1
|
Barhate KV, Chanda PR, Poojary M, Bose S, Agarwal N. Dual Emission and Low-Temperature Afterglow in Xanthone-Dibenzoazepine for High EQE Host-Guest OLEDs with Low-Efficiency Roll-Off. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39495601 DOI: 10.1021/acsami.4c10923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Research has been driven to demonstrate organic light-emitting diodes (OLEDs) with high efficiency, and in the quest for new materials, thermally activated delayed fluorescence (TADF) emitters have been employed. Preparation of donor-acceptor (D-A) π-conjugates is a useful guideline for developing TADF emitters. TADF emitters have shown excellent progress and high maximum external quantum efficiency (EQEmax) for OLEDs in the recent past; however, they suffer with substantial roll-off resulting in a decrease in their efficiency. In order to have efficient OLED emitters with less efficiency roll-off, we designed a xanthone-amine derivative with twisted electron-rich dibenzoazepine having limited rotation at the donor-acceptor bond. Xan-Azepine shows solvent polarity-dependent fluorescence in the range of 441- 597 nm having a lifetime below 10 ns. At 77 K in Me-THF, a triplet at 557 nm was observed having a decay lifetime of 0.75 s and an afterglow for about 6 s. In powder, it shows dual emission, i.e., fluorescence (490 and 6 ns) and phosphorescence (530 nm and 192 μs) at ambient conditions. The energy difference between the singlet and triplet energy levels of Xan-Azepine is found to be 0.18 eV in the powder sample. Its blend in 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) showed delayed fluorescence with a lifetime of 118 μs at 300 K, while it reduced to 84 μs at 150 K. These observations suggest the TADF nature of Xan-Azepine in its CBP blend. OLED devices of Xan-Azepine showing a turn-on voltage of 2.8 V and a EQEmax of 12% were successfully fabricated. In the doped films of Xan-Azepine (5 wt %) with CBP, a maximum luminescence of 5980 Cd/m2 at a current density of 70 mA/cm2 was obtained, resulting in devices with low-efficiency roll-off (2.75%).
Collapse
Affiliation(s)
- Komal Vasant Barhate
- School of Chemical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
| | - Pramya Ranjan Chanda
- School of Chemical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
| | - Mahesh Poojary
- School of Physical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
| | - Sangita Bose
- School of Physical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
| | - Neeraj Agarwal
- School of Chemical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
| |
Collapse
|
2
|
Xie X, Liu J, Zhao H, Yan L, Wu Y, Miao Y, Wang H. Donor engineering to regulate fluorescence of a symmetrical structure based on a fluorene bridge for white light emission. RSC Adv 2024; 14:34311-34319. [PMID: 39469011 PMCID: PMC11514728 DOI: 10.1039/d4ra05803h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
A white organic light-emitting device (WOLED) obtained using blue and yellow complementary colors possesses extremely high optical efficiency. We designed and prepared a completely symmetric D-π-D type efficient blue light small molecule FFA based on octylfluorene as a π bridge, where the undoped device showed efficient blue organic light-emitting device (OLED) performance with a maximum emission wavelength of 428 nm, Commission Internationale de l'Eclairage (CIE) coordinates of (0.17, 0.11) and one of the narrowest full width at half maximum (FWHM) of 35 nm. To improve the matching measure of complementary color materials for achieving white light emission, a yellow light small molecule FCzA was prepared by adjusting the conjugation degree of peripheral electron-donating groups based on the same fluorene-based π bridge with FFA. Undoped devices based on FCzA demonstrated an electroluminescence (EL) emission peak at 576 nm with CIE coordinates of (0.43, 0.49) and a relatively wide FWHM of 130 nm. Ultimately, the white OLED device was modulated with CIE coordinates located at (0.33, 0.38) via proportional regulation with a mixture of FFA and FCzA in a ratio of 10 : 3 as the light-emitting layer.
Collapse
Affiliation(s)
- Xiaoling Xie
- Shanxi University of Electronic Science and Technology Linfen 041000 China
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Jingjing Liu
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Haocheng Zhao
- Department of Mechanical and Electrical Engineering, Shanxi Institute of Energy Jinzhong 030600 China
| | - Lei Yan
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Yuling Wu
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Yanqin Miao
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Hua Wang
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| |
Collapse
|
3
|
Wang Y, Lv ZY, Chen ZX, Xing S, Huo ZZ, Hong XF, Yuan L, Li W, Zheng YX. Multiple-resonance thermally activated delayed fluorescence materials based on phosphorus central chirality for efficient circularly polarized electroluminescence. MATERIALS HORIZONS 2024; 11:4722-4729. [PMID: 38990337 DOI: 10.1039/d4mh00605d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Circularly polarized organic light-emitting diodes (CP-OLEDs) hold great potential for naked-eye 3D displays, necessitating efficient chiral luminescent materials with an optimal CP luminescence (CPL) dissymmetry factor (g). Herein, we present the first chiral multiple resonance thermally activated delayed fluorescence (MR-TADF) materials containing a phosphorus chiral center by incorporating 5-phenylbenzo[b]phosphindole-5-oxide into the para-position of two MR-TADF cores. The compounds, NBOPO and NBNPO, exhibit photoluminescence peaks at 462 and 498 nm with narrow full-width at half-maximum values of 25 and 24 nm in toluene, respectively. Notably, (R/S)-NBOPO and (R/S)-NBNPO enantiomers display high quantum yields of 87% and 93% and symmetric CPL with |gPL| factors of 1.18 × 10-3 and 4.30 × 10-3, respectively, in doped films. Moreover, the corresponding CP-OLEDs show impressive external quantum efficiencies of 16.4% and 28.3%, along with symmetric CP electroluminescence spectra with |gEL| values of 7.0 × 10-4 and 1.4 × 10-3, respectively.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Zi-Yi Lv
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Zi-Xuan Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Shuai Xing
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Zhong-Zhong Huo
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Xian-Fang Hong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Li Yuan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Wei Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
4
|
Qiao L, Kong X, Li K, Yuan L, Shen Y, Zhang Y, Zhou L. Phosphorescent Pd II-Pd II Emitter-Based Red OLEDs with an EQE max of 20.52. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404621. [PMID: 39031006 PMCID: PMC11425235 DOI: 10.1002/advs.202404621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/02/2024] [Indexed: 07/22/2024]
Abstract
Three dinuclear Pd(II) complexes (1, 2, and 3) with intense red phosphorescence at room temperature are here synthesized using strong ligand field strength compounds. All three complexes are characterized by nuclear magnetic resonance, high-resolution mass spectrometry, and elemental analyses. Complexes 2 and 3 are characterized by single-crystal X-ray diffraction. The crystalline data of 2 and 3 reveal complex double-layer structures, with Pd-Pd distances of 2.8690(9) Å and 2.8584(17) Å, respectively. Furthermore, complexes 1, 2, and 3 show phosphorescence at room temperature in their solid states at the wavelengths of 678, 601, and 672 nm, respectively. In addition, they show phosphorescence at 634, 635, and 582 nm, respectively, in the 2 wt.% (PMMA) films, and phosphorescence at 670, 675, and 589 nm, respectively, in the deoxygenated CH2Cl2 solutions. Among three complexes, complex 1 shows red emission at 634 nm with phosphorescent quantum yield Ф = 67% in the 2 wt.% PMMA film. Furthermore, complex 1-based organic light-emitting diode is fabricated using a vapor-phase deposition process, and their maximum external quantum efficiency reaches 20.52%, which is the highest percentage obtained by using the dinuclear Pd(II) complex triplet emitters with the CIE coordinates of (0.62, 0.38).
Collapse
Affiliation(s)
- Lige Qiao
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Xiangjun Kong
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Kechun Li
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Lequn Yuan
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Yunjun Shen
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Yuzhen Zhang
- Key Laboratory of Chemistry and Engineering of Forest ProductsState Ethnic Affairs CommissionGuangxi Key Laboratory of Chemistry and Engineering of Forest ProductsGuangxi Collaborative Innovation Center for Chemistry and Engineering of Forest ProductsSchool of Chemistry and Chemical EngineeringGuangxi Minzu UniversityNanningGuangxi530006China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| |
Collapse
|
5
|
Grzelak M, Kumar D, Kochman MA, Morawiak M, Wiosna-Sałyga G, Kubas A, Data P, Lindner M. An unprecedented roll-off ratio in high-performing red TADF OLED emitters featuring 2,3-indole-annulated naphthalene imide and auxiliary donors. Chem Sci 2024; 15:8404-8413. [PMID: 38846379 PMCID: PMC11151854 DOI: 10.1039/d4sc01391c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
The capability of organic emitters to harvest triplet excitons via a thermally activated delayed fluorescence (TADF) process has opened a new era in organic optoelectronics. Nevertheless, low brightness, and consequently an insufficient roll-off ratio, constitutes a bottleneck for their practical applications in the domain of organic light-emitting diodes (OLEDs). To address this formidable challenge, we developed a new design of desymmetrized naphthalimide (NMI) featuring an annulated indole with a set of auxiliary donors on its periphery. Their perpendicular arrangement led to minimized HOMO-LUMO overlap, resulting in a low energy gap (ΔE ST = 0.05-0.015 eV) and efficient TADF emission with a photoluminescence quantum yield (PLQY) ranging from 82.8% to 95.3%. Notably, the entire set of dyes (NMI-Ind-TBCBz, NMI-Ind-DMAc, NMI-Ind-PXZ, and NMI-Ind-PTZ) was utilized to fabricate TADF OLED devices, exhibiting yellow to red electroluminescence. Among them, red-emissive NMI-Ind-PTZ, containing phenothiazine as an electron-rich component, revealed predominant performance with a maximum external quantum efficiency (EQE) of 23.6%, accompanied by a persistent luminance of 38 000 cd m-2. This results in a unique roll-off ratio (EQE10 000 = 21.6%), delineating a straightforward path for their commercial use in lighting and display technologies.
Collapse
Affiliation(s)
- Magdalena Grzelak
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
- Centre for Advanced Technologies, Adam Mickiewicz University Uniwersytetu Poznańskiego 10 61-614 Poznań Poland
| | - Dharmendra Kumar
- Faculty of Chemistry, Łódź University of Technology Żeromskiego 9 44-100 Łódź Poland
| | | | - Maja Morawiak
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | | | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Przemysław Data
- Faculty of Chemistry, Łódź University of Technology Żeromskiego 9 44-100 Łódź Poland
| | - Marcin Lindner
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
6
|
Meng G, Zhou J, Han XS, Zhao W, Zhang Y, Li M, Chen CF, Zhang D, Duan L. B-N Covalent Bond Embedded Double Hetero-[n]helicenes for Pure Red Narrowband Circularly Polarized Electroluminescence with High Efficiency and Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307420. [PMID: 37697624 DOI: 10.1002/adma.202307420] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Indexed: 09/13/2023]
Abstract
Chiral B/N embedded multi-resonance (MR) emitters open a new paradigm of circularly polarized (CP) organic light-emitting diodes (OLEDs) owing to their unique narrowband spectra. However, pure-red CP-MR emitters and devices remain exclusive in literature. Herein, by introducing a B-N covalent bond to lower the electron-withdrawing ability of the para-positioned B-π-B motif, the first pair of pure-red double hetero-[n]helicenes (n = 6 and 7) CP-MR emitter peaking 617 nm with a small full-width at half-maximum of 38 nm and a high photoluminescence quantum yield of ≈100% in toluene is developed. The intense mirror-image CP light produced by the enantiomers is characterized by high photoluminescence dissymmetry factors (gPL ) of +1.40/-1.41 × 10-3 from their stable helicenes configuration. The corresponding devices using these enantiomers afford impressive CP electroluminescence dissymmetry factors (gEL ) of +1.91/-1.77 × 10-3 , maximum external quantum efficiencies of 36.6%/34.4% and Commission Internationale de I'Éclairage coordinates of (0.67, 0.33), exactly satisfying the red-color requirement specified by National Television Standards Committee (NTSC) standard. Notably a remarkable long LT95 (operational time to 95% of the initial luminance) of ≈400 h at an initial brightness of 10,000 cd m-2 is also observed for the same device, representing the most stable CP-OLED up to date.
Collapse
Affiliation(s)
- Guoyun Meng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jianping Zhou
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xu-Shuang Han
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenlong Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongdong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
7
|
Hao XL, Ren AM, Zhou L. Research and Design of Aggregation-Regulated Thermally Activated Delayed Fluorescence Materials for Time-Resolved Two-Photon Excited Fluorescence Imaging and Biological Monitoring. J Phys Chem Lett 2023; 14:10309-10317. [PMID: 37943283 DOI: 10.1021/acs.jpclett.3c02666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Exploring the nature of aggregation-regulated thermally activated delayed fluorescence (TADF) and proposing effective design strategies for two-photon excited TADF materials for time-resolved biological imaging and monitoring are urgent and encouraging. In this work, it is found that the aggregation effect not only plays an important role in decreasing the internal conversion decay rate but also strongly influences the singlet-triplet excited-state energy difference as well as the intersystem crossing rate. It is proposed that the transformation from prompt fluorescence materials to long lifetime TADF or phosphorescence materials can be accomplished by regulating the position of substituent groups, which provides an effective method to design and develop long afterglow materials. Then, a high-performance TADF compound with a large two-photon absorption cross section in the biological window (112 GM/775 nm), high TADF efficiency (nearly 100%), and long fluorescence lifetime (50.75 μs) has been designed, which demonstrates the potential application in time-resolved two-photon excited fluorescence imaging and biological detection.
Collapse
Affiliation(s)
- Xue-Li Hao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
8
|
Derkowski W, Kumar D, Gryber T, Wagner J, Morawiak M, Kochman MA, Kubas A, Data P, Lindner M. V-shaped donor-acceptor organic emitters. A new approach towards efficient TADF OLED devices. Chem Commun (Camb) 2023; 59:2815-2818. [PMID: 36790367 DOI: 10.1039/d2cc06978d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
We report the synthesis and characterization of a series of donor-acceptor TADF emitters with a new architecture, where the donor moiety and the dibenzazepine-based acceptor moiety are separated by a phenylene linker in a V-shaped spatial arrangement. Such spatial separation and electronic decoupling between the donor and the acceptor moieties leads to low singlet-triplet energy gaps and favors efficient exciton up-conversion.
Collapse
Affiliation(s)
- Wojciech Derkowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Dharmandra Kumar
- Łódź University of Technology, Department of Chemistry, Stefana Żeromskiego 114, Łódź 90-543, Poland
| | - Tomasz Gryber
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Jakub Wagner
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Maja Morawiak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Michał Andrzej Kochman
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Przemysław Data
- Łódź University of Technology, Department of Chemistry, Stefana Żeromskiego 114, Łódź 90-543, Poland
| | - Marcin Lindner
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
9
|
Yersin H, Czerwieniec R, Monkowius U, Ramazanov R, Valiev R, Shafikov MZ, Kwok WM, Ma C. Intersystem crossing, phosphorescence, and spin-orbit coupling. Two contrasting Cu(I)-TADF dimers investigated by milli- to micro-second phosphorescence, femto-second fluorescence, and theoretical calculations. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Zhang Z, Huang Y, Bai Q, Wu T, Jiang Z, Su H, Zong Y, Wang M, Su PY, Xie TZ, Wang P. Aggregation-Induced Emission Metallocuboctahedra for White Light Devices. JACS AU 2022; 2:2809-2820. [PMID: 36590262 PMCID: PMC9795569 DOI: 10.1021/jacsau.2c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Materials for organic light-emitting devices which exhibit superior emission properties in both the solution and solid states with a high fluorescence quantum yield have been extensively sought after. Herein, two metallocages, S1 and S2, were constructed, and both showed typical aggregation-induced emission (AIE) features with intense yellow fluorescence. By adding blue-emissive 9,10-dimethylanthracene, pure white light emission can be produced in the solution of S1 and S2. Furthermore, due to the remarkable AIE feature and good fluorescence quantum yield in the solid state, metallocages are highly emissive in the solid state and can be utilized to coat blue LED bulbs or integrate with blue-emitting chips to obtain white light. This study advances the usage of metallocages as practical solid-state fluorescent materials and provides a fresh perspective on highly emissive AIE materials.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Yan Huang
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Qixia Bai
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Tun Wu
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhiyuan Jiang
- Hunan
Key Laboratory of Micro & Nano Materials Interface Science; College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, China
| | - Haoyue Su
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Yingxin Zong
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Ming Wang
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Pei-Yang Su
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Ting-Zheng Xie
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Pingshan Wang
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
- Hunan
Key Laboratory of Micro & Nano Materials Interface Science; College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, China
| |
Collapse
|
11
|
Ali U, Han G, Yi Y. Switching the Luminescence between TADF and RTP for Organic D‐A‐D Emitters: The Role of D‐A Connection Modes. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Usman Ali
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
12
|
Zhu Y, Qu C, Ye J, Xu Y, Zhang Z, Wang Y. Donor-Acceptor Type of Fused-Ring Thermally Activated Delayed Fluorescence Compounds Constructed through an Oxygen-Containing Six-Membered Ring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47971-47980. [PMID: 36219720 DOI: 10.1021/acsami.2c12778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nowadays, thermally activated delayed fluorescence (TADF) compounds with a fused-ring core skeleton are getting increasing research interest because of their use in high-performance organic light-emitting diodes (OLEDs). In this study, TADF compounds featuring a D-A-type fused-ring core skeleton are developed. The challenging compatibility of a planarized D-A arrangement and the TADF property is achieved through linking the D and A moieties with two oxygen atoms within a six-membered ring. Compared with a single-oxygen analogue possessing a flexible skeleton and a twisted D-A arrangement, these fused-ring compounds with higher skeleton rigidity show higher photoluminescence quantum yields and narrower emission spectra in toluene and in doped thin films. Their electroluminescent devices achieve high external quantum efficiencies (up to 19.4%), suggesting the potential of rarely achieved D-A-type fused-ring TADF systems to serve as high-performance emitters of OLEDs.
Collapse
Affiliation(s)
- Yunlong Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012 P. R. China
| | - Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012 P. R. China
| | - Jianjiang Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012 P. R. China
| | - Yincai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012 P. R. China
| | - Zuolun Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012 P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012 P. R. China
| |
Collapse
|
13
|
Ye K, Cao L, van Raamsdonk DME, Wang Z, Zhao J, Escudero D, Jacquemin D. Naphthalimide-phenothiazine dyads: effect of conformational flexibility and matching of the energy of the charge-transfer state and the localized triplet excited state on the thermally activated delayed fluorescence. Beilstein J Org Chem 2022; 18:1435-1453. [PMID: 36300011 PMCID: PMC9577389 DOI: 10.3762/bjoc.18.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
In order to investigate the joint influence of the conformation flexibility and the matching of the energies of the charge-transfer (CT) and the localized triplet excited (3LE) states on the thermally activated delayed fluorescence (TADF) in electron donor-acceptor molecules, a series of compact electron donor-acceptor dyads and a triad were prepared, with naphthalimide (NI) as electron acceptor and phenothiazine (PTZ) as electron donor. The NI and PTZ moieties are either directly connected at the 3-position of NI and the N-position of the PTZ moiety via a C-N single bond, or they are linked through a phenyl group. The tuning of the energy order of the CT and LE states is achieved by oxidation of the PTZ unit into the corresponding sulfoxide, whereas conformation restriction is imposed by introducing ortho-methyl substituents on the phenyl linker, so that the coupling magnitude between the CT and the 3LE states can be controlled. The singlet oxygen quantum yield (ΦΔ) of NI-PTZ is moderate in n-hexane (HEX, ΦΔ = 19%). TADF was observed for the dyads, the biexponential luminescence lifetime are 16.0 ns (99.9%)/14.4 μs (0.1%) for the dyad and 7.2 ns (99.6%)/2.0 μs (0.4%) for the triad. Triplet state was observed in the nanosecond transient absorption spectra with lifetimes in the 4-48 μs range. Computational investigations show that the orthogonal electron donor-acceptor molecular structure is beneficial for TADF. These calculations indicate small energetic difference between the 3LE and 3CT states, which are helpful for interpreting the ns-TA spectra and the origins of TADF in NI-PTZ, which is ultimately due to the small energetic difference between the 3LE and 3CT states. Conversely, NI-PTZ-O, which has a higher CT state and bears a much more stabilized 3LE state, does not show TADF.
Collapse
Affiliation(s)
- Kaiyue Ye
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liyuan Cao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | | | - Zhijia Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | | | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR-6230, Nantes F-44000, France
| |
Collapse
|
14
|
Wu J, Li D, Wu G, Li M, Yang Y. Modulating Supramolecular Charge‐Transfer Interactions in the Solid State using Compressible Macrocyclic Hosts. Angew Chem Int Ed Engl 2022; 61:e202210579. [DOI: 10.1002/anie.202210579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jia‐Rui Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
- Key Laboratory of Automobile Materials of Ministry of Education and School of Materials Science and Engineering Jilin University 5988 Renmin Street Changchun 130025 P. R. China
| | - Dongxia Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Gengxin Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Meng‐Hao Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Ying‐Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
15
|
Wu JR, Li D, Wu G, Li MH, Yang YW. Modulating Supramolecular Charge‐Transfer Interactions in the Solid State using Compressible Macrocyclic Hosts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia-Rui Wu
- Jilin University College of Chemistry CHINA
| | - Dongxia Li
- Jilin University College of Chemistry CHINA
| | - Gengxin Wu
- Jilin University College of Chemistry CHINA
| | | | - Ying-Wei Yang
- Jilin University College of Chemistry 2699 Qianjin Street 130012 Changchun CHINA
| |
Collapse
|
16
|
Yang GX, Liu DH, Jiang SM, Yang ZH, Chen ZJ, Qiu WD, Gan YY, Liu KK, Li DL, Su SJ. Novel Polycyclic Fused Amide Derivatives: Properties and Applications for Sky-blue Electroluminescent Devices. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165181. [PMID: 36014422 PMCID: PMC9414544 DOI: 10.3390/molecules27165181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
Aromatic imide derivatives play a critical role in boosting the electroluminescent (EL) performance of organic light-emitting diodes (OLEDs). However, the majority of aromatic imide-based materials are limited to long wavelength emission OLEDs rather than blue emissions due to their strong electron-withdrawing characteristics. Herein, two novel polycyclic fused amide units were reported as electron acceptor to be combined with either a tetramethylcarbazole or acridine donor via a phenyl linker to generate four conventional fluorescence blue emitters of BBI-4MeCz, BBI-DMAC, BSQ-4MeCz and BSQ-DMAC for the first time. BSQ-4MeCz and BSQ-DMAC based on a BSQ unit exhibited higher thermal stability and photoluminescence quantum yields than BBI-4MeCz and BBI-DMAC based on a BBI unit due to their more planar acceptor structure. The intermolecular interactions that exist in the BSQ series materials effectively inhibit the molecular rotation and configuration relaxation, and thus allow for blue-shifted emissions. Blue OLED devices were constructed with the developed materials as emitters, and the effects of both the structure of the polycyclic fused amide acceptor and the electron donor on the EL performance were clarified. Consequently, a sky-blue OLED device based on BSQ-DMAC was created, with a high maximum external quantum efficiency of 4.94% and a maximum luminance of 7761 cd m−2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - De-Li Li
- Correspondence: (D.-L.L.); (S.-J.S.)
| | | |
Collapse
|
17
|
Park KHK, Frank N, Duarte F, Anderson EA. Collective Synthesis of Illudalane Sesquiterpenes via Cascade Inverse Electron Demand (4 + 2) Cycloadditions of Thiophene S, S-Dioxides. J Am Chem Soc 2022; 144:10017-10024. [PMID: 35609003 PMCID: PMC9185749 DOI: 10.1021/jacs.2c03304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiophene S,S-dioxides are underutilized tools for the de novo construction of benzene rings in organic synthesis. We report a collective synthesis of nine illudalane sesquiterpenes using bicyclic thiophene S,S-dioxides as generalized precursors to the indane core of the natural products. Exploiting furans as unusual dienophiles in this inverse electron demand Diels-Alder cascade, this concise and convergent approach enables the synthesis of these targets in as little as five steps. Theoretical studies rationalize the reactivity of thiophene S,S-dioxides with both electron-poor and electron-rich dienophiles and reveal reaction pathways involving either nonpolar pericyclic or bifurcating ambimodal cycloadditions. Overall, this work demonstrates the wider potential of thiophene S,S-dioxides as convenient and flexible precursors to polysubstituted arenes.
Collapse
Affiliation(s)
- Kun Ho Kenny Park
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Nils Frank
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Fernanda Duarte
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Edward A Anderson
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
18
|
Zhou HY, Zhang DW, Li M, Chen CF. A Calix[3]acridan-Based Host-Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2022; 61:e202117872. [PMID: 35146858 DOI: 10.1002/anie.202117872] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 02/06/2023]
Abstract
A supramolecular strategy to construct thermally activated delayed fluorescence (TADF) materials through host-guest charge transfer interactions was proposed. Consequently, a new class of macrocycle namely calix[3]acridan was conveniently synthesized in 90 % yield. The host-guest cocrystal formed by calix[3]acridan and 1,2-dicyanobenzene exhibited efficient TADF properties due to intense intermolecular charge transfer interactions. Moreover, the spatially separated highest occupied molecular orbital and lowest unoccupied molecular orbital resulted in a very small singlet-triplet energy gap of 0.014 eV and hence guaranteed an efficient reverse intersystem crossing for TADF. Especially, a high photoluminescence quantum yield of 70 % was achieved, and it represents the highest value among the reported intermolecular donor-acceptor TADF materials.
Collapse
Affiliation(s)
- He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da-Wei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Zhou HY, Zhang DW, Li M, Chen CF. A Calix[3]acridan‐Based Host−Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- He-Ye Zhou
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Da-Wei Zhang
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Meng Li
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Chuan-Feng Chen
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function Zhongguancun North First Street 2 100190 Beijing CHINA
| |
Collapse
|
20
|
Li M, Chen CF. Advances in circularly polarized electroluminescence based on chiral TADF-active materials. Org Chem Front 2022. [DOI: 10.1039/d2qo01383e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the development status of chiral TADF-active materials with CPEL, covering chiral perturbed TADF molecules, intrinsically chiral TADF molecules, and TADFsensitized fluorescent enantiomers.
Collapse
Affiliation(s)
- Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Sun XW, Peng LY, Gao YJ, Ye JT, Cui G. Theoretical studies on boron dimesityl-based thermally activated delayed fluorescence organic emitters: excited-state properties and mechanisms. NEW J CHEM 2022. [DOI: 10.1039/d2nj02516g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
At 300 K, S1 excitons could emit fluorescence or undergo ISC to T1, where rISC exceeds the phosphorescence emission enabling TADF.
Collapse
Affiliation(s)
- Xin-Wei Sun
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuan-Jun Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jin-Ting Ye
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
22
|
Bartkowski K, Zimmermann Crocomo P, Kochman MA, Kumar D, Kubas A, Data P, Lindner M. Tandem rigidification and π-extension as a key tool for the development of a narrow linewidth yellow hyperfluorescent OLED system. Chem Sci 2022; 13:10119-10128. [PMID: 36128243 PMCID: PMC9430727 DOI: 10.1039/d2sc03342a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Hyperfluorescence (HF), a relatively new phenomenon utilizing the transfer of excitons between two luminophores, requires careful pairwise tuning of molecular energy levels and is proposed to be the crucial step towards the development of new, highly effective OLED systems. To date, barely few HF yellow emitters with desired narrowband emission but moderate external quantum efficiency (EQE < 20%) have been reported. This is because a systematic strategy embracing both Förster resonance energy transfer (FRET) and triplet to singlet (TTS) transition as complementary mechanisms for effective exciton transfer has not yet been proposed. Herein, we present a rational approach, which allows, through subtle structural modification, a pair of compounds built from the same donor and acceptor subunits, but with varied communication between these ambipolar fragments, to be obtained. The TADF-active dopant is based on a naphthalimide scaffold linked to the nitrogen of a carbazole moiety, which through the introduction of an additional bond leads not only to π-cloud enlargement, but also rigidifies and inhibits the rotation of the donor. This structural change prevents TADF, and guides bandgaps and excited state energies to simultaneously pursue FRET and TTS processes. New OLED devices utilizing the presented emitters show excellent external quantum efficiency (up to 27%) and a narrow full width at half maximum (40 nm), which is a consequence of very good alignment of energy levels. The presented design principles prove that only a minor structural modification is needed to obtain commercially applicable dyes for HF OLED devices. The rigidification with simultaneous π-extension of TADF-active dye leads to fluorescent dopant with fine-tuned energy levels. These used as hyperfluorescent OLED device shows extraordinary EQE and brightness due to effective FRET and TTS processes.![]()
Collapse
Affiliation(s)
- Krzysztof Bartkowski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 Warsaw 01-224 Poland
| | | | - Michał Andrzej Kochman
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 Warsaw 01-224 Poland
| | - Dharmandra Kumar
- Faculty of Chemistry, Silesian University of Technology M. Strzody 9 Gliwice 44-100 Poland
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 Warsaw 01-224 Poland
| | - Przemysław Data
- Faculty of Chemistry, Silesian University of Technology M. Strzody 9 Gliwice 44-100 Poland
| | - Marcin Lindner
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 Warsaw 01-224 Poland
| |
Collapse
|
23
|
Shibano M, Suzuki K, Kaji H, Takano T. N-Adamantylphthalimide-based Thermally Activated Delayed Fluorescence Emitter for Solution-processed Organic Light-emitting Diodes. CHEM LETT 2021. [DOI: 10.1246/cl.210446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masaya Shibano
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Katsuaki Suzuki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toshiyuki Takano
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
24
|
Li M, Chen CF. TADF-Sensitized Fluorescent Enantiomers: A New Strategy for High-Efficiency Circularly Polarized Electroluminescence*. Chemistry 2021; 28:e202103550. [PMID: 34799883 DOI: 10.1002/chem.202103550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/10/2022]
Abstract
A promising strategy of thermally activated delayed fluorescence (TADF) sensitized circularly polarized luminescence (CPL) has been proposed for improving the electroluminescence efficiencies of circularly polarized fluorescent emitters. Compared with chiral TADF emitters which suffer from the dilemma of small ΔEST accompanied by small kr , the TADF-sensitized CPL (TSCP) strategy using TADF molecules as sensitizers and CP-FL molecules as emitters might be the most promising method to construct high-performance circularly polarized organic light-emitting diodes (CP-OLEDs). Consequently, by taking advantage of the theoretically 100 % exciton utilization of TADF sensitizers, especially, by designing CP-FL emitters with high PLQY, narrow FWHM and large glum values, TSCP-type CP-OLEDs with excellent overall performances can be realized.
Collapse
Affiliation(s)
- Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Gong ZL, Zhu X, Zhou Z, Zhang SW, Yang D, Zhao B, Zhang YP, Deng J, Cheng Y, Zheng YX, Zang SQ, Kuang H, Duan P, Yuan M, Chen CF, Zhao YS, Zhong YW, Tang BZ, Liu M. Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1146-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Li M, Wang M, Wang Y, Feng L, Chen C. High‐Efficiency Circularly Polarized Electroluminescence from TADF‐Sensitized Fluorescent Enantiomers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Meng Li
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Mei‐Ying Wang
- School of Chemistry and Chemical Engineering Department Shanxi University Taiyuan 030006 China
| | - Yin‐Feng Wang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering Department Shanxi University Taiyuan 030006 China
| | - Chuan‐Feng Chen
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
27
|
Li M, Wang MY, Wang YF, Feng L, Chen CF. High-Efficiency Circularly Polarized Electroluminescence from TADF-Sensitized Fluorescent Enantiomers. Angew Chem Int Ed Engl 2021; 60:20728-20733. [PMID: 34288304 DOI: 10.1002/anie.202108011] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Indexed: 01/01/2023]
Abstract
A couple of fluorescent enantiomers, which are suitable for the emitters of high-efficiency TADF-sensitized CP-OLEDs, have been developed. The enantiomers show configurational stability, high PLQY of 98 %, large kr of 7.8×107 s-1 , and intense CPL activities with |glum | values of about 2.5×10-3 . Notably, by using matchable TADF sensitizer, the enantiomers were then exploited as emitter to fabricate CP-OLEDs. The TADF-sensitized CP-OLEDs not only show mirror-image CPEL activities with gEL values of +1.8×10-3 and -1.4×10-3 , but also display fast start-up featuring with low VT of 3.0 V as well as driving voltage of 4.8 V at 10 000 cd m-2 . Meaningfully, the TADF-sensitized fluorescent devices show high EQEmax of 21.5 % and extremely low efficiency roll-off, whose EQEs are 21.2 % and 15.3 % at 1000 and 10 000 cd m-2 , respectively. The obtained EQEs are comparable to those of CP-TADF emitters, which provides a promising perspective to break through the EL efficiency limit of CP-FL emitters.
Collapse
Affiliation(s)
- Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei-Ying Wang
- School of Chemistry and Chemical Engineering Department, Shanxi University, Taiyuan, 030006, China
| | - Yin-Feng Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering Department, Shanxi University, Taiyuan, 030006, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
28
|
Vasylieva M, Pander P, Sharma BK, Shaikh AM, Kamble RM, Dias FB, Czichy M, Data P. Acridone-amine D-A-D thermally activated delayed fluorescence emitters with narrow resolved electroluminescence and their electrochromic properties. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
P∩N Bridged Cu(I) Dimers Featuring Both TADF and Phosphorescence. From Overview towards Detailed Case Study of the Excited Singlet and Triplet States. Molecules 2021; 26:molecules26113415. [PMID: 34200044 PMCID: PMC8200198 DOI: 10.3390/molecules26113415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
We present an overview over eight brightly luminescent Cu(I) dimers of the type Cu2X2(P∩N)3 with X = Cl, Br, I and P∩N = 2-diphenylphosphino-pyridine (Ph2Ppy), 2-diphenylphosphino-pyrimidine (Ph2Ppym), 1-diphenylphosphino-isoquinoline (Ph2Piqn) including three new crystal structures (Cu2Br2(Ph2Ppy)3 1-Br, Cu2I2(Ph2Ppym)3 2-I and Cu2I2(Ph2Piqn)3 3-I). However, we mainly focus on their photo-luminescence properties. All compounds exhibit combined thermally activated delayed fluorescence (TADF) and phosphorescence at ambient temperature. Emission color, decay time and quantum yield vary over large ranges. For deeper characterization, we select Cu2I2(Ph2Ppy)3, 1-I, showing a quantum yield of 81%. DFT and SOC-TDDFT calculations provide insight into the electronic structures of the singlet S1 and triplet T1 states. Both stem from metal+iodide-to-ligand charge transfer transitions. Evaluation of the emission decay dynamics, measured from 1.2 ≤ T ≤ 300 K, gives ∆E(S1-T1) = 380 cm−1 (47 meV), a transition rate of k(S1→S0) = 2.25 × 106 s−1 (445 ns), T1 zero-field splittings, transition rates from the triplet substates and spin-lattice relaxation times. We also discuss the interplay of S1-TADF and T1-phosphorescence. The combined emission paths shorten the overall decay time. For OLED applications, utilization of both singlet and triplet harvesting can be highly favorable for improvement of the device performance.
Collapse
|
30
|
Hong G, Gan X, Leonhardt C, Zhang Z, Seibert J, Busch JM, Bräse S. A Brief History of OLEDs-Emitter Development and Industry Milestones. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005630. [PMID: 33458866 DOI: 10.1002/adma.202005630] [Citation(s) in RCA: 260] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Organic light-emitting diodes (OLEDs) have come a long way ever since their first introduction in 1987 at Eastman Kodak. Today, OLEDs are especially valued in the display and lighting industry for their promising features. As one of the research fields that equally inspires and drives development in academia and industry, OLED device technology has continuously evolved over more than 30 years. OLED devices have come forward based on three generations of emitter materials relying on fluorescence (first generation), phosphorescence (second generation), and thermally activated delayed fluorescence (third generation). Furthermore, research in academia and industry toward the fourth generation of OLEDs is in progress. Excerpts from the history of green, orange-red, and blue OLED emitter development on the side of academia and milestones achieved by key players in the industry are included in this report.
Collapse
Affiliation(s)
- Gloria Hong
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Xuemin Gan
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Céline Leonhardt
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Zhen Zhang
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Jasmin Seibert
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Jasmin M Busch
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Stefan Bräse
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| |
Collapse
|
31
|
Quinoline-based aggregation-induced delayed fluorescence materials for highly efficient non-doped organic light-emitting diodes. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.07.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Nguyen VN, Kumar A, Lee MH, Yoon J. Recent advances in biomedical applications of organic fluorescence materials with reduced singlet–triplet energy gaps. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213545] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Zhang Y, Ma Y, Zhang K, Song Y, Lin L, Wang CK, Fan J. Solid-state effect on luminescent properties of thermally activated delayed fluorescence molecule with aggregation induced emission: A theoretical perspective. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118634. [PMID: 32610217 DOI: 10.1016/j.saa.2020.118634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Solid-state effect plays an important role in defining the nature of excited states for thermally activated delayed fluorescence (TADF) molecules and further affects their luminescence properties. Theoretical investigation of photophysical properties with explicit consideration of intermolecular interactions in solid phase, is highly desired. In this work, the luminescent properties of new TADF molecule SBF-BP-DMAC with aggregation induced emission (AIE) feature are theoretically studied both in solution and solid phase. Solvent environment effect in Tetrahydrofuran (THF) is simulated by polarizable continuum model (PCM) and solid-state effect is considered by the combined quantum mechanics and molecular mechanics (QM/MM) method. By combing thermal vibration correlation function (TVCF) theory with first principles calculation, excited state energy consumption process is investigated. Our results show that the calculated prompt fluorescence efficiency, delayed fluorescence efficiency and total fluorescence efficiency in THF is 3.0%, 0.4‰ and 3.0% respectively, and corresponding value increases to 14.4%, 31.5% and 45.9% for molecule in solid phase, this verifies the AIE feature. To detect the inner mechanisms, the geometrical structures, Huang-Rhys (HR) factors and reorganization energies as well as excited state transition properties are analyzed. Decreased HR factor and reorganization energy are found in solid phase, this is caused by the restricted torsion motion of DMAC unit in rigid environment. Thus, non-radiative energy consumption process is suppressed and enhanced fluorescence efficiency is found in the solid phase. Moreover, the smaller energy gap between S1 and T1 in the solid state than that in THF, is more conducive for reverse intersystem crossing process and further improves the efficiency. This work provides reasonable explanation for the experimental measurements and reveals the inner perspectives for AIE and TADF mechanisms, which is advantageous to develop new non-doped OLEDs with advanced feature.
Collapse
Affiliation(s)
- Yuchen Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yuying Ma
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou 510640, China.
| |
Collapse
|
34
|
Sang Y, Han J, Zhao T, Duan P, Liu M. Circularly Polarized Luminescence in Nanoassemblies: Generation, Amplification, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1900110. [PMID: 31394014 DOI: 10.1002/adma.201900110] [Citation(s) in RCA: 448] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/13/2019] [Indexed: 05/22/2023]
Abstract
Currently, the development of circularly polarized luminescent (CPL) materials has drawn extensive attention due to the numerous potential applications in optical data storage, displays, backlights in 3D displays, and so on. While the fabrication of CPL-active materials generally requires chiral luminescent molecules, the introduction of the "self-assembly" concept offers a new perspective in obtaining the CPL-active materials. Following this approach, various self-assembled materials, including organic-, inorganic-, and hybrid systems can be endowed with CPL properties. Benefiting from the advantages of self-assembly, not only chiral molecules, but also achiral species, as well as inorganic nanoparticles have potential to be self-assembled into chiral nanoassemblies showing CPL activity. In addition, the dissymmetry factor, an important parameter of CPL materials, can be enhanced through various pathways of self-assembly. Here, the present status and progress of self-assembled nanomaterials with CPL activity are reviewed. An overview of the key factors in regulating chiral emission materials at the supramolecular level will largely boost their application in multidisciplinary fields.
Collapse
Affiliation(s)
- Yutao Sang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Tonghan Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Pengfei Duan
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| |
Collapse
|
35
|
Xu S, Zhang Q, Han X, Wang Y, Wang X, Nazare M, Jiang JD, Hu HY. Dual-Mode Detection of Bacterial 16S Ribosomal RNA in Tissues. ACS Sens 2020; 5:1650-1656. [PMID: 32466642 DOI: 10.1021/acssensors.0c00252] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The specific detection of pathogens has long been recognized as a vital strategy for controlling bacterial infections. Herein, a novel hydrophilic aromatic-imide-based thermally activated delayed fluorescence (TADF) probe, AI-Cz-Neo, is designed and synthesized by the conjugation of a TADF emitter with a bacterial 16S ribosomal RNA-targeted moiety, neomycin. Biological data showed for the first time that AI-Cz-Neo could be successfully applied for the dual-mode detection of bacterial 16S rRNA using confocal fluorescence imaging and time-resolved fluorescence imaging (TRFI) in both cells and tissues. These findings greatly expand the application of TADF fluorophores in time-resolved biological imaging and provide a promising strategy for the precise and reliable diagnosis of bacterial infections based on the dual-mode imaging of bacterial 16S rRNA by fluorescence intensity and fluorescence lifetime.
Collapse
Affiliation(s)
- Shengnan Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaowan Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yali Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Marc Nazare
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin 13125, Germany
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
36
|
Shibano M, Ochiai H, Suzuki K, Kamitakahara H, Kaji H, Takano T. Thermally Activated Delayed Fluorescence Benzyl Cellulose Derivatives for Nondoped Organic Light-Emitting Diodes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Masaya Shibano
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroki Ochiai
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Katsuaki Suzuki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiroshi Kamitakahara
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toshiyuki Takano
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
37
|
Li B, Li Z, Guo F, Song J, Jiang X, Wang Y, Gao S, Wang J, Pang X, Zhao L, Zhang Y. Realizing Efficient Single Organic Molecular White Light-Emitting Diodes from Conformational Isomerization of Quinazoline-Based Emitters. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14233-14243. [PMID: 32103662 DOI: 10.1021/acsami.9b20162] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single pure organic molecular white light emitters (SPOMWLEs) are of significance as a new class of material for white lighting applications; however, few of them are able to emit white electroluminescence from organic light-emitting diodes. Herein, donor-π-acceptor conjugated emitters, 2PQ-PTZ and 4PQ-PTZ, were designed and synthesized as SPOMWLEs for white light emission considering the distinct advantages of their conformation isomers. The coexistence of conformational isomers in 2PQ-PTZ, which is the first experimental evidence of the coexisting quasi-axial and quasi-equatorial conformers, provides ideal flexibility to obtain white light emission from their simultaneous and well-separated fluorescence and thermally activated delayed fluorescence. With these remarkable properties, a 2PQ-PTZ-based white light-emitting diode (LED) with a CIE of (0.32, 0.34) and color rendering index (CRI) of 89 is demonstrated. Further, the white organic light-emitting diode (OLED) of 2PQ-PTZ exhibits a high external quantum efficiency (EQE) of 10.1%, which is the reported highest performance among SPOMWLE-based OLEDs.
Collapse
Affiliation(s)
- Bowen Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhiyi Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyun Guo
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jinsheng Song
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Xi Jiang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ying Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyong Gao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jinzhong Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinchang Pang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 45001, China
| | - Liancheng Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yong Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 45001, China
| |
Collapse
|
38
|
Wang J, Fang Y, Li C, Niu L, Fang W, Cui G, Yang Q. Time‐Dependent Afterglow Color in a Single‐Component Organic Molecular Crystal. Angew Chem Int Ed Engl 2020; 59:10032-10036. [DOI: 10.1002/anie.202001141] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jian‐Xin Wang
- Institution Key Laboratory of RadiopharmaceuticalsCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Ye‐Guang Fang
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Chun‐Xiang Li
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Li‐Ya Niu
- Institution Key Laboratory of RadiopharmaceuticalsCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Wei‐Hai Fang
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Qing‐Zheng Yang
- Institution Key Laboratory of RadiopharmaceuticalsCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
39
|
Wang J, Fang Y, Li C, Niu L, Fang W, Cui G, Yang Q. Time‐Dependent Afterglow Color in a Single‐Component Organic Molecular Crystal. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001141] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jian‐Xin Wang
- Institution Key Laboratory of RadiopharmaceuticalsCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Ye‐Guang Fang
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Chun‐Xiang Li
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Li‐Ya Niu
- Institution Key Laboratory of RadiopharmaceuticalsCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Wei‐Hai Fang
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of EducationCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| | - Qing‐Zheng Yang
- Institution Key Laboratory of RadiopharmaceuticalsCollege of ChemistryBeijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
40
|
Jin P, Han Y, Tian F, Wang L, Zhao X, Zhang C, Xiao J. Electron‐Rich Twistacene‐Modified Arylboron Donor–Acceptor Systems: Synthesis, Photophysics, and Electroluminescence with Hot Exciton Response. Chemistry 2020; 26:3113-3118. [DOI: 10.1002/chem.201904590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Pengcheng Jin
- College of Chemistry and Environmental ScienceKey Laboratory of Chemical Biology of Hebei ProvinceKey Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of EducationHebei University Baoding 071002 P.R. China
| | - Yanbing Han
- Department of PhysicsHarbin Institute of Technology Harbin 150001 P.R. China
| | - Feng Tian
- Institution National–Local Joint Engineering Laboratory of, New Energy Photovoltaic DevicesCollege of Physics Science and TechnologyHebei University Baoding 071002 P.R. China
| | - Lijiao Wang
- College of Chemistry and Environmental ScienceKey Laboratory of Chemical Biology of Hebei ProvinceKey Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of EducationHebei University Baoding 071002 P.R. China
| | - Xiaohui Zhao
- Institution National–Local Joint Engineering Laboratory of, New Energy Photovoltaic DevicesCollege of Physics Science and TechnologyHebei University Baoding 071002 P.R. China
| | - Chunfang Zhang
- College of Chemistry and Environmental ScienceKey Laboratory of Chemical Biology of Hebei ProvinceKey Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of EducationHebei University Baoding 071002 P.R. China
| | - Jinchong Xiao
- College of Chemistry and Environmental ScienceKey Laboratory of Chemical Biology of Hebei ProvinceKey Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of EducationHebei University Baoding 071002 P.R. China
| |
Collapse
|
41
|
Li M, Wang Y, Zhang D, Duan L, Chen C. Axially Chiral TADF‐Active Enantiomers Designed for Efficient Blue Circularly Polarized Electroluminescence. Angew Chem Int Ed Engl 2020; 59:3500-3504. [DOI: 10.1002/anie.201914249] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/01/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Meng Li
- CAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yin‐Feng Wang
- CAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Dongdong Zhang
- Department of ChemistryTsinghua University Beijing 100084 China
| | - Lian Duan
- Department of ChemistryTsinghua University Beijing 100084 China
| | - Chuan‐Feng Chen
- CAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
42
|
Li M, Wang Y, Zhang D, Duan L, Chen C. Axially Chiral TADF‐Active Enantiomers Designed for Efficient Blue Circularly Polarized Electroluminescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914249] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Meng Li
- CAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yin‐Feng Wang
- CAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Dongdong Zhang
- Department of ChemistryTsinghua University Beijing 100084 China
| | - Lian Duan
- Department of ChemistryTsinghua University Beijing 100084 China
| | - Chuan‐Feng Chen
- CAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
43
|
Wang YF, Li M, Zhao WL, Shen YF, Lu HY, Chen CF. An axially chiral thermally activated delayed fluorescent emitter with a dual emitting core for a highly efficient organic light-emitting diode. Chem Commun (Camb) 2020; 56:9380-9383. [DOI: 10.1039/d0cc03822a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An axially chiral TADF emitter with a dual-emitting-core showed a high PLQY and EQE (20.8%), while its enantiomers also exhibited CPL properties.
Collapse
Affiliation(s)
- Yin-Feng Wang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Wen-Long Zhao
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Yi-Fan Shen
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Hai-Yan Lu
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
44
|
Zhao Q, Peng C, Zhan G, Han B. Synthesis of polysubstituted arenes through organocatalytic benzannulation. RSC Adv 2020; 10:40983-41003. [PMID: 35519191 PMCID: PMC9057797 DOI: 10.1039/d0ra08068c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
Polysubstituted arenes serve as ubiquitous structural cores of aromatic compounds with significant applications in chemistry, biological science, and materials science. Among all the synthetic approaches toward these highly functionalized arenes, organocatalytic benzannulation represents one of the most efficient and versatile transformations in the assembly of structurally diverse arene architectures under mild conditions with exceptional chemo-, regio- or stereoselectivities. Thus, the development of new benzannulation reactions through organocatalysis has attracted much attention in the past ten years. This review systemically presents recent advances in the organocatalytic benzannulation strategies, categorized as follows: (1) Brønsted acid-catalysis, (2) secondary amine catalysis, (3) primary amine catalysis, (4) tertiary amine catalysis, (5) tertiary phosphine catalysis, and (6) N-heterocyclic carbene catalysis. Each part is further classified into several types according to the number of carbon atoms contributed by different synthons participating in the cyclization reaction. The reaction mechanisms involved in different benzannulation strategies were highlighted. Organocatalytic benzannulation represents one of the most efficient transformations for assembling polysubstituted arenes, this review presents recent advances in organocatalytic benzannulation strategies to construct functionalized benzenes.![]()
Collapse
Affiliation(s)
- Qian Zhao
- School of Basic Medical Sciences
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Cheng Peng
- School of Basic Medical Sciences
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Bo Han
- School of Basic Medical Sciences
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| |
Collapse
|
45
|
Zhang L, Li M, Gao QY, Chen CF. An ultralong room-temperature phosphorescent material based on the combination of small singlet–triplet splitting energy and H-aggregation. Chem Commun (Camb) 2020; 56:4296-4299. [DOI: 10.1039/c9cc09636a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compound AI-N-Cz exhibited ultralong RTP with a lifetime of 775 ms due to the combination of small ΔEST and H-aggregation.
Collapse
Affiliation(s)
- Liang Zhang
- College of Chemical Engineering
- China University of Mining and Technology
- Xuzhou 221116
- China
- Beijing National Laboratory for Molecular Sciences
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Qing-Yu Gao
- College of Chemical Engineering
- China University of Mining and Technology
- Xuzhou 221116
- China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
46
|
Wei R, Zhang L, Xu S, Zhang Q, Qi Y, Hu HY. A single component self-assembled thermally activated delayed fluorescence nanoprobe. Chem Commun (Camb) 2020; 56:2550-2553. [DOI: 10.1039/c9cc09957c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel versatile thermally activated delayed fluorescence (TADF) nanoprobe, AI-Cz-NP, was constructed by self-assembly of a single-component amphiphilic monomer for potential applications in confocal imaging and time-resolved fluorescence imaging.
Collapse
Affiliation(s)
- Rao Wei
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
| | - Leilei Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
| | - Shengnan Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
| | - Yongxiu Qi
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Taian
- China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
| |
Collapse
|
47
|
Zhang DW, Li M, Chen CF. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem Soc Rev 2020; 49:1331-1343. [DOI: 10.1039/c9cs00680j] [Citation(s) in RCA: 329] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarizes the recent advances in CP-OLEDs based on chiral conjugated polymers, chiral metal complexes, and chiral simple organic molecules.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
48
|
Synthesis and characterization of new N-{4,6-bis[2-(het)arylvinyl]pyrimidin-2-yl}-substituted polycyclic aromatic imides. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2614-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Li G, Lou W, Wang D, Deng C, Zhang Q. Difluoroboron-Enabled Thermally Activated Delayed Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32209-32217. [PMID: 31387348 DOI: 10.1021/acsami.9b08107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new series of tetracoordinated boron-enabled thermally activated delayed fluorescence (TADF) materials with a donor-acceptor BF2-type framework were designed and conveniently synthesized. Difluoroboron plays a critical role and acts as a key to coordinate with the latent acceptor of the 2-(4-phenylpyridin-2-yl)phenol (PPyPOH) moiety to realize TADF. TADF materials are air-stable and have a high photoluminescence quantum yield of up to 99%. NOBF2-Cz- and NOBF2-DPCz-doped blue OLEDs demonstrated EQEs of 11.0% with CIE coordinates of (0.14, 0.16) and 15.8% with (0.14, 0.28) and high brightness of 6761 and 19383 cd/m2 could be achieved, respectively. Moreover, the blue OLED doped with NOBF2-DPCz and the green OLED doped with NOBF2-DMAC achieved operational lifetimes at 50% of initial luminance (L0 = 500 cd/m2), LT50, of 54 and 920 h, respectively. This work indicates that these tetracoordinated difluoroboron molecules can act as efficient and stable TADF materials for OLED applications.
Collapse
Affiliation(s)
- Guijie Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Weiwei Lou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Dan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Chao Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| |
Collapse
|
50
|
Li B, Zhou X, Yang P, Zhu L, Zhong Y, Cai Z, Jiang B, Cai X, Liu J, Jiang X. Photoactivatable Fluorogenic Labeling via Turn-On "Click-Like" Nitroso-Diene Bioorthogonal Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802039. [PMID: 31380178 PMCID: PMC6662066 DOI: 10.1002/advs.201802039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/27/2019] [Indexed: 06/10/2023]
Abstract
Fluorogenic labeling enables imaging cellular molecules of interest with minimal background. This process is accompanied with the notable increase of the quantum yield of fluorophore, thus minimizing the background signals from unactivated profluorophores. Herein, the development of a highly efficient and bioorthogonal nitroso-based Diels-Alder fluorogenic reaction is presented and its usefulness is validated as effective and controllable in fluorescent probes and live-cell labeling strategies for dynamic cellular imaging. It is demonstrated that nitroso-based cycloaddition is an efficient fluorogenic labeling tool through experiments of further UV-activatable fluorescent labeling on proteins and live cells. The ability of tuning the fluorescence of labeled proteins by UV-irradiation enables selective activation of proteins of interest in a particular cell compartment at a given time point, while leaving the remaining labeled molecules untouched.
Collapse
Affiliation(s)
- Bai Li
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Xian‐Hao Zhou
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201210China
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- University of Chinese Academy of SciencesBeijing100049China
| | - Peng‐Yu Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Liping Zhu
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Yuan Zhong
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Zhengjun Cai
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xiaoqing Cai
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Xianxing Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| |
Collapse
|