNA Hydrogel-Based Three-Dimensional Electron Transporter and Its Application in Electrochemical Biosensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36851-36859. [PMID: 32660232 DOI: 10.1021/acsami.0c08064] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochemical biosensing relies on electron transport on the electrode surface. However, the limited functional area of the two-dimensional electrode prevents the qualitative breakthrough in the efficiency of electron transfer. Here, a three-dimensional electron transporter was constructed to improve the efficiency of electron transfer by using an interface-immobilized DNA hydrogel. A three-dimensional pure DNA hydrogel is constructed and used as a scaffold for electron transfer. Then, an electron mediator is embedded in the DNA hydrogel through intercalative binding, and DNAzyme with intrinsic peroxidase-like activity is introduced at the node of the hydrogel scaffold to fabricate an electrochemical biosensor. The conduction of the electron mediator in the scaffold enables the acquisition of long-distance DNAzyme catalytic signals, thereby overcoming the limitation of two-dimensional electrodes. This three-dimensional electron transporter is significant for enriching the toolbox of electrochemical biosensing and can provide potential support for the development of highly sensitive biosensors.
Collapse
Affiliation(s)
- Xiaoxia Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Dongsheng Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Tianshu Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
| | - Mohammed S Al-Assiri
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. 87, Helwan, Cairo 11421, Egypt
| | - Xiaoli Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Genxi Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, China
| |
Collapse
|
12
|
Luo L, Fu C, Yan X, Shen S, Yang F, Guo Y, Zhu F, Yang L, Zhang J. Promoting Effects of Au Submonolayer Shells on Structure-Designed Cu-Pd/Ir Nanospheres: Greatly Enhanced Activity and Durability for Alkaline Ethanol Electro-Oxidation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25961-25971. [PMID: 32395980 DOI: 10.1021/acsami.0c05605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rationally engineering the surface physicochemical properties of nanomaterials can improve their activity and durability for various electrocatalytic and energy conversion applications. Cu-Pd/Ir (CPI) nanospheres (NSs) anchored on N-doped porous graphene (NPG) [(CPI NSs/NPG)] have been recently demonstrated as a promising electrocatalyst for the alkaline ethanol oxidation reaction (EOR); to further enhance their electrocatalytic performance, the NPG-supported CPI NSs are coated with Au submonolayer (SML) shells (SMSs), through which their surface physicochemical properties can be tuned. CPI NSs/NPG is prepared by our previously developed method and possesses the special structures of composition-graded Cu1Pd1 and surface-doped Ir0.03. The Au SMSs with designed surface coverages are formed via an electrochemical technology involving incomplete Cu underpotential deposition (UPD) and Au3+ galvanic replacement. A distinctive volcano-type relation between the EOR electrocatalytic activity and the Au-SMS surface coverage for CPI@AuSML NSs/NPG is revealed, and the optimal CPI@Au1/6ML NSs/NPG greatly surpasses commercial Pd/C and CPI NSs/NPG in electrocatalytic activity and noble metal utilization. More importantly, its electrocatalytic durability in 1 h chronoamperometric and 500-cycle potential cycling degradation tests is also significantly improved. According to detailed physicochemical characterizations, electrochemical analyses, and density functional theory calculations, the promoting effects of the Au SMS for enhancing the EOR electrocatalytic activity and durability of CPI NSs/NPG can be mainly attributed to the greatly weakened carbonaceous intermediate bonding and properly increased surface oxidation potential. This work also proposes a versatile and effective strategy to tune the surface physicochemical properties of metal-based nanomaterials via incomplete UPD and metal-cation galvanic replacement for advancing their electrocatalytic and energy conversion performance.
Collapse
Affiliation(s)
- Liuxuan Luo
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cehuang Fu
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaohui Yan
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Yang
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yangge Guo
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengjuan Zhu
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijun Yang
- Key Laboratory for Mesoscopic Chemistry of MOE, Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junliang Zhang
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Yin S, Wang Z, Li C, Yu H, Deng K, Xu Y, Li X, Wang L, Wang H. Mesoporous Pt@PtM (M = Co, Ni) cage-bell nanostructures toward methanol electro-oxidation. NANOSCALE ADVANCES 2020; 2:1084-1089. [PMID: 36133045 PMCID: PMC9417950 DOI: 10.1039/d0na00020e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/08/2020] [Indexed: 06/16/2023]
Abstract
Rational design of Pt-based nanostructures with a controllable morphology and composition is vital for electrocatalysis. Herein, we demonstrate a dual-template strategy to fabricate well-defined cage-bell nanostructures including a Pt core and a mesoporous PtM (M = Co, Ni) bimetallic shell (Pt@mPtM (M = Co, Ni) CBs). Owing to their unique nanostructure and bimetallic properties, Pt@mPtM (M = Co, Ni) CBs show higher catalytic activity, better durability and stronger CO tolerance for the methanol oxidation reaction than commercial Pt/C. This work provides a general method for convenient preparation of cage-bell nanostructures with a mesoporous bimetallic shell, which have high promising potential for application in electrocatalytic fields.
Collapse
Affiliation(s)
- Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Chunjie Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
14
|
Lim H, Kim J, Kani K, Masud MK, Park H, Kim M, Alsheri SM, Ahamad T, Alhokbany N, Na J, Malgras V, Bando Y, Yamauchi Y. Designed Patterning of Mesoporous Metal Films Based on Electrochemical Micelle Assembly Combined with Lithographical Techniques. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902934. [PMID: 31603273 DOI: 10.1002/smll.201902934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Mesoporous noble metals and their patterning techniques for obtaining unique patterned structures are highly attractive for electrocatalysis, photocatalysis, and optoelectronics device applications owing to their expedient properties such as high level of exposed active locations, cascade electrocatalytic sites, and large surface area. However, patterning techniques for mesoporous substrates are still limited to metal oxide and silica films, although there is growing demand for developing techniques related to patterning mesoporous metals. In this study, the first demonstration of mesoporous metal films on patterned gold (Au) substrates, prefabricated using photolithographic techniques, is reported. First, different growth rates of mesoporous Au metal films on patterned Au substrates are demonstrated by varying deposition times and voltages. In addition, mesoporous Au films are also fabricated on various patterns of Au substrates including stripe and mesh lines. An alternative fabrication method using a photoresist insulating mask also yields growth of mesoporous Au within the patterning. Moreover, patterned mesoporous films of palladium (Pd) and palladium-copper alloy (PdCu) are demonstrated on the same types of substrates to show versatility of this method. Patterned mesoporous Au films (PMGFs) show higher electrochemically active surface area (ECSA) and higher sensitivity toward glucose oxidation than nonpatterned mesoporous Au films (NMGF).
Collapse
Affiliation(s)
- Hyunsoo Lim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jeonghun Kim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Key Laboratory of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Kenya Kani
- Australian Institute for Bioengineering and Nanotechnology (AIBN), and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN), and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hyeongyu Park
- Australian Institute for Bioengineering and Nanotechnology (AIBN), and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Minjun Kim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Saad M Alsheri
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- International Center for Materials Nanoarchitechtonics (MANA) and International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Victor Malgras
- International Center for Materials Nanoarchitechtonics (MANA) and International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yoshio Bando
- International Center for Materials Nanoarchitechtonics (MANA) and International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Institute of Molecular Plus, Tianjin University, No. 11 Building, No. 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
- Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Key Laboratory of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
15
|
Li C, Li Q, Kaneti YV, Hou D, Yamauchi Y, Mai Y. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem Soc Rev 2020; 49:4681-4736. [DOI: 10.1039/d0cs00021c] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This paper reviews the progress in the field of block copolymer-templated mesoporous materials, including synthetic methods, morphological and pore size control and their potential applications in energy storage and conversion devices.
Collapse
Affiliation(s)
- Chen Li
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Qian Li
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Yusuf Valentino Kaneti
- International Center for Materials Nanoarchitectonics (WPI-MANA)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0044
- Japan
| | - Dan Hou
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- Key Laboratory of Marine Chemistry Theory and Technology
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| |
Collapse
|
16
|
Lim H, Nagaura T, Kim M, Kani K, Kim J, Bando Y, Alshehri SM, Ahamad T, You J, Na J, Yamauchi Y. Electrochemical preparation system for unique mesoporous hemisphere gold nanoparticles using block copolymer micelles. RSC Adv 2020; 10:8309-8313. [PMID: 35497835 PMCID: PMC9049955 DOI: 10.1039/d0ra01072c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
Gold nanoparticles (AuNPs) are widely used in various applications, such as biological delivery, catalysis, and others. In this report, we present a novel synthetic method to prepare mesoporous hemisphere gold nanoparticles (MHAuNPs) via electrochemical reduction reaction with the aid of polymeric micelle assembly as a pore-directing agent. Mesoporous hemisphere Au nanoparticles using self-assembled micelles, for the first time, are demonstrated by using electrochemical reduction on a Ti substrate.![]()
Collapse
|
17
|
Luo L, Fu C, Yang F, Li X, Jiang F, Guo Y, Zhu F, Yang L, Shen S, Zhang J. Composition-Graded Cu–Pd Nanospheres with Ir-Doped Surfaces on N-Doped Porous Graphene for Highly Efficient Ethanol Electro-Oxidation in Alkaline Media. ACS Catal 2019. [DOI: 10.1021/acscatal.9b05292] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liuxuan Luo
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cehuang Fu
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Yang
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolin Li
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fangling Jiang
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yangge Guo
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengjuan Zhu
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijun Yang
- Key Laboratory for Mesoscopic Chemistry of MOE, Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuiyun Shen
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junliang Zhang
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Wang H, Yin S, Li C, Deng K, Xu Y, Wang Z, Li X, Xue H, Wang L. All-metallic nanorattles consisting of a Pt core and a mesoporous PtPd shell for enhanced electrocatalysis. NANOTECHNOLOGY 2019; 30:475602. [PMID: 31426034 DOI: 10.1088/1361-6528/ab3c94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fabrication of nanorattles with controllable compositions and structures is very important for catalytic applications. Herein, we propose a facile method for synthesis of very unique all-metallic nanorattle consisting of a Pt core and a mesoporous PtPd shell (named Pt@mPtPd). Owing to its spatially and locally separated active inner Pt core and mesoporous PtPd shell, the Pt@mPtPd nanorattle shows the enhanced performance for oxygen reduction reaction. The newly designed Pt@mPtPd nanorattle is quite different from traditional nanorattles with porous carbon and silica shell in its catalytically functional mesoporous metallic shell. The proposed facile method is highly valuable for the design of all-metallic nanorattle with controllable compositions and desired functions.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yuan X, Zhang Y, Cao M, Zhou T, Jiang X, Chen J, Lyu F, Xu Y, Luo J, Zhang Q, Yin Y. Bi(OH) 3/PdBi Composite Nanochains as Highly Active and Durable Electrocatalysts for Ethanol Oxidation. NANO LETTERS 2019; 19:4752-4759. [PMID: 31189063 DOI: 10.1021/acs.nanolett.9b01843] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Developing high-performance electrocatalysts for the ethanol oxidation reaction (EOR) is critical to the commercialization of direct ethanol fuel cells. However, current EOR catalysts suffer from high cost, low activity, and poor durability. Here we report the preparation of PdBi-Bi(OH)3 composite nanochains with outstanding EOR activity and durability. The incorporation of Bi can tune the electronic structure and downshift the d-band center of Pd while the surface decoration of Bi(OH)3 can facilitate the oxidative removal of CO and other carbonaceous intermediates. As a result, the nanochains manifest an exceptional mass activity (5.30 A mgPd-1, 4.6-fold higher than that of commercial Pd/C) and outstanding durability (with a retained current density of ∼1.00 A mgPd-1 after operating for 20 000 s). More importantly, the nanochain catalyst can be reactivated, and negligible activity loss has been observed after operating for 200 000 s with periodic reactivation, making it one of the best EOR catalysts.
Collapse
Affiliation(s)
- Xiaolei Yuan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
| | - Yong Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
| | - Muhan Cao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
| | - Tong Zhou
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , China
| | - Xiaojing Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
| | - Jinxing Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
- Department of Chemistry , University of California-Riverside , Riverside , California 92521 , United States
| | - Fenglei Lyu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
| | - Yong Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
| | - Jun Luo
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , China
| | - Qiao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
| | - Yadong Yin
- Department of Chemistry , University of California-Riverside , Riverside , California 92521 , United States
| |
Collapse
|
20
|
Wang M, Feng B, Li H, Li H. Controlled Assembly of Hierarchical Metal Catalysts with Enhanced Performances. Chem 2019. [DOI: 10.1016/j.chempr.2019.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Yin S, Wang H, Deng K, Dai Z, Wang Z, Xu Y, Li X, Xue H, Wang L. Ultralong Ternary PtRuTe Mesoporous Nanotubes Fabricated by Micelle Assembly with a Self‐Sacrificial Template. Chemistry 2019; 25:5316-5321. [DOI: 10.1002/chem.201806382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/22/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Zechuan Dai
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Hairong Xue
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| |
Collapse
|
22
|
Iqbal M, Kaneti YV, Kim J, Yuliarto B, Kang YM, Bando Y, Sugahara Y, Yamauchi Y. Chemical Design of Palladium-Based Nanoarchitectures for Catalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804378. [PMID: 30633438 DOI: 10.1002/smll.201804378] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Palladium (Pd) plays an important role in numerous catalytic reactions, such as methanol and ethanol oxidation, oxygen reduction, hydrogenation, coupling reactions, and carbon monoxide oxidation. Creating Pd-based nanoarchitectures with increased active surface sites, higher density of low-coordinated atoms, and maximized surface coverage for the reactants is important. To address the limitations of pure Pd, various Pd-based nanoarchitectures, including alloys, intermetallics, and supported Pd nanomaterials, have been fabricated by combining Pd with other elements with similar or higher catalytic activity for many catalytic reactions. Herein, recent advances in the preparation of Pd-based nanoarchitectures through solution-phase chemical reduction and electrochemical deposition methods are summarized. Finally, the trend and future outlook in the development of Pd nanocatalysts toward practical catalytic applications are discussed.
Collapse
Affiliation(s)
- Muhammad Iqbal
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuf Valentino Kaneti
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jeonghun Kim
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Brian Yuliarto
- Department of Engineering Physics and Research Center for Nanoscience and Nanotechnology, Institute of Technology Bandung, Ganesha 10, Bandung, 40132, Indonesia
| | - Yong-Mook Kang
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Yoshio Bando
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Institute of Molecular Plus, Tianjin University, Nankai District, Tianjin, 300072, P. R. China
- Australian Institute of Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Yoshiyuki Sugahara
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
- Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Yusuke Yamauchi
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheunggu, Yongin-si, Gyeonggi-do, 446-701, South Korea
| |
Collapse
|
23
|
Song Y, Xiang C, Bi C, Wu C, He H, Du W, Huang L, Tian H, Xia H. pH-Dependent growth of atomic Pd layers on trisoctahedral gold nanoparticles to realize enhanced performance in electrocatalysis and chemical catalysis. NANOSCALE 2018; 10:22302-22311. [PMID: 30467565 DOI: 10.1039/c8nr07224h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, the controlled epitaxial growth of ultrathin Pd shells of a few atomic layers (denoted as nL) on the surfaces of gold nanoparticle (Au NP) cores of different morphologies (trisoctahedral, cubic, and spherical shapes) in the presence of cetyltrimethylammonium chloride (CTAC) was achieved by regulating the pH value of the aqueous CTAC solution and finely tuning the amount of the Pd precursor. It was found that the critical shell thickness for epitaxial Pd growth at the optimal pH value was 4 atomic layers, taking {331}-faceted trisoctahedral (TOH) Au@PdnL NPs as an example, on the basis of the results of atomic-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. Moreover, the resulting TOH Au@Pd1L NPs (100.9 m2 g-1, 13.2 A mgPd-1 and 13.1 mA cm-2) exhibited excellent electrocatalytic performance and long-term electrocatalytic activity for ethanol oxidation, around 4.8-fold, 66-fold, and 21.8-fold better than commercial Pd/C catalysts (31 m2 g-1, 0.2 A mgPd-1, and 0.6 mA cm-2). Furthermore, the resulting TOH Au@Pd1L NPs not only markedly enhance the chemical catalytic activity for the reduction of 4-nitrophenol (4-NP), but also allow the in situ surface-enhanced Raman spectroscopy (SERS) monitoring of the reaction process of the Pd-catalyzed reduction of 4-NTP. Thus, our work may provide a new way to fabricate core-shell (CS) bimetallic NPs with the merits of both metal outer shells (excellent catalytic performance in electrocatalysis and chemical catalysis) and Au NP cores (reaction process by in situ SERS monitoring).
Collapse
Affiliation(s)
- Yahui Song
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fang C, Zhao J, Jiang R, Wang J, Zhao G, Geng B. Engineering of Hollow PdPt Nanocrystals via Reduction Kinetic Control for Their Superior Electrocatalytic Performances. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29543-29551. [PMID: 30101581 DOI: 10.1021/acsami.8b08657] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Synthesis of hollow metal nanocrystals (NCs) is greatly attractive for their high active surface areas, which gives rise to excellent catalytic activity. Taking PdPt alloy nanostructure as an example, we designed a synthetic tactic for the preparation of hollow metal nanostructures by delicate control over the difference in the reduction kinetic of metal precursors. At a high reduction rate difference, the Pd layer forms from H2PdCl4 and is subsequently etched, leading to the formation of a hollow space. A solid PdPt structure is achieved when the reduction rate of Pd and Pt precursor is comparable. Obviously, the hollow space and composition are tunable as well by adjusting the reduction rate difference. More importantly, the prepared hollow PdPt nanostructures exhibit a branched outer, porous wall, and rough hollow interior. The branched outer and rough hollow interior provide the higher density of unsaturated atoms, whereas the porous wall serves as channels connecting the inner, outer, and reactive agents. Moreover, the periodic self-consistent density function theory suggests that the d-band theory density of state of the PdPt nanoalloys is upshifted in comparison to the monometallic component, which will beneficial for improvement in their catalytic performances. Electrocatalytic tests reveal that the PdPt bimetallic NCs, especially for Pt32Pd68 nanostructures, show excellent catalytic activity and stability toward methanol oxidation reaction owing to their special structures as well as compositions.
Collapse
Affiliation(s)
- Caihong Fang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , China
| | - Jun Zhao
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , China
| | - Ruibin Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Jing Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Guili Zhao
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , China
| | - Baoyou Geng
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , China
| |
Collapse
|
25
|
Li C, Iqbal M, Lin J, Luo X, Jiang B, Malgras V, Wu KCW, Kim J, Yamauchi Y. Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures. Acc Chem Res 2018; 51:1764-1773. [PMID: 29984987 DOI: 10.1021/acs.accounts.8b00119] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Well-constructed porous materials take an essential role in a wide range of applications, including energy conversion and storage systems, electrocatalysis, photocatalysis, and sensing. Although the tailored design of various nanoarchitectures has made substantial progress, simpler preparation methods are compelled to meet large-scale production requirements. Recently, advanced electrochemical deposition techniques have had a significant impact in terms of precise control upon the nanoporous architecture (i.e., pore size, surface area, pore structure, etc.), enabling access to a wide range of compositions. In this Account, we showcase the uniqueness of electrochemical deposition techniques, detail their implementation toward the synthesis of novel nanoporous metals, and finally outline the future research directions. Nanoporous metallic structures are attractive in that they can provide high surface area and large pore volume, easing mass transport of reactants and providing high accessibility to catalytically active metal surface. The great merit of the electrochemical deposition approach does not only lie in its versatility, being applicable to a wide range of compositions, but also in the nanoscale precision it affords when it comes to crystal growth control, which cannot be easily achieved by other bottom-up or top-down approaches. In this Account, we describe the significant progress made in the field of nanoporous metal designed through electrochemical deposition approaches using hard templates (i.e., porous silica, 3D templates of polymer and silica colloids) and soft templates (i.e., lyotropic liquid crystals, polymeric micelles). In addition, we will point out how it accounts for precise control over the crystal growth and describe the unique physical and chemical properties emerging from these novel materials. Up to date, our group has reported the synthesis of several nanoporous metals and alloys (e.g., Cu, Ru, Rh, Pd, Pt, Au, and their corresponding alloys) under various conditions through electrochemical deposition, while investigating their various potential applications. The orientation of the channel structure, the composition, and the nanoporosity can be easily controlled by selecting the appropriate surfactants or block copolymers. The inherent properties of the final product, such as framework crystallinity, catalytic activity, and resistance to oxidation, are depending on both the composition and pore structure, which in turn require suitable electrochemical conditions. This Account is divided into three main sections: (i) a history of electrochemical deposition using hard and soft templates, (ii) a description of the important mechanisms involved in the preparation of nanoporous materials, and (iii) a conclusion and future perspectives. We believe that this Account will promote a deeper understanding of the synthesis of nanoporous metals using electrochemical deposition methods, thus enabling new pathways to control nanoporous architectures and optimize their performance toward promising applications such as catalysis, energy storage, sensors, and so forth.
Collapse
Affiliation(s)
- Cuiling Li
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Muhammad Iqbal
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jianjian Lin
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bo Jiang
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Victor Malgras
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Jeonghun Kim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| |
Collapse
|
26
|
Arandiyan H, Kani K, Wang Y, Jiang B, Kim J, Yoshino M, Rezaei M, Rowan AE, Dai H, Yamauchi Y. Highly Selective Reduction of Carbon Dioxide to Methane on Novel Mesoporous Rh Catalysts. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24963-24968. [PMID: 30035530 DOI: 10.1021/acsami.8b06977] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mesoporous metals with high surface area hold promise for a variety of catalytic applications, especially for the reduction of CO2 to value-added products. This study has used a novel mesoporous rhodium (Rh) nanoparticles, which were recently developed via a simple wet chemical reduction approach ( Nat. Commun. 2017, 8, 15581) as catalyst for CO2 methanation. Highly efficient performance and selectivity for methane formation are achieved due to their controllable crystallinity, high porosity, high surface energy, and large number of atomic steps distributions. The mesoporous Rh nanoparticles, possessing the largest surface area (69 m2 g-1), exhibit a substantially higher reaction rate (5.28 × 10-5 molCO2 gRh-1 s-1) than the nonporous Rh nanoparticles (1.28 × 10-5 molCO2 gRh-1 s-1). Our results indicate the extensive use of mesoporous metals in heterogeneous catalysis processes.
Collapse
Affiliation(s)
- Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry , The University of Sydney , Sydney 2006 , Australia
| | - Kenya Kani
- College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , China
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Yuan Wang
- Particles and Catalysis Research Group, School of Chemical Engineering , The University of New South Wales , Sydney , New South Wales 2052 , Australia
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Department of Inorganic Chemistry , Faradayweg 4-6 , 14195 Berlin , Germany
| | - Bo Jiang
- International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Jeonghun Kim
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Masahiro Yoshino
- Yoshino Denka Kogyo, Inc. , Yoshikawa , Saitama 342-0008 , Japan
| | - Mehran Rezaei
- Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department , University of Kashan , Kashan 87317-51167 , Iran
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , China
| | - Yusuke Yamauchi
- College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , China
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
- Department of Plant & Environmental New Resources , Kyung Hee University , 1732 Deogyeong-daero , Giheung-gu, Yongin-si , Gyeonggi-do 446-701 , South Korea
| |
Collapse
|