1
|
Chen L, Zhang P, Jin YQ, Yang H, Sheng T, Yan Y, Wang T, Chen Z, Tian N, Li X, Zhou ZY, Sun SG. Enhancing CO Tolerance in PEMFC Anodes via Thermal Oxidation Induced RuO 2 Blocking Shell on a PtRu/C Catalyst. NANO LETTERS 2024; 24:10642-10649. [PMID: 39158134 DOI: 10.1021/acs.nanolett.4c02999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
CO poisoning in Pt-based anode catalysts significantly hampers the proton exchange membrane fuel cell (PEMFC) performance. Despite great advances in CO-tolerant catalysts, their effectiveness is often limited to fundamental three-electrode systems, which is inadequate for practical PEMFC applications. Herein, we present a straightforward thermal oxidation strategy for constructing a Ru oxide blocking layer on commercial PtRu/C through a one-step Ru-segregation-and-oxidation process. The resulting 0.7 nm thick Ru oxide layer effectively inhibits CO adsorption while maintaining hydrogen oxidation activity. PtRu@RuO2/C demonstrates exceptional CO tolerance, enduring 1% CO in rotating disk electrode tests, an ∼10-fold improvement compared to that of PtRu/C. Crucially, it retains high HOR activity and CO tolerance in PEMFC, with negligible polarization curve loss in the presence of 100 ppm CO. Notably, 85% HOR activity is retained after a 4 h stability test. This enhancement contributes to the Ru oxide layer decelerating CO adsorption kinetics, rather than promoting CO oxidation via the classic bifunctional mechanism.
Collapse
Affiliation(s)
- Lina Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, China
| | - Pengyang Zhang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, China
| | - Yan-Qi Jin
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, China
| | - Huijuan Yang
- School of Materials Science and Engineering, Institute of Advanced Electrochemical Energy, Shaanxi International Joint Research Centre of Surface Technology for Energy Storage Materials, Xi'an University of Technology, Xi'an 710048, China
| | - Tian Sheng
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yifan Yan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, U.K
| | - Tao Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, China
| | - Zhixin Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, China
| | - Na Tian
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, China
| | - Xifei Li
- School of Materials Science and Engineering, Institute of Advanced Electrochemical Energy, Shaanxi International Joint Research Centre of Surface Technology for Energy Storage Materials, Xi'an University of Technology, Xi'an 710048, China
| | - Zhi-You Zhou
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, China
| | - Shi-Gang Sun
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Wei K, Wang X, Ge J. Towards bridging thermo/electrocatalytic CO oxidation: from nanoparticles to single atoms. Chem Soc Rev 2024; 53:8903-8948. [PMID: 39129479 DOI: 10.1039/d3cs00868a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs), as a feasible alternative to replace the traditional fossil fuel-based energy converter, contribute significantly to the global sustainability agenda. At the PEMFC anode, given the high exchange current density, Pt/C is deemed the catalyst-of-choice to ensure that the hydrogen oxidation reaction (HOR) occurs at a sufficiently fast pace. The high performance of Pt/C, however, can only be achieved under the premise that high purity hydrogen is used. For instance, in the presence of trace level carbon monoxide, a typical contaminant during H2 production, Pt is severely deactivated by CO surface blockage. Addressing the poisoning issue necessitates for either developing anti-poisoning electrocatalysts or using pre-purified H2 obtained via a thermo-catalysis route. In other words, the CO poisoning issue can be addressed by either thermal-catalysis from the H2 supply side or electrocatalysis at the user side, respectively. In spite of the distinction between thermo-catalysis and electro-catalysis, there are high similarities between the two routes. Essentially, a reduction in the kinetic barrier for the combination of CO to oxygen containing intermediates is required in both techniques. Therefore, bridging electrocatalysis and thermocatalysis might offer new insight into the development of cutting edge catalysts to solve the poisoning issue, which, however, stands as an underexplored frontier in catalysis science. This review provides a critical appraisal of the recent advancements in preferential CO oxidation (CO-PROX) thermocatalysts and anti-poisoning HOR electrocatalysts, aiming to bridge the gap in cognition between the two routes. First, we discuss the differences in thermal/electrocatalysis, CO oxidation mechanisms, and anti-CO poisoning strategies. Second, we comprehensively summarize the progress of supported and unsupported CO-tolerant catalysts based on the timeline of development (nanoparticles to clusters to single atoms), focusing on metal-support interactions and interface reactivity. Third, we elucidate the stability issue and theoretical understanding of CO-tolerant electrocatalysts, which are critical factors for the rational design of high-performance catalysts. Finally, we underscore the imminent challenges in bridging thermal/electrocatalytic CO oxidation, with theory, materials, and the mechanism as the three main weapons to gain a more in-depth understanding. We anticipate that this review will contribute to the cognition of both thermocatalysis and electrocatalysis.
Collapse
Affiliation(s)
- Kai Wei
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xian Wang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Junjie Ge
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Guo J, Yan Q, Zhang M, Fang J, Luo S, Xu J. PtRu mesoporous nanospheres as electrocatalysts with enhanced performance for oxidation of methanol. NANOSCALE ADVANCES 2024:d4na00210e. [PMID: 39170766 PMCID: PMC11334057 DOI: 10.1039/d4na00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Composition and morphology are crucial factors in the design of Pt-based catalysts with high performance, particularly in direct methanol fuel cells (DMFCs). Herein, PtRu mesoporous nanospheres (PtRu MNs) with tunable compositions were synthesized via a facile method and then deposited on a carbon support to act as electrocatalyst materials for the methanol oxidation reaction (MOR). Superior catalytic activity, better catalytic stability, and good tolerance to CO were achieved by the optimum PtRu (2 : 1) MNs/C catalyst compared with Pt MNs/C. The mass activity on PtRu (2 : 1) MNs/C reached 111.77 mA mgPt -1, which was approximately 6.45-fold higher than that of Pt MNs/C (17.33 mA mgPt -1). Meanwhile, PtRu (2 : 1) MNs/C retained much more current density (84.7%) than Pt MNs/C (17.7%) after 500 cycles. The improved catalytic performance is due to several factors, including the formation of a mesoporous nanostructure with abundant active sites and the favorable effects of the Ru species. This work provides guidance toward designing and fabricating effective Pt-based electrocatalysts for DMFC applications.
Collapse
Affiliation(s)
- Jiangbin Guo
- College of Chemical Engineering and Materials, Quanzhou Normal University Quanzhou Fujian 362000 P. R. China
| | - Qiyu Yan
- College of Chemical Engineering and Materials, Quanzhou Normal University Quanzhou Fujian 362000 P. R. China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 P. R. China
| | - Jun Fang
- College of Chemical Engineering and Materials, Quanzhou Normal University Quanzhou Fujian 362000 P. R. China
| | - Shuiyuan Luo
- College of Chemical Engineering and Materials, Quanzhou Normal University Quanzhou Fujian 362000 P. R. China
| | - Jing Xu
- College of Chemical Engineering and Materials, Quanzhou Normal University Quanzhou Fujian 362000 P. R. China
| |
Collapse
|
4
|
Xin H, Li R, Lin L, Mu R, Li M, Li D, Fu Q, Bao X. Reverse water gas-shift reaction product driven dynamic activation of molybdenum nitride catalyst surface. Nat Commun 2024; 15:3100. [PMID: 38600159 PMCID: PMC11271606 DOI: 10.1038/s41467-024-47550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
In heterogeneous catalysis catalyst activation is often observed during the reaction process, which is mostly attributed to the induction by reactants. In this work we report that surface structure of molybdenum nitride (MoNx) catalyst exhibits a high dependency on the partial pressure or concentration of reaction products i.e., CO and H2O in reverse water gas-shift reaction (RWGS) (CO2:H2 = 1:3) but not reactants of CO2 and H2. Molybdenum oxide (MoOx) overlayers formed by oxidation with H2O are observed at reaction pressure below 10 mbar or with low partial pressure of CO/H2O products, while CO-induced surface carbonization happens at reaction pressure above 100 mbar and with high partial pressure of CO/H2O products. The reaction products induce restructuring of MoNx surface into more active molybdenum carbide (MoCx) to increase the reaction rate and make for higher partial pressure CO, which in turn promote further surface carbonization of MoNx. We refer to this as the positive feedback between catalytic activity and catalyst activation in RWGS, which should be widely present in heterogeneous catalysis.
Collapse
Affiliation(s)
- Hui Xin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dan Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
5
|
Pan HR, Tang T, Jiang Z, Ding L, Xu C, Hu JS. CO-Tolerant Hydrogen Oxidation Electrocatalysts for Low-Temperature Hydrogen Fuel Cells. J Phys Chem Lett 2024; 15:3011-3022. [PMID: 38465884 DOI: 10.1021/acs.jpclett.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The severe performance degradation of low-temperature hydrogen fuel cells upon exposure to trace amounts of carbon monoxide (CO) impurities in reformate hydrogen fuels is one of the challenges that hinders their commercialization. Despite significant efforts that have been made, the CO-tolerance performance of electrocatalysts for the hydrogen oxidation reaction (HOR) is still unsatisfactory. This Perspective discusses the path forward for the rational design of CO-tolerant HOR electrocatalysts. The fundamentals of the CO-tolerant mechanisms on commercialized platinum group metal (PGM) electrocatalysts via either promoting CO electrooxidation or weakening CO adsorption are provided, and comprehensive discussions based on these strategies are presented with typical examples. Given the recent progress, some emerging strategies, including blocking CO diffusion with a barrier layer and developing non-PGM HOR catalysts, are also discussed. We conclude with a discussion of the strengths and limitations of these strategies along with the perspectives of the major challenges and opportunities for future research on CO-tolerant HOR electrocatalysts.
Collapse
Affiliation(s)
- Hai-Rui Pan
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Tang Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Feng R, Li D, Yang H, Li C, Zhao Y, Waterhouse GIN, Shang L, Zhang T. Epitaxial Ultrathin Pt Atomic Layers on CrN Nanoparticle Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309251. [PMID: 37897297 DOI: 10.1002/adma.202309251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Indexed: 10/30/2023]
Abstract
The construction of platinum (Pt) atomic layers is an effective strategy to improve the utilization efficiency of Pt atoms in electrocatalysis, thus is important for reducing the capital costs of a wide range of energy storage and conversion devices. However, the substrates used to grow Pt atomic layers are largely limited to noble metals and their alloys, which is not conducive to reducing catalyst costs. Herein, low-cost chromium nitride (CrN) is utilized as a support for the loading of epitaxial ultrathin Pt atomic layers via a simple thermal ammonolysis method. Owing to the strong anchoring and electronic regulation of Pt atomic layers by CrN, the obtained Pt atomic layers catalyst (containing electron-deficient Pt sites) exhibits excellent activity and endurance for the formic acid oxidation reaction, with a mass activity of 5.17 A mgPt -1 that is 13.6 times higher than that of commercial Pt/C catalyst. This novel strategy demonstrates that CrN can replace noble metals as a low-cost substrate for constructing Pt atomic layers catalysts.
Collapse
Affiliation(s)
- Ruixue Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongzhou Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chengyu Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Feng J, Zhang L, Liu S, Xu L, Ma X, Tan X, Wu L, Qian Q, Wu T, Zhang J, Sun X, Han B. Modulating adsorbed hydrogen drives electrochemical CO 2-to-C 2 products. Nat Commun 2023; 14:4615. [PMID: 37528069 PMCID: PMC10394046 DOI: 10.1038/s41467-023-40412-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
Electrocatalytic CO2 reduction is a typical reaction involving two reactants (CO2 and H2O). However, the role of H2O dissociation, which provides active *H species to multiple protonation steps, is usually overlooked. Herein, we construct a dual-active sites catalyst comprising atomic Cu sites and Cu nanoparticles supported on N-doped carbon matrix. Efficient electrosynthesis of multi-carbon products is achieved with Faradaic efficiency approaching 75.4% with a partial current density of 289.2 mA cm-2 at -0.6 V. Experimental and theoretical studies reveal that Cu nanoparticles facilitate the C-C coupling step through *CHO dimerization, while the atomic Cu sites boost H2O dissociation to form *H. The generated *H migrate to Cu nanoparticles and modulate the *H coverage on Cu NPs, and thus promote *CO-to-*CHO. The dual-active sites effect of Cu single-sites and Cu nanoparticles gives rise to the catalytic performance.
Collapse
Affiliation(s)
- Jiaqi Feng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Libing Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shoujie Liu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Liang Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaodong Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingxing Tan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limin Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingli Qian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
8
|
Yang Z, Chen C, Zhao Y, Wang Q, Zhao J, Waterhouse GIN, Qin Y, Shang L, Zhang T. Pt Single Atoms on CrN Nanoparticles Deliver Outstanding Activity and CO Tolerance in the Hydrogen Oxidation Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208799. [PMID: 36314386 DOI: 10.1002/adma.202208799] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The large-scale application of proton exchange membrane fuel cells is currently hampered by high cost of commercial Pt catalysts and their susceptibility to poisoning by CO impurities in H2 feed. In this context, the development of CO-tolerant electrocatalysts with high Pt atom utilization efficiency for hydrogen oxidation reaction (HOR) is of critical importance. Herein, Pt single atoms are successfully immobilized on chromium nitride nanoparticles by atomic layer deposition method, denoted as Pt SACs/CrN. Electrochemical tests establish Pt SACs/CrN to be a very efficient HOR catalyst, with a mass activity that is 5.7 times higher than commercial PtRu/C. Strikingly, the excellent performance of Pt SACs/CrN is maintained after introducing 1000 ppm of CO in H2 feed. The excellent CO-tolerance of Pt SACs/CrN is related to weaker CO adsorption on Pt single atoms. This work provides guidelines for the design and construction of active and CO-tolerant catalysts for HOR.
Collapse
Affiliation(s)
- Zhaojun Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chaoqiu Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qing Wang
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Jiaqi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | | | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Cheng H, Xia J, Wang M, Wang C, Gui R, Cao X, Zhou T, Zheng X, Chu W, Wu H, Xie Y, Wu C. Surface Anion Promotes Pt Electrocatalysts with High CO Tolerance in Fuel-Cell Performance. J Am Chem Soc 2022; 144:22018-22025. [DOI: 10.1021/jacs.2c09147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Han Cheng
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Minghao Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chun Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Renjie Gui
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xuemin Cao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Tianpei Zhou
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Yi Xie
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230026, P. R. China
| | - Changzheng Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
10
|
Kim H, Yoo JM, Chung DY, Kim Y, Jung M, Bootharaju MS, Kim J, Koo S, Shin H, Na G, Mun BS, Kwak JH, Sung YE, Hyeon T. Design of a Metal/Oxide/Carbon Interface for Highly Active and Selective Electrocatalysis. ACS NANO 2022; 16:16529-16538. [PMID: 36153951 DOI: 10.1021/acsnano.2c05856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sustainable energy-conversion and chemical-production require catalysts with high activity, durability, and product-selectivity. Metal/oxide hybrid structure has been intensively investigated to achieve promising catalytic performance, especially in neutral or alkaline electrocatalysis where water dissociation is promoted near the oxide surface for (de)protonation of intermediates. Although catalytic promise of the hybrid structure is demonstrated, it is still challenging to precisely modulate metal/oxide interfacial interactions on the nanoscale. Herein, we report an effective strategy to construct rich metal/oxide nano-interfaces on conductive carbon supports in a surfactant-free and self-terminated way. When compared to the physically mixed Pd/CeO2 system, a much higher degree of interface formation was identified with largely improved hydrogen oxidation reaction (HOR) kinetics. The benefits of the rich metal-CeO2 interface were further generalized to Pd alloys for optimized adsorption energy, where the Pd3Ni/CeO2/C catalyst shows superior performance with HOR selectivity against CO poisoning and shows long-term stability. We believe this work highlights the importance of controlling the interfacial junctions of the electrocatalyst in simultaneously achieving enhanced activity, selectivity, and stability.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Mun Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Young Chung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yongseon Kim
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Moonjung Jung
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiheon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sagang Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Heejong Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Geumbi Na
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Bongjin Simon Mun
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hun Kwak
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Ologunagba D, Kattel S. Pt- and Pd-modified transition metal nitride catalysts for the hydrogen evolution reaction. Phys Chem Chem Phys 2022; 24:12149-12157. [PMID: 35437533 DOI: 10.1039/d2cp00792d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hydrogen production via electrochemical splitting of water using renewable electricity represents a promising strategy. Currently, platinum group metals (PGMs) are the best performing hydrogen evolution reaction (HER) catalysts. Thus, the design of non-PGM catalysts or low-loading PGM catalysts is essential for the commercial development of hydrogen generation technologies via electrochemical splitting of water. Here, we employed density functional theory (DFT) calculations to explore Pt and Pd modified transition metal nitrides (TMNs) as low-cost HER catalysts. Our calculations show that Pt/Pd binds strongly with TMs on TMN(111) surfaces, leading to the formation of stable Pt and Pd-monolayer (ML)-TMN(111) structures. Furthermore, our calculated hydrogen binding energy (HBE) demonstrates that Pt/MnN, Pt/TiN, Pt/FeN, Pt/VN, Pt/HfN, Pd/FeN, Pd/TaN, Pd/NbN, Pd/TiN, Pd/HfN, Pd/MnN, Pd/ScN, Pd/VN, and Pd/ZrN are promising candidates for the HER with a low value of limiting potential (UL) similar to that calculated on Pt(111).
Collapse
Affiliation(s)
| | - Shyam Kattel
- Department of Physics, Florida A&M University Tallahassee, FL 32307, USA.
| |
Collapse
|
12
|
Wang T, Li LY, Chen LN, Sheng T, Chen L, Wang YC, Zhang P, Hong YH, Ye J, Lin WF, Zhang Q, Zhang P, Fu G, Tian N, Sun SG, Zhou ZY. High CO-Tolerant Ru-Based Catalysts by Constructing an Oxide Blocking Layer. J Am Chem Soc 2022; 144:9292-9301. [PMID: 35593455 DOI: 10.1021/jacs.2c00602] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CO poisoning of Pt-group metal catalysts is a long-standing problem, particularly for hydrogen oxidation reaction in proton exchange membrane fuel cells. Here, we report a catalyst of Ru oxide-coated Ru supported on TiO2 (Ru@RuO2/TiO2), which can tolerate 1-3% CO, enhanced by about 2 orders of magnitude over the classic PtRu/C catalyst, for hydrogen electrooxidation in a rotating disk electrode test. This catalyst can work stably in 1% CO/H2 for 50 h. About 20% of active sites can survive even in a pure CO environment. The high CO tolerance is not via a traditional bifunctional mechanism, i.e., oxide promoting CO oxidation, but rather via hydrous metal oxide shell blocking CO adsorption. An ab initio molecular dynamics (AIMD) simulation indicates that water confined in grain boundaries of the Ru oxide layer and Ru surface can suppress the diffusion and adsorption of CO. This oxide blocking layer approach opens a promising avenue for the design of high CO-tolerant electrocatalysts for fuel cells.
Collapse
Affiliation(s)
- Tao Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Lai-Yang Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Li-Na Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Tian Sheng
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Luning Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yu-Cheng Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Pengyang Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yu-Hao Hong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Jinyu Ye
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Wen-Feng Lin
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Peng Zhang
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Gang Fu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Na Tian
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Shi-Gang Sun
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Zhi-You Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
13
|
Islam M, Tran DT, Nguyen TH, Dinh VA, Kim NH, Lee JH. Efficient synergism of NiO-NiSe 2 nanosheet-based heterostructures shelled titanium nitride array for robust overall water splitting. J Colloid Interface Sci 2022; 612:121-131. [PMID: 34992013 DOI: 10.1016/j.jcis.2021.12.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022]
Abstract
Water splitting via the use of an efficient catalyst is a clean and cost-effective approach to produce green hydrogen. In this study, we successfully developed a novel hybrid coming from thin NiO-NiSe2 nanosheet-based heterostructure shelled high-conductive titanium nitride nanoarrays (TiN@NiO-NiSe2) supported on carbon cloth (CC) via an optimized in-situ synthesis strategy. The hybrid possesses unique physicochemical properties due to the combination of merits from individual components and their synergistic effects, thereby boosting number and type of electroactive sites, reasonably adjusting Gibbs free adsorption energy, and promoting charge/mass transfers. As a potential bifunctional electrocatalyst, the hybrid requires low overpotentials of 115 and 240 mV to reach a current response of 10 mA cm-2 towards hydrogen evolution reaction and oxygen evolution reaction in 1.0 M KOH, respectively. Therefore, an electrolyzer of the TiN@NiO-NiSe2 on CC exhibits a low operation voltage of 1.57 V at 10 mA cm-2 together with a prospective durability, which exceed behaviors of Pt/C//RuO2 as well as recently reported bifunctional electrocatalysts. The results suggest a promising approach for developing cost-effective catalyst towards green hydrogen production via water splitting.
Collapse
Affiliation(s)
- Muhaiminul Islam
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Duy Thanh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
| | - Thanh Hai Nguyen
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Van An Dinh
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea; Carbon Composite Research Center, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
14
|
Zhang Y, Gan M, Ma L, Zhao W, Li X, Hua X, Wang L. Oxygen vacancy‐enriched Co3O4 as efficient co‐catalyst for Pt nanoparticles towards methanol electrooxidation. ChemElectroChem 2022. [DOI: 10.1002/celc.202101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuchao Zhang
- Chongqing University college of chemistry and chemical engineering CHINA
| | - Mengyu Gan
- Chongqing University college of chemistry and chemical engineering CHINA
| | - Li Ma
- Chongqing University College of Chemistry and Chemical Engineering Shazheng street 174Shapingba 400030 Chongqing CHINA
| | - Wei Zhao
- Chongqing University college of chemistry and chemical engineering CHINA
| | - Xudong Li
- Chongqing University college of chemistry and chemical engineering CHINA
| | - Xuelian Hua
- Chongqing University college of chemistry and chemical engineering CHINA
| | - Ling Wang
- Chongqing University college of chemistry and chemical engineering CHINA
| |
Collapse
|
15
|
Liu Q, Ranocchiari M, van Bokhoven JA. Catalyst overcoating engineering towards high-performance electrocatalysis. Chem Soc Rev 2021; 51:188-236. [PMID: 34870651 DOI: 10.1039/d1cs00270h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clean and sustainable energy needs the development of advanced heterogeneous catalysts as they are of vital importance for electrochemical transformation reactions in renewable energy conversion and storage devices. Advances in nanoscience and material chemistry have afforded great opportunities for the design and optimization of nanostructured electrocatalysts with high efficiency and practical durability. In this review article, we specifically emphasize the synthetic methodologies for the versatile surface overcoating engineering reported to date for optimal electrocatalysts. We discuss the recent progress in the development of surface overcoating-derived electrocatalysts potentially applied in polymer electrolyte fuel cells and water electrolyzers by correlating catalyst intrinsic structures with electrocatalytic properties. Finally, we present the opportunities and perspectives of surface overcoating engineering for the design of advanced (electro)catalysts and their deep exploitation in a broad scope of applications.
Collapse
Affiliation(s)
- Qiang Liu
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland. .,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland. .,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
16
|
Yang X, Wang Y, Wang X, Mei B, Luo E, Li Y, Meng Q, Jin Z, Jiang Z, Liu C, Ge J, Xing W. CO-Tolerant PEMFC Anodes Enabled by Synergistic Catalysis between Iridium Single-Atom Sites and Nanoparticles. Angew Chem Int Ed Engl 2021; 60:26177-26183. [PMID: 34738702 DOI: 10.1002/anie.202110900] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 12/23/2022]
Abstract
Proton-exchange membrane fuel cells (PEMFCs) are limited by their extreme sensitivity to trace-level CO impurities, thus setting a strict requirement for H2 purity and excluding the possibility to directly use cheap crude hydrogen as fuel. Herein, we report a proof-of-concept study, in which a novel catalyst comprising both Ir particles and Ir single-atom sites (IrNP @IrSA -N-C) addresses the CO poisoning issue. The Ir single-atom sites are found not only to be good CO oxidizing sites, but also excel in scavenging the CO molecules adsorbed on Ir particles in close proximity, thereby enabling the Ir particles to reserve partial active sites towards H2 oxidation. The interplay between Ir nanoparticles and Ir single-atom centers confers the catalyst with both excellent H2 oxidation activity (1.19 W cm-2 ) and excellent CO electro-oxidation activity (85 mW cm-2 ) in PEMFCs; the catalyst also tolerates CO in H2 /CO mixture gas at a level that is two times better than that of the current best PtRu/C catalyst.
Collapse
Affiliation(s)
- Xiaolong Yang
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Institution Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xian Wang
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Institution Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bingbao Mei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, P. R. China.,Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ergui Luo
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Institution Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yang Li
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Institution Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qinglei Meng
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Institution Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhao Jin
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Institution Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Zheng Jiang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, P. R. China.,Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Changpeng Liu
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Institution Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Junjie Ge
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Institution Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wei Xing
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Institution Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
17
|
Yang X, Wang Y, Wang X, Mei B, Luo E, Li Y, Meng Q, Jin Z, Jiang Z, Liu C, Ge J, Xing W. CO‐Tolerant PEMFC Anodes Enabled by Synergistic Catalysis between Iridium Single‐Atom Sites and Nanoparticles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaolong Yang
- State Key Laboratory of Electroanalytic Chemistry Jilin Province Key Laboratory of Low Carbon Chemistry Power Institution Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xian Wang
- State Key Laboratory of Electroanalytic Chemistry Jilin Province Key Laboratory of Low Carbon Chemistry Power Institution Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Bingbao Mei
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201204 P. R. China
- Shanghai Synchrotron Radiation Facility Zhangjiang National Lab Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ergui Luo
- State Key Laboratory of Electroanalytic Chemistry Jilin Province Key Laboratory of Low Carbon Chemistry Power Institution Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Yang Li
- State Key Laboratory of Electroanalytic Chemistry Jilin Province Key Laboratory of Low Carbon Chemistry Power Institution Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Qinglei Meng
- State Key Laboratory of Electroanalytic Chemistry Jilin Province Key Laboratory of Low Carbon Chemistry Power Institution Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Zhao Jin
- State Key Laboratory of Electroanalytic Chemistry Jilin Province Key Laboratory of Low Carbon Chemistry Power Institution Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Zheng Jiang
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201204 P. R. China
- Shanghai Synchrotron Radiation Facility Zhangjiang National Lab Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Changpeng Liu
- State Key Laboratory of Electroanalytic Chemistry Jilin Province Key Laboratory of Low Carbon Chemistry Power Institution Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Junjie Ge
- State Key Laboratory of Electroanalytic Chemistry Jilin Province Key Laboratory of Low Carbon Chemistry Power Institution Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Wei Xing
- State Key Laboratory of Electroanalytic Chemistry Jilin Province Key Laboratory of Low Carbon Chemistry Power Institution Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
18
|
Nie Y, Li L, Wei Z. Achievements in Pt nanoalloy oxygen reduction reaction catalysts: strain engineering, stability and atom utilization efficiency. Chem Commun (Camb) 2021; 57:12898-12913. [PMID: 34797362 DOI: 10.1039/d1cc05534h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Pt nanoalloy surfaces often show unique electronic and physicochemical properties that are distinct from those of their parent metals, which provide significant room for manipulating their oxygen reduction reaction (ORR) behaviour. In this Feature Article, we present the progress of our recent research and that of other groups in Pt nanoalloy catalysts for ORR from three aspects, namely, strain engineering, stability and atom utilization efficiency. Some new insights into Pt surface strain engineering will be firstly introduced, with a focus on discussing the effect of compressive and tensile strain on the chemisorption properties. Secondly, the design concepts and synthetic methodologies to intensify the inherent stability of Pt nanoalloys will be summarized. Then, the exciting research push in developing nanostructured alloys with high atom utilization efficiency of Pt will be presented. Finally, a brief illumination of challenges and future developing perspectives of Pt nanoalloy catalysts will be provided.
Collapse
Affiliation(s)
- Yao Nie
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Li Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| |
Collapse
|
19
|
Carbon Monoxide Tolerant Pt-Based Electrocatalysts for H2-PEMFC Applications: Current Progress and Challenges. Catalysts 2021. [DOI: 10.3390/catal11091127] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The activity degradation of hydrogen-fed proton exchange membrane fuel cells (H2-PEMFCs) in the presence of even trace amounts of carbon monoxide (CO) in the H2 fuel is among the major drawbacks currently hindering their commercialization. Although significant progress has been made, the development of a practical anode electrocatalyst with both high CO tolerance and stability has still not occurred. Currently, efforts are being devoted to Pt-based electrocatalysts, including (i) alloys developed via novel synthesis methods, (ii) Pt combinations with metal oxides, (iii) core–shell structures, and (iv) surface-modified Pt/C catalysts. Additionally, the prospect of substituting the conventional carbon black support with advanced carbonaceous materials or metal oxides and carbides has been widely explored. In the present review, we provide a brief introduction to the fundamental aspects of CO tolerance, followed by a comprehensive presentation and thorough discussion of the recent strategies applied to enhance the CO tolerance and stability of anode electrocatalysts. The aim is to determine the progress made so far, highlight the most promising state-of-the-art CO-tolerant electrocatalysts, and identify the contributions of the novel strategies and the future challenges.
Collapse
|
20
|
Wang J, Tran DT, Chang K, Prabhakaran S, Kim DH, Kim NH, Lee JH. Bifunctional Catalyst Derived from Sulfur-Doped VMoO x Nanolayer Shelled Co Nanosheets for Efficient Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42944-42956. [PMID: 34473465 DOI: 10.1021/acsami.1c13488] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel sulfur-doped vanadium-molybdenum oxide nanolayer shelling over two-dimensional cobalt nanosheets (2D Co@S-VMoOx NSs) was synthesized via a facile approach. The formation of such a unique 2D core@shell structure together with unusual sulfur doping effect increased the electrochemically active surface area and provided excellent electric conductivity, thereby boosting the activities for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). As a result, only low overpotentials of 73 and 274 mV were required to achieve a current response of 10 mA cm-2 toward HER and OER, respectively. Using the 2D Co@S-VMoOx NSs on nickel foam as both cathode and anode electrode, the fabricated electrolyzer showed superior performance with a small cell voltage of 1.55 V at 10 mA cm-2 and excellent stability. These results suggested that the 2D Co@S-VMoOx NSs material might be a potential bifunctional catalyst for green hydrogen production via electrochemical water splitting.
Collapse
Affiliation(s)
- Jingqiang Wang
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Duy Thanh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Kai Chang
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Sampath Prabhakaran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Do Hwan Kim
- Division of Science Education, Graduate School of Department of Energy Storage/Conversion Engineering, Jeonbuk National University Jeonju, Jeonbuk 54896 Republic of Korea
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
- Carbon Composite Research Center, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
21
|
Liu D, Yang G, Zhang Q, Wang H, Yu H, Peng F. Highly Enhanced Methanol Electrooxidation on Pt/N−CNT‐Decorated FeP**. ChemElectroChem 2021. [DOI: 10.1002/celc.202100314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dongqin Liu
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 China
| | - Guangxing Yang
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Qiao Zhang
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 China
| | - Hongjuan Wang
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Hao Yu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Feng Peng
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 China
| |
Collapse
|
22
|
Li Z, Song M, Zhu W, Zhuang W, Du X, Tian L. MOF-derived hollow heterostructures for advanced electrocatalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213946] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Jeong HY, Kim DG, Akpe SG, Paidi VK, Park HS, Lee SH, Lee KS, Ham HC, Kim P, Yoo SJ. Hydrogen-Mediated Thin Pt Layer Formation on Ni 3N Nanoparticles for the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24624-24633. [PMID: 34003000 DOI: 10.1021/acsami.1c01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple wet-chemical route for the preparation of core-shell-structured catalysts was developed to achieve high oxygen reduction reaction (ORR) activity with a low Pt loading amount. Nickel nitride (Ni3N) nanoparticles were used as earth-abundant metal-based cores to support thin Pt layers. To realize the site-selective formation of Pt layers on the Ni3N core, hydrogen molecules (H2) were used as a mild reducing agent. As H2 oxidation is catalyzed by the surface of Ni3N, the redox reaction between H2 and Pt(IV) in solution was facilitated on the Ni3N surface, which resulted in the selective deposition of Pt on Ni3N. The controlled Pt formation led to a subnanometer (0.5-1 nm)-thick Pt shell on the Ni3N core. By adopting the core-shell structure, higher ORR activity than the commercial Pt/C was achieved. Electrochemical measurements showed that the thin Pt layer on Ni3N nanoparticle exhibits 5 times higher mass activity and specific activity than that of commercial Pt/C. Furthermore, it is expected that the proposed simple wet-chemical method can be utilized to prepare various transition-metal-based core-shell nanocatalysts for a wide range of energy conversion reactions.
Collapse
Affiliation(s)
- Hui-Yun Jeong
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Dong-Gun Kim
- School of Chemical Engineering, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Shedrack G Akpe
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| | - Vinod K Paidi
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyun S Park
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Soo-Hyoung Lee
- School of Chemical Engineering, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyung Chul Ham
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| | - Pil Kim
- School of Chemical Engineering, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Sung Jong Yoo
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
24
|
Liu S, Qi W, Adimi S, Guo H, Weng B, Attfield JP, Yang M. Titanium Nitride-Supported Platinum with Metal-Support Interaction for Boosting Photocatalytic H 2 Evolution of Indium Sulfide. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7238-7247. [PMID: 33539705 DOI: 10.1021/acsami.0c20919] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-support interaction strongly influences the catalytic properties of metal-based catalysts. Here, titanium nitride (TiN) nanospheres are shown to be an outstanding support, for tuning the electronic property of platinum (Pt) nanoparticles and adjusting the morphology of indium sulfide (In2S3) active components, forming flower-like core-shell nanostructures (TiN-Pt@In2S3). The strong metal-support interaction between Pt and TiN through the formation of Pt-Ti bonds favors the migration of charge carriers and leads to the easy reducibility of TiN-Pt, thus improving the photocatalytic atom efficiency of Pt. The TiN-Pt@In2S3 composite shows reduction of Pt loading by 70% compared to the optimal Pt-based system. In addition, the optimal TiN-Pt@In2S3 composite exhibits a H2 evolution rate 4 times that of a Pt reference. This increase outperforms all other supports reported thus far.
Collapse
Affiliation(s)
- Siqi Liu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Weiliang Qi
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Samira Adimi
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Haichuan Guo
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - John Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings, Edinburgh EH9 3JJ, U.K
| | - Minghui Yang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
25
|
Wang H, Li J, Li K, Lin Y, Chen J, Gao L, Nicolosi V, Xiao X, Lee JM. Transition metal nitrides for electrochemical energy applications. Chem Soc Rev 2021; 50:1354-1390. [DOI: 10.1039/d0cs00415d] [Citation(s) in RCA: 295] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review comprehensively summarizes the progress on the structural and electronic modulation of transition metal nitrides for electrochemical energy applications.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University
- Singapore 637459
- Singapore
| | - Jianmin Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices
- School of Electronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu
- China
| | - Ke Li
- School of Chemistry
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Yanping Lin
- College of Energy, Soochow Institute for Energy and Materials Innovations, & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University
- Suzhou 215006
- China
| | - Jianmei Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University
- Suzhou 215123
- China
| | - Lijun Gao
- College of Energy, Soochow Institute for Energy and Materials Innovations, & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University
- Suzhou 215006
- China
| | - Valeria Nicolosi
- School of Chemistry
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Xu Xiao
- State Key Laboratory of Electronic Thin Film and Integrated Devices
- School of Electronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu
- China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
26
|
Kormányos A, Speck FD, Mayrhofer KJJ, Cherevko S. Influence of Fuels and pH on the Dissolution Stability of Bifunctional PtRu/C Alloy Electrocatalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02094] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Attila Kormányos
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Florian D. Speck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstaße 3, 91058 Erlangen, Germany
| | - Karl J. J. Mayrhofer
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstaße 3, 91058 Erlangen, Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
27
|
Gong S, Zhang YX, Niu Z. Recent Advances in Earth-Abundant Core/Noble-Metal Shell Nanoparticles for Electrocatalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02587] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shuyan Gong
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yu-Xiao Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhiqiang Niu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Yin X, Yang L, Gao Q. Core-shell nanostructured electrocatalysts for water splitting. NANOSCALE 2020; 12:15944-15969. [PMID: 32761000 DOI: 10.1039/d0nr03719b] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
As the cornerstone of the hydrogen economy, water electrolysis consisting of the hydrogen and oxygen evolution reactions (HER and OER) greatly needs cost-efficient electrocatalysts that can decrease the dynamic overpotential and save on energy consumption. Over past years, observable progress has been made by constructing core-shell structures free from or with few noble-metals. They afford particular merits, e.g., a highly-exposed active surface, modulated electronic configurations, strain effects, interfacial synergy, or reinforced stability, to promote the kinetics and electrocatalytic performance of the HER, OER and overall water splitting. So far, a large variety of inorganics (carbon and transition-metal related components) have been introduced into core-shell electrocatalysts. Herein, representative efforts and progress are summarized with a clear classification of core and shell components, to access comprehensive insights into electrochemical processes that proceed on surfaces or interfaces. Finally, a perspective on the future development of core-shell electrocatalysts is offered. The overall aim is to shed some light on the exploration of emerging materials for energy conversion and storage.
Collapse
Affiliation(s)
- Xing Yin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | | | | |
Collapse
|
29
|
Applications of Modified Biochar-Based Materials for the Removal of Environment Pollutants: A Mini Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12156112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The biochar treated through several processes can be modified and utilized as catalyst or catalyst support due to specific properties with various available functional groups on the surface. The functional groups attached to the biochar surface can initiate active radical species to play an important role, which lead to the destruction of contaminants as a catalyst and the removal of adsorbent by involving electron transfer or redox processes. Centering on the high potential to be developed in field applications, this paper reviews more feasible and sustainable biochar-based materials resulting in efficient removals of environmental pollutants as catalyst or support rather than describing them according to the technology category. This review addresses biochar-based materials for utilization as catalysts, metal catalyst supports of iron/iron oxides, and titanium dioxide because the advanced oxidation process using iron/iron oxides or titanium dioxides is more effective for the removal of contaminants. Biochar-based materials can be used for the removal of inorganic contaminants such as heavy meals and nitrate or phosphate to cause eutrophication of water. The biochar-based materials available for the remediation of eutrophic water by the release of N- or P-containing compounds is also reviewed.
Collapse
|
30
|
Zhuang L, Jia Y, Liu H, Li Z, Li M, Zhang L, Wang X, Yang D, Zhu Z, Yao X. Sulfur‐Modified Oxygen Vacancies in Iron–Cobalt Oxide Nanosheets: Enabling Extremely High Activity of the Oxygen Evolution Reaction to Achieve the Industrial Water Splitting Benchmark. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Linzhou Zhuang
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Yi Jia
- School of Environment and Sciences, and Queensland Micro- and Griffith University Nathan Campus 4111 Australia
| | - Hongli Liu
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province Institute of Marine Biobased Materials School of Environmental Science and Engineering Qingdao University Shandong 266071 P. R. China
| | - Zhiheng Li
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Mengran Li
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Longzhou Zhang
- School of Environment and Sciences, and Queensland Micro- and Griffith University Nathan Campus 4111 Australia
| | - Xin Wang
- School of Environment and Sciences, and Queensland Micro- and Griffith University Nathan Campus 4111 Australia
| | - Dongjiang Yang
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province Institute of Marine Biobased Materials School of Environmental Science and Engineering Qingdao University Shandong 266071 P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Xiangdong Yao
- School of Environment and Sciences, and Queensland Micro- and Griffith University Nathan Campus 4111 Australia
| |
Collapse
|
31
|
Zhuang L, Jia Y, Liu H, Li Z, Li M, Zhang L, Wang X, Yang D, Zhu Z, Yao X. Sulfur‐Modified Oxygen Vacancies in Iron–Cobalt Oxide Nanosheets: Enabling Extremely High Activity of the Oxygen Evolution Reaction to Achieve the Industrial Water Splitting Benchmark. Angew Chem Int Ed Engl 2020; 59:14664-14670. [DOI: 10.1002/anie.202006546] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Linzhou Zhuang
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Yi Jia
- School of Environment and Sciences, and Queensland Micro- and Griffith University Nathan Campus 4111 Australia
| | - Hongli Liu
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province Institute of Marine Biobased Materials School of Environmental Science and Engineering Qingdao University Shandong 266071 P. R. China
| | - Zhiheng Li
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Mengran Li
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Longzhou Zhang
- School of Environment and Sciences, and Queensland Micro- and Griffith University Nathan Campus 4111 Australia
| | - Xin Wang
- School of Environment and Sciences, and Queensland Micro- and Griffith University Nathan Campus 4111 Australia
| | - Dongjiang Yang
- Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province Institute of Marine Biobased Materials School of Environmental Science and Engineering Qingdao University Shandong 266071 P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering The University of Queensland Brisbane 4072 Australia
| | - Xiangdong Yao
- School of Environment and Sciences, and Queensland Micro- and Griffith University Nathan Campus 4111 Australia
| |
Collapse
|
32
|
Göhl D, Rueß H, Schlicht S, Vogel A, Rohwerder M, Mayrhofer KJJ, Bachmann J, Román‐Leshkov Y, Schneider JM, Ledendecker M. Stable and Active Oxygen Reduction Catalysts with Reduced Noble Metal Loadings through Potential Triggered Support Passivation. ChemElectroChem 2020. [DOI: 10.1002/celc.202000278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daniel Göhl
- Department of Interface Chemistry and Surface EngineeringMax-Planck-Institut für Eisenforschung GmbH 40237 Düsseldorf Germany
| | - Holger Rueß
- Materials ChemistryRWTH Aachen University 52074 Aachen Germany
| | - Stefanie Schlicht
- Department of Chemistry and PharmacyFriedrich-Alexander University Erlangen-Nürnberg 91058 Erlangen Germany
| | - Alexandra Vogel
- Department of Interface Chemistry and Surface EngineeringMax-Planck-Institut für Eisenforschung GmbH 40237 Düsseldorf Germany
| | - Michael Rohwerder
- Department of Interface Chemistry and Surface EngineeringMax-Planck-Institut für Eisenforschung GmbH 40237 Düsseldorf Germany
| | - Karl J. J. Mayrhofer
- Helmholtz-Institute Erlangen-Nürnberg for Renewable EnergyForschungszentrum Jülich GmbH 91058 Erlangen Germany
- Department of Chemical and Biological EngineeringFriedrich-Alexander-Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Julien Bachmann
- Department of Chemistry and PharmacyFriedrich-Alexander University Erlangen-Nürnberg 91058 Erlangen Germany
- Institute of ChemistrySaint Petersburg State University Saint Petersburg 198504 Russian Federation
| | - Yuriy Román‐Leshkov
- Department of Chemical EngineeringMassachusetts Institute of Technology Cambridge MA 02139 USA
| | | | - Marc Ledendecker
- Department of Interface Chemistry and Surface EngineeringMax-Planck-Institut für Eisenforschung GmbH 40237 Düsseldorf Germany
- Department of Technical ChemistryTechnical University Darmstadt 64287 Darmstadt Germany
| |
Collapse
|
33
|
Wang Z, Garg A, Wang L, He H, Dasgupta A, Zanchet D, Janik MJ, Rioux RM, Román-Leshkov Y. Enhancement of Alkyne Semi-Hydrogenation Selectivity by Electronic Modification of Platinum. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhenshu Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aaron Garg
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Linxi Wang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Haoran He
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Anish Dasgupta
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Daniela Zanchet
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Michael J. Janik
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Robert M. Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
34
|
Luo X, Liu C, Wang X, Shao Q, Pi Y, Zhu T, Li Y, Huang X. Spin Regulation on 2D Pd-Fe-Pt Nanomeshes Promotes Fuel Electrooxidations. NANO LETTERS 2020; 20:1967-1973. [PMID: 32052980 DOI: 10.1021/acs.nanolett.9b05250] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spin engineering provides a powerful strategy for manipulating the interaction between electrons in the d orbital and oxygen-containing adsorbates, while a little endeavor was performed to understand whether such a strategy can make a prosperous enhancement for fuel electrooxidations. Herein, we demonstrate that spin engineering of trimetallic Pd-Fe-Pt nanomeshes (NMs) can achieve superior enhancement for fuel electrooxidations. Magnetization characterizations reveal that Pd59Fe27Pt14 NMs own the highest number of polarized spins (μb = 0.85 μB/f.u.), playing an important role on facilitating the adsorption of OHads to promote the oxidation of COads, as confirmed by theoretical results. Consequently, the optimized Pd59Fe27Pt14 NMs exhibit excellent methanol oxidation reaction activity and stability with a mass activity of 1.61 A mgPt-1, 2.6-fold and 7.3-fold larger than those of PtRu/C and Pt/C. Such catalysts also present exceptional performances in ethanol oxidation and formic acid oxidation reactions. Our work highlights a new strategy for designing efficient electrocatalysts for fuel electrooxidations and beyond.
Collapse
Affiliation(s)
- Xiaoling Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Cheng Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaolei Wang
- College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yecan Pi
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ting Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoqing Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
35
|
Göhl D, Garg A, Paciok P, Mayrhofer KJJ, Heggen M, Shao-Horn Y, Dunin-Borkowski RE, Román-Leshkov Y, Ledendecker M. Engineering stable electrocatalysts by synergistic stabilization between carbide cores and Pt shells. NATURE MATERIALS 2020; 19:287-291. [PMID: 31844277 DOI: 10.1038/s41563-019-0555-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/07/2019] [Indexed: 05/21/2023]
Abstract
Core-shell particles with earth-abundant cores represent an effective design strategy for improving the performance of noble metal catalysts, while simultaneously reducing the content of expensive noble metals1-4. However, the structural and catalytic stabilities of these materials often suffer during the harsh conditions encountered in important reactions, such as the oxygen reduction reaction (ORR)3-5. Here, we demonstrate that atomically thin Pt shells stabilize titanium tungsten carbide cores, even at highly oxidizing potentials. In situ, time-resolved experiments showed how the Pt coating protects the normally labile core against oxidation and dissolution, and detailed microscopy studies revealed the dynamics of partially and fully coated core-shell nanoparticles during potential cycling. Particles with complete Pt coverage precisely maintained their core-shell structure and atomic composition during accelerated electrochemical ageing studies consisting of over 10,000 potential cycles. The exceptional durability of fully coated materials highlights the potential of core-shell architectures using earth-abundant transition metal carbide (TMC) and nitride (TMN) cores for future catalytic applications.
Collapse
Affiliation(s)
- Daniel Göhl
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Aaron Garg
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul Paciok
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Karl J J Mayrhofer
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich GmbH, Erlangen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Yang Shao-Horn
- Department of Mechanical Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Marc Ledendecker
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany.
| |
Collapse
|
36
|
Jiang M, Li X, Huang W, Gan M, Hu L, He H, Zhang H, Xie F, Ma L. Fe2O3@FeP core-shell nanocubes/C composites supported irregular PtP nanocrystals for enhanced catalytic methanol oxidation. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Qu J, Cao Y, Duan X, Li N, Xu Q, Li H, He J, Chen D, Lu J. Eye‐Readable Detection and Oxidation of CO with a Platinum‐Based Catalyst and a Binuclear Rhodium Complex. Angew Chem Int Ed Engl 2019; 58:12258-12263. [DOI: 10.1002/anie.201905567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jiafu Qu
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 P. R. China
| | - Yueqiang Cao
- State Key Laboratory of Chemical EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Xuezhi Duan
- State Key Laboratory of Chemical EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 P. R. China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 P. R. China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 P. R. China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 P. R. China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 P. R. China
| |
Collapse
|
38
|
Qu J, Cao Y, Duan X, Li N, Xu Q, Li H, He J, Chen D, Lu J. Eye‐Readable Detection and Oxidation of CO with a Platinum‐Based Catalyst and a Binuclear Rhodium Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiafu Qu
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 P. R. China
| | - Yueqiang Cao
- State Key Laboratory of Chemical EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Xuezhi Duan
- State Key Laboratory of Chemical EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 P. R. China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 P. R. China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 P. R. China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 P. R. China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials ScienceCollaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 P. R. China
| |
Collapse
|
39
|
Jiang SF, Xi KF, Yang J, Jiang H. Biochar-supported magnetic noble metallic nanoparticles for the fast recovery of excessive reductant during pollutant reduction. CHEMOSPHERE 2019; 227:63-71. [PMID: 30981971 DOI: 10.1016/j.chemosphere.2019.04.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 03/25/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
The catalytic reduction of diverse pollutants by noble metal catalysts in the presence of reductants is a highly effective and widely used method. However, the considerable cost of noble metal catalysts impedes the practical application of this method, and the recovery of excessive reductants has not been reported previously. In this work, we prepared inexpensive biochar-supported magnetic noble metallic nanoparticles (NPs) and efficiently recovered the excessive reductants in the form of H2. The as-synthesized biochar-supported noble metallic NPs exhibited high H2 recovery during the 4-nitrophenol reduction reaction. Results showed that the catalysts with low noble metallic content have higher H2 recovery rate than commercial Pd/C, Ag/C, and Pt/C. The catalytic mechanism of magnetic biochar-supported noble metallic NPs was demonstrated to be a "synergetic effect", where biochar and Fe3O4 acted as accelerants that enable noble metallic NPs to produce active hydrogen for the reduction reaction, and the excess active hydrogen atoms combined to form H2.
Collapse
Affiliation(s)
- Shun-Feng Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Kun-Fang Xi
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hong Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
40
|
Garg A, Gonçalves DS, Liu Y, Wang Z, Wang L, Yoo JS, Kolpak A, Rioux RM, Zanchet D, Román-Leshkov Y. Impact of Transition Metal Carbide and Nitride Supports on the Electronic Structure of Thin Platinum Overlayers. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01272] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Daniela Zanchet
- Institute of Chemistry, University of Campinas, Campinas, SP 13083-970, Brazil
| | | |
Collapse
|
41
|
Xu Y, Li Y, Qian X, Yang D, Chai X, Wang Z, Li X, Wang L, Wang H. Trimetallic PtPdCo mesoporous nanopolyhedra with hollow cavities. NANOSCALE 2019; 11:4781-4787. [PMID: 30834928 DOI: 10.1039/c9nr00598f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The rational design of metallic mesoporous nanoarchitectures with hollow cavities offers an effective way to boost their performance in various catalytic fields. Herein, we report a facile two-step strategy for the fabrication of trimetallic PtPdCo mesoporous nanopolyhedra with hollow cavities (PtPdCo MHNPs), in which Pd@PtPdCo core-shell mesoporous nanopolyhedra (Pd@PtPdCo MNPs) are directly prepared by a simple chemical reduction reaction followed by etching of the Pd cores. The PtPdCo MHNPs show enhanced electrocatalytic activity and durability for the methanol oxidation reaction, enabled by their mesoporous and hollow nanoarchitectures coupled with trimetallic compositions.
Collapse
Affiliation(s)
- You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Liu D, Wang C, Yu Y, Zhao BH, Wang W, Du Y, Zhang B. Understanding the Nature of Ammonia Treatment to Synthesize Oxygen Vacancy-Enriched Transition Metal Oxides. Chem 2019. [DOI: 10.1016/j.chempr.2018.11.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Jiang M, Ma L, Gan M, Hu L, He H, Xie F, Zhang H. Worm-like PtP nanocrystals supported on NiCo2Px/C composites for enhanced methanol electrooxidation performance. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Recent advances in one-dimensional nanostructures for energy electrocatalysis. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(18)63177-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Shang C, Wang E. Recent progress in Pt and Pd-based hybrid nanocatalysts for methanol electrooxidation. Phys Chem Chem Phys 2019; 21:21185-21199. [DOI: 10.1039/c9cp03600h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hybrid nanomaterials can combine merits of different components and modulate electronic states of Pt and Pd based nanocrystals simultaneously.
Collapse
Affiliation(s)
- Changshuai Shang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
46
|
Chung DY, Yoo JM, Sung YE. Highly Durable and Active Pt-Based Nanoscale Design for Fuel-Cell Oxygen-Reduction Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704123. [PMID: 29359829 DOI: 10.1002/adma.201704123] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/04/2017] [Indexed: 05/16/2023]
Abstract
Fuel cells are one of the promising energy-conversion devices due to their high efficiency and zero emission. Although recent advances in electrocatalysts have been achieved using various material designs such as alloys, core@shell structures, and shape control, many issues still remain to be resolved. Especially, material design issues for high durability and high activity are recently accentuated owing to severe instability of nanoparticles under fuel-cell operating conditions. To address these issues, fundamental understanding of functional links between activity and durability is timely urgent. Here, the activity and durability of nanoscale materials are summarized, focusing on the nanoparticle size effect. In addition to phenomenological observation, two major degradation origins, including atomic dissolution and particle size increase, are discussed related to the activity decrease. Based on the fundamental understanding of nanoparticle degradation, recent promising strategies for durable Pt-based nanoscale electrocatalysts are introduced and the role of each design for durability enhancement is discussed. Finally, short comments related to the future direction of nanoparticle issues are provided in terms of nanoparticle synthesis and analysis.
Collapse
Affiliation(s)
- Dong Young Chung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, South Korea
- School of Chemical and Biological Engineering, Seoul National University (SNU), Seoul, 08826, South Korea
| | - Ji Mun Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, South Korea
- School of Chemical and Biological Engineering, Seoul National University (SNU), Seoul, 08826, South Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, South Korea
- School of Chemical and Biological Engineering, Seoul National University (SNU), Seoul, 08826, South Korea
| |
Collapse
|
47
|
Jiang SF, Ling LL, Xu Z, Liu WJ, Jiang H. Enhancing the Catalytic Activity and Stability of Noble Metal Nanoparticles by the Strong Interaction of Magnetic Biochar Support. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02777] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shun-Feng Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Li-Li Ling
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhuoran Xu
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Wu-Jun Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hong Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
48
|
|
49
|
Xu H, Song P, Zhang Y, Du Y. 3D-2D heterostructure of PdRu/NiZn oxyphosphides with improved durability for electrocatalytic methanol and ethanol oxidation. NANOSCALE 2018; 10:12605-12611. [PMID: 29938253 DOI: 10.1039/c8nr03386b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The rational design and engineering of bimetallic Pd-based nanocatalysts with both high activity and durability are of paramount significance for the practical applications of fuel cells. Herein, a new class of well-defined 2D NiZn oxyphosphide nanosheets (NiZnP NSs) have been successfully engineered to support unique 3D PdRu nanoflowers (PdRu NFs) via a facile strategy. Such nanohybrids with abundant surface active areas and modified electronic structure exhibit a great enhancement in electrocatalytic activity for the methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR), whose mass/specific activities are 1739.5 mA mg-1/4.5 mA cm-2 and 4719.8 mA mg-1/12.3 mA cm-2, which are 8.3/9.0 and 8.3/9.5 times higher than those of commercial Pd/C catalysts, respectively. More interestingly, with the remarkable promotional effect of NiZnP NSs, such 3D-2D PdRu/NiZn oxyphosphide nanohybrids can even retain 72.4% and 70.1% of initial catalytic activity toward MOR and EOR for 1000 potential cycles with negligible morphological or compositional variations. The successful construction of this new class of electrocatalysts opens up a new way for designing 3D-2D nanohybrids with high performance for electrochemical reactions and beyond.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | | | | | | |
Collapse
|
50
|
Ro I, Resasco J, Christopher P. Approaches for Understanding and Controlling Interfacial Effects in Oxide-Supported Metal Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02071] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Insoo Ro
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| | - Joaquin Resasco
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| |
Collapse
|