1
|
Gao J, Yan X, Gu X, Fu X, Chang Q, Zhang Z, Wang Y, Huang C, Li Y. The Alkynyl π Bond of sp-C Enhanced Rapid, Reversible Li-C Coupling to Accelerate Reaction Kinetics of Lithium Ions. J Am Chem Soc 2024; 146:27030-27039. [PMID: 39300785 DOI: 10.1021/jacs.4c08920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Graphdiyne (GDY) is a promising anode for rechargeable batteries with high capacity, outstanding cyclic stability, and low diffusion energy. The unique structure of GDY endows distinctive mechanisms for metal-ion storage, and it is of great significance to further visualize the complex reaction kinetics of the redox process. Here, we systematically tracked the reaction kinetics and provided mechanistic insights into the lithium ions in the GDY to reveal the feature of the cation-π effect. It has been demonstrated that, unlike only one π bond in sp2-C, π electrons provided by one of the two alkynyl π bonds in sp-C can achieve proper interaction and speedy capture of lithium ions; thus, reversible Li-C coupling can be formed between electron-rich sp-C and lithium ions. In addition to interlayer intercalation in sp2-C regions, nanopores filling triangular-like cavities composed of highly conjugated sp-C contribute to the major capacity in flat voltage plateau regions. Therefore, a capture/pores filling-intercalation hybrid mechanism can be found in GDY. The coexistence of sp and sp2 carbon enables GDY electrodes with rapid Li+ diffusion, high capacity of over 1435 mAh g-1, extraordinary rate capability, and cyclic stability for more than 10000 cycles at 10A g-1. These results provide guidance for developing advanced carbon electrodes with optimized reaction kinetics for rechargeable batteries.
Collapse
Affiliation(s)
- Jingchi Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xingru Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiangyao Gu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xinlong Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qian Chang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhihui Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Changshui Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan 250100, P. R. China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
2
|
Fu H, Chen Z, Chen X, Jing F, Yu H, Chen D, Yu B, Hu YH, Jin Y. Modification Strategies for Development of 2D Material-Based Electrocatalysts for Alcohol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306132. [PMID: 38044296 PMCID: PMC11462311 DOI: 10.1002/advs.202306132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Indexed: 12/05/2023]
Abstract
2D materials, such as graphene, MXenes (metal carbides and nitrides), graphdiyne (GDY), layered double hydroxides, and black phosphorus, are widely used as electrocatalyst supports for alcohol oxidation reactions (AORs) owing to their large surface area and unique 2D charge transport channels. Furthermore, the development of highly efficient electrocatalysts for AORs via tuning the structure of 2D support materials has recently become a hot area. This article provides a critical review on modification strategies to develop 2D material-based electrocatalysts for AOR. First, the principles and influencing factors of electrocatalytic oxidation of alcohols (such as methanol and ethanol) are introduced. Second, surface molecular functionalization, heteroatom doping, and composite hybridization are deeply discussed as the modification strategies to improve 2D material catalyst supports for AORs. Finally, the challenges and perspectives of 2D material-based electrocatalysts for AORs are outlined. This review will promote further efforts in the development of electrocatalysts for AORs.
Collapse
Affiliation(s)
- Haichang Fu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Zhangxin Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Xiaohe Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Fan Jing
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Hua Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Dan Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Binbin Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Yun Hang Hu
- Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonMI49931USA
| | - Yanxian Jin
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| |
Collapse
|
3
|
Song T, Liu H, Zou H, Wang C, Shu S, Dai H, Duan L. Metal-Free Wet Chemistry for the Fast Gram-Scale Synthesis of γ-Graphyne and its Derivatives. Angew Chem Int Ed Engl 2024:e202411228. [PMID: 39292221 DOI: 10.1002/anie.202411228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
γ-Graphyne (GY), an emerging carbon allotrope, is envisioned to offer various alluring properties and broad applicability. While significant progress has been made in the synthesis of GY over recent decades, its widespread application hinges on developing efficient, scalable, and accessible synthetic methods for the production of GY and its derivatives. Here we report a facile metal-free nucleophilic crosslinking method using wet chemistry for fast gram-scale production of GY and its derivatives. This synthesis method involves the aromatic nucleophilic substitution reactions between fluoro-(hetero)arenes and alkynyl silanes in the presence of a catalytic amount of tetrabutylammonium fluoride, where the fluoride plays a crucial role in removing protective groups from alkynyl silanes and generating reactive alkynylides. Our comprehensive analysis of the as-prepared GY reveals a layered structure, characterized by the presence of the C(sp)-C(sp2) bond. The synthetic strategy shows remarkable tolerance to various functional groups and enables the preparation of diverse F-/N-rich GY derivatives, using electron-deficient fluoro-substituted (hetero)arenes as precursors. The feasibility of producing GY and derivatives from fluorinated (hetero)arenes through the metal-free, scalable, and cost-effective approach paves the way for broad applications of GY and may inspire the development of new carbon materials.
Collapse
Affiliation(s)
- Tao Song
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310030, Hangzhou, China
| | - Hong Liu
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Haiyuan Zou
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Cheng Wang
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310030, Hangzhou, China
| | - Siyan Shu
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310030, Hangzhou, China
| | - Hao Dai
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310030, Hangzhou, China
| | - Lele Duan
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310030, Hangzhou, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, 310000, Hangzhou, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 310024, Hangzhou, China
| |
Collapse
|
4
|
Wang B, Ma J, Yang R, Meng B, Yang X, Zhang Q, Zhang B, Zhuo S. Bridging Nickel-MOF and Copper Single Atoms/Clusters with H-Substituted Graphdiyne for the Tandem Catalysis of Nitrate to Ammonia. Angew Chem Int Ed Engl 2024; 63:e202404819. [PMID: 38728151 DOI: 10.1002/anie.202404819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
Interfacial engineering of synergistic catalysts is one of the keys to achieving multiple proton-coupled electron transfer processes in nitrate-to-ammonia conversion. Herein, by joining ultrathin nickel-based metal-organic framework (denoted Ni-MOF) nanosheets with few-layered hydrogen-substituted graphdiyne-supported copper single atoms and clusters (denoted HsGDY@Cu), a tandem catalyst of Ni-MOFs@HsGDY@Cu with dual-active interfaces was developed for the concerted catalysis of nitrate-to-ammonia. In such a system, the sandwiched HsGDY layer could serve as a bridge to connect the coordinated unsaturated Ni2+ sites with Cu single atoms/clusters in a limited range of 0 to 3.6 nm. From Ni2+ to Cu, via the hydrogen spillover process, the hydrogen radicals (H⋅) generated at the unsaturated Ni2+ sites could migrate across HsGDY to the Cu sites to participate in the transformation of *HNO3 to NH3. From Cu to Ni2+, bypassing the higher reaction energy for *HNO3 formation on the Ni2+ sites, the NO2 - detached from the Cu sites could diffuse onto the unsaturated Ni2+ sites to form NH3 as well. The combined results make this hybrid a tandem catalyst with dual active sites for the catalysis of nitrate-to-ammonia conversion with improved Faradaic efficiency at lower overpotentials.
Collapse
Affiliation(s)
- Biwen Wang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jiahao Ma
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of, Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, P. R. China
| | - Rong Yang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Bocheng Meng
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiubo Yang
- Analytical & Testing Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Bin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Sifei Zhuo
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of, Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, P. R. China
| |
Collapse
|
5
|
Liu J, Zhang L, Wang K, Jiang C, Zhang C, Wang N. Island-Like Heterogeneous Interface Generating Tandem Toroidal Built-In Electric Field for Efficient Potassium Ions Diffusion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400093. [PMID: 38353062 DOI: 10.1002/smll.202400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Indexed: 07/19/2024]
Abstract
For large-size potassium accommodation, heterostructure usually suffers severe delamination and exfoliation at the interfaces due to different volume expansion of two-phase during charge/discharge process, resulting in the deconstruction of heterostructures and shortened lifespan of batteries. Here, an innovative strategy is proposed through constructing a microscopic heterostructure system containing copper quantum dots (Cu QDs) highly dispersed in the triphenyl-substituted triazine graphdiyne (TPTG) substrates (TPTG@CuQDs) to solve this problem. The copper quantum dots are uniformly anchored on TPTG substrates, generating a myriad of island-like heterogeneous structures, together with tandem toroidal built-in electric field (BIEF) between every micro heterointerface. The island-like heterostructure endows both benefits of exposed contact interface and robust architecture. Generated tandem toroidal BIEF provides efficient transport pathways with lower energy barriers, reducing the diffusion resistance and facilitating the reaction kinetics of potassium ions. When used as anode, the TPTG@CuQDs exhibit highly reversible capacity and low-capacity degradation (≈0.01% over 5560 cycles at 1 A g-1). Moreover, the TPTG@CuQDs-based full cell delivers an outstanding reversible capacity of ≈110 mAh g-1 over 800 cycles at 1 A g-1. This quantum-scale heterointerface construction strategy offers a new approach toward stable heterostructure design for the application of metal ion batteries.
Collapse
Affiliation(s)
- Jingyi Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Luwei Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Kaihang Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Chao Jiang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Chunfang Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
6
|
Zhang X, Wang N, Li Y. The Accurate Synthesis of a Multiscale Metallic Interface on Graphdiyne. SMALL METHODS 2024:e2301571. [PMID: 38795321 DOI: 10.1002/smtd.202301571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Indexed: 05/27/2024]
Abstract
The accurate construction of composite material systems containing graphdiyne (GDY) and other metallic materials has promoted the formation of innovative structures and practical applications in the fields of energy, catalysis, optoelectronics, and biomedicine. To fulfill the practical requirements, the precise formation of multiscale interfaces over a wide range, from single atoms to nanostructures, plays an important role in the optimization of the structural design and properties. The intrinsic correlations between the structure, synthesis process, characteristic properties, and device performance are systematically investigated. This review outlines the current research achievements regarding the controlled formation of multiscale metallic interfaces on GDY. Synthetic strategies for interface regulation, as well as the correlation between the structure and performance, are presented. Furthermore, innovative research ideas for the design and synthesis of functional metal-based materials loaded onto GDY-based substances are also provided, demonstrating the promising application potential of GDY-based materials.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, P. R. China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, P. R. China
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
| |
Collapse
|
7
|
Jin Z, Li X. Graphdiyne Preparation and Application in Photocatalytic Hydrogen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5011-5025. [PMID: 38410908 DOI: 10.1021/acs.langmuir.3c02338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Graphdiyne (GDY) is a new two-dimensional carbon network material composed of sp2 hybrid carbon and sp hybrid carbon conjugation. It has unique physical and chemical properties, such as high porosity, good electrical conductivity, high carrier mobility, adjustable band gap, and so on. The preparation of GDY and GDY derivatives by adjusting physical and chemical methods and changing monomers has become the key material in the fields of photocatalysis, energy storage, life science, and so on. In this paper, new methods for controllable growth of GDY are reviewed, including liquid phase chemical classical total synthesis, chemical vapor deposition, the interface method, the explosion method, and the mechanically driven ball milling method. FT-IR, Raman, NMR, and XAS are the main means to characterize the structure of GDY. Finally, the representative application of GDY in the field of photocatalytic hydrogen evolution is summarized, and its future development has been explored.
Collapse
Affiliation(s)
- Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| | - Xiaohong Li
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| |
Collapse
|
8
|
Zhao F, Liao G, Liu M, Wang T, Zhao Y, Xu J, Yin X. Precise Preparation of Triarylboron-Based Graphdiyne Analogues for Gas Separation. Angew Chem Int Ed Engl 2023:e202317294. [PMID: 38087842 DOI: 10.1002/anie.202317294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 12/23/2023]
Abstract
A series of triarylboron-based graphdiyne analogues (TAB-GDYs) with tunable pore size were prepared through copper mediated coupling reaction. The elemental composition, chemical bond, morphology of TAB-GDYs were well characterized. The crystallinity was confirmed by selected area electron diffraction (SAED) and stacking modes were studied in combination with high resolution transmission electron microscope (HRTEM) and structure simulation. The absorption and desorption isotherm revealed relatively high specific surface area of these TAB-GDYs up to 788 m2 g-1 for TMTAB-GDY, which decreased as pore size enlarged. TAB-GDYs exhibit certain selectivity for CO2 /N2 (21.9), CO2 /CH4 (5.3), CO2 /H2 (41.8) and C2 H2 /CO2 (2.3). This work has developed a series of boron containing two-dimensional frameworks with clear structures and good stability, and their tunable pore sizes have laid the foundation for future applications in the gas separation field.
Collapse
Affiliation(s)
- Fenggui Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Guanming Liao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Meiyan Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Tao Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350, Tianjin, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, P. R. China
| |
Collapse
|
9
|
Zhao S, Chen Z, Liu H, Qi L, Zheng Z, Luan X, Gao Y, Liu R, Yan J, Bu F, Xue Y, Li Y. Graphdiyne-Based Multiscale Catalysts for Ammonia Synthesis. CHEMSUSCHEM 2023:e202300861. [PMID: 37578808 DOI: 10.1002/cssc.202300861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Graphdiyne, a sp/sp2 -cohybridized two-dimensional all- carbon material, has many unique and fascinating properties of alkyne-rich structures, large π conjugated system, uniform pores, specific unevenly-distributed surface charge, and incomplete charge transfer properties provide promising potential in practical applications including catalysis, energy conversion and storage, intelligent devices, life science, photoelectric, etc. These superior advantages have made graphdiyne one of the hottest research frontiers of chemistry and materials science and produced a series of original and innovative research results in the fundamental and applied research of carbon materials. In recent years, considerable advances have been made toward the development of graphdiyne-based multiscale catalysts for nitrogen fixation and ammonia synthesis at room temperatures and ambient pressures. This review aims to provide a comprehensive update in regard to the synthesis of graphdiyne-based multiscale catalysts and their applications in the synthesis of ammonia. The unique features of graphdiyne are highlighted throughout the review. Finally, it concludes with the discussion of challenges and future perspectives relating to graphdiyne.
Collapse
Affiliation(s)
- Shuya Zhao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Zhaoyang Chen
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Huimin Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Zhiqiang Zheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Xiaoyu Luan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Yaqi Gao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Runyu Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Jiayu Yan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Fanle Bu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Yurui Xue
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
10
|
Zhang L, Wang N, Li Y. Design, synthesis, and application of some two-dimensional materials. Chem Sci 2023; 14:5266-5290. [PMID: 37234883 PMCID: PMC10208047 DOI: 10.1039/d3sc00487b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Two-dimensional (2D) materials are widely used as key components in the fields of energy conversion and storage, optoelectronics, catalysis, biomedicine, etc. To meet the practical needs, molecular structure design and aggregation process optimization have been systematically carried out. The intrinsic correlation between preparation methods and the characteristic properties is investigated. This review summarizes the recent research achievements of 2D materials in the aspect of molecular structure modification, aggregation regulation, characteristic properties, and device applications. The design strategies to fabricate functional 2D materials starting from precursor molecules are introduced in detail referring to organic synthetic chemistry and self-assembly technology. It provides important research ideas for the design and synthesis of related materials.
Collapse
Affiliation(s)
- Luwei Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
| |
Collapse
|
11
|
Yu S, Chen J, Chen C, Zhou M, Shen L, Li B, Lin H. What happens when graphdiyne encounters doping for electrochemical energy conversion and storage. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
12
|
Li H, Lim JH, Lv Y, Li N, Kang B, Lee JY. Graphynes and Graphdiynes for Energy Storage and Catalytic Utilization: Theoretical Insights into Recent Advances. Chem Rev 2023; 123:4795-4854. [PMID: 36921251 DOI: 10.1021/acs.chemrev.2c00729] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Carbon allotropes have contributed to all aspects of people's lives throughout human history. As emerging carbon-based low-dimensional materials, graphyne family members (GYF), represented by graphdiyne, have a wide range potential applications due to their superior physical and chemical properties. In particular, graphdiyne (GDY), as the leader of the graphyne family, has been practically applied to various research fields since it was first successfully synthesized. GYF have a large surface area, both sp and sp2 hybridization, and a certain band gap, which was considered to originate from the overlap of carbon 2pz orbitals and the inhomogeneous π-bonds of carbon atoms in different hybridization forms. These properties mean GYF-based materials still have many potential applications to be developed, especially in energy storage and catalytic utilization. Since most of the GYF have yet to be synthesized and applications of successfully synthesized GYF have not been developed for a long time, theoretical results in various application fields should be shared to experimentalists to attract more intentions. In this Review, we summarized and discussed the synthesis, structural properties, and applications of GYF-based materials from the theoretical insights, hoping to provide different viewpoints and comments.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jong Hyeon Lim
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Yipin Lv
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Nannan Li
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Baotao Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
13
|
Yin J, Liang J, Yuan C, Zheng W. Facile Synthesis of Hydrogen-Substituted Graphdiyne Powder via Dehalogenative Homocoupling Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1018. [PMID: 36985912 PMCID: PMC10055811 DOI: 10.3390/nano13061018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Graphdiyne and its analogs are a series of artificial two-dimensional nanomaterials with sp hybridized carbon atoms, which can be viewed as the insertion of two acetylenic units between adjacent aromatic rings, evenly expanded on a flat surface. Although developed in recent years, new synthetic strategies for graphdiyne analogs are still required. This work proposed a new method to prepare hydrogen-substituted graphdiyne powder via a dehalogenative homocoupling reaction. The polymerization was unanticipated while the initial goal was to synthesize a γ-graphyne analog via Sonogashira cross-coupling reaction. Compared with previous synthetic strategies, the reaction time was conspicuously shortened and the Pd catalyst was inessential. The powder obtained exhibited a porous structure and high electrocatalytic activity in the hydrogen/oxygen evolution reaction, which has the potential for application in electrochemical catalysis. The reported methodology provides an efficient synthetic strategy for large-scale preparation.
Collapse
|
14
|
Li Y, Huang Z, Huang X, Xu R, He Y, Deng F, Chen G. The influences of PEG-functionalized graphdiyne on cell growth and osteogenic differentiation of bone marrow mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 2023; 111:1309-1317. [PMID: 36762569 DOI: 10.1002/jbm.b.35234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/31/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Guided bone regeneration (GBR) is a frequently used technique for patients with insufficient alveolar bone. The discovery of bone substitutes that can enhance osteogenesis is critical for GBR. Graphdiyne (GDY), a newly discovered carbon-based nanomaterial, has been recognized as the most stable allotrope of acetylene carbon and is anticipated to be able to promote osteogenesis. Whereas it still remains unknown whether it could enhance osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). In this study, GDY was modified with polyethylene glycol (PEG) and the influences of GDY-PEG at different concentrations on BMSCs cell growth and osteogenic differentiation were researched for the first time. In this study, we found that GDY-PEG at low concentration possessed premium bio-compatibility and revealed evident facilitation of BMSCs osteogenic differentiation. The cell growth and osteogenic differentiation of BMSCs treated with GDY-PEG were dose-dependent. GDY-PEG at 1 μg/mL demonstrated the optimal promoting effects of BMSCs osteogenic differentiation. Moreover, the regulating effect of BMSCs osteogenic differentiation by GDY-PEG might be associated with the Wnt/β-catenin signaling pathway. In all, the present study indicated a novel application of GDY in promoting bone tissue regeneration, providing a novel biomaterial for bone augmentation in clinics.
Collapse
Affiliation(s)
- Yiming Li
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ziqing Huang
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiaoqiong Huang
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ruogu Xu
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yi He
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Feilong Deng
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Guanhui Chen
- Department of Stomatology, the Seventh Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| |
Collapse
|
15
|
Huang Z, Chen G, Deng F, Li Y. Nanostructured Graphdiyne: Synthesis and Biomedical Applications. Int J Nanomedicine 2022; 17:6467-6490. [PMID: 36573204 PMCID: PMC9789722 DOI: 10.2147/ijn.s383707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Graphdiyne (GDY) is a 2D carbon allotrope that features a one-atom-thick network of sp- and sp2-hybridized carbon atoms with high degrees of π conjugation. Due to its distinct electronic, chemical, mechanical, and magnetic properties, GDY has attracted great attention and shown great potential in various fields, such as catalysis, energy storage, and the environment. Preparation of GDY with various nanostructures, including 0D quantum dots, 1D nanotubes/nanowires/nanoribbons, 2D nanosheets/nanowalls/ordered stripe arrays, and 3D nanospheres, greatly improves its function and has propelled its applications forward. High biocompatibility and stability make GDY a promising candidate for biomedical applications. This review introduces the latest developments in fabrication of GDY-based nanomaterials with various morphologies and summarizes their propective use in the biomedical domain, specifically focusing on their potential advantages and applications for biosensing, cancer diagnosis and therapy, radiation protection, and tissue engineering.
Collapse
Affiliation(s)
- Ziqing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Guanhui Chen
- Department of Stomatology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Gao J, He F, Huang C, Xue Y, Zuo Z, Li Y. High energy density primary cathode with a mixed electron/ion interface. MATERIALS HORIZONS 2022; 9:2893-2900. [PMID: 36102686 DOI: 10.1039/d2mh00635a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An effective and original strategy described as two-dimensional encapsulation is designed to prepare a high-performance fluorinated carbon cathode composed of a fluorinated carbon/graphdiyne heterostructure (CFx/GDY). The GDY layers of CFx/GDY strengthened the three-dimensional contacts between the CFx particles and additive, achieving outstanding charge transport kinetics and accelerating the lithium-ion diffusion dynamic behavior. The obtained electrodes exhibited a significantly enhanced voltage platform of ∼2.5 V, improved battery rate performance (5C, 621.6 mA h g-1) and energy density with 2039.3 W h kg-1. The excellent storage kinetics can be ascribed to the electronic structure modulation of fluorinated carbon from GDY, and the hierarchical porosity of GDY to create an effective, stable electron transfer and robust ion transportation. Our results demonstrated that two-dimensional GDY encapsulation has enormous potential in improving the performance of lithium primary batteries.
Collapse
Affiliation(s)
- Jingchi Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Feng He
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Changshui Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yurui Xue
- Science Centre for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Jinan, 250100, P. R. China
| | - Zicheng Zuo
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
17
|
Ma H, Yang BB, Wang Z, Wu K, Zhang C. A three dimensional graphdiyne-like porous triptycene network for gas adsorption and separation. RSC Adv 2022; 12:28299-28305. [PMID: 36320518 PMCID: PMC9531253 DOI: 10.1039/d2ra04031j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Graphdiyne, an emerging carbon allotrope, has attracted many researchers devoted to the study of its synthesis and application. The utilization of graphdiyne in gas adsorption and separation has been predicted by computer simulation with many examples. In this work, the triangular basic unit of graphdiyne was introduced into a triptycene-based porous organic polymer to obtain a three dimensional graphdiyne-like porous triptycene network named G-PTN. With high surface area and a microporous structure, G-PTN exhibited convincing application potential for the storage of gas molecules, especially for the selective adsorption of acetylene over ethylene. Computational simulation proved the importance of the triptycene units and three dimensional structure to the selectivity, as well as the potential of graphdiyne units as selective binding sites, suggesting that through judicious design, new three-dimensional porous graphdiyne could be acquired with better gas adsorption and separation performance.
Collapse
Affiliation(s)
- Hui Ma
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and TechnologyWuhan430074China
| | - Bin-Bin Yang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and TechnologyWuhan430074China
| | - Zhen Wang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and TechnologyWuhan430074China
| | - Kai Wu
- Technology R&D Center, Hubei Tobacco (Group) Co., LtdWuhan430070China
| | - Chun Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
18
|
He S, Xia H, Chang F. Enzyme free electrochemical determination of bisphenol A using screen-printed electrode modified by graphdiyne and carbon nanotubes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Wang D, Zhang L, Chen S, Pan Q, Yu Z, Jia X, He L, Li C, Zhao Y. Preparation of a Large Amount of Ultrathin Graphdiyne. Chemistry 2022; 28:e202200442. [DOI: 10.1002/chem.202200442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Danbo Wang
- Engineering Research Center of High Performance Polymer and Molding Technology College of Polymer Science and Engineering Qingdao University of Science and Technology 266042 Qingdao P. R. China
| | - Lin Zhang
- Engineering Research Center of High Performance Polymer and Molding Technology College of Polymer Science and Engineering Qingdao University of Science and Technology 266042 Qingdao P. R. China
| | - Siqi Chen
- Engineering Research Center of High Performance Polymer and Molding Technology College of Polymer Science and Engineering Qingdao University of Science and Technology 266042 Qingdao P. R. China
| | - Qingyan Pan
- Engineering Research Center of High Performance Polymer and Molding Technology College of Polymer Science and Engineering Qingdao University of Science and Technology 266042 Qingdao P. R. China
| | - Zefang Yu
- Engineering Research Center of High Performance Polymer and Molding Technology College of Polymer Science and Engineering Qingdao University of Science and Technology 266042 Qingdao P. R. China
| | - Xu Jia
- Engineering Research Center of High Performance Polymer and Molding Technology College of Polymer Science and Engineering Qingdao University of Science and Technology 266042 Qingdao P. R. China
| | - Lixia He
- Engineering Research Center of High Performance Polymer and Molding Technology College of Polymer Science and Engineering Qingdao University of Science and Technology 266042 Qingdao P. R. China
| | - Chaoqin Li
- Engineering Research Center of High Performance Polymer and Molding Technology College of Polymer Science and Engineering Qingdao University of Science and Technology 266042 Qingdao P. R. China
| | - Yingjie Zhao
- Engineering Research Center of High Performance Polymer and Molding Technology College of Polymer Science and Engineering Qingdao University of Science and Technology 266042 Qingdao P. R. China
| |
Collapse
|
20
|
A graphdiyne analogue for dendrite-free lithium metal anode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Bai L, Wang N, Li Y. Controlled Growth and Self-Assembly of Multiscale Organic Semiconductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102811. [PMID: 34486181 DOI: 10.1002/adma.202102811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Currently, organic semiconductors (OSs) are widely used as active components in practical devices related to energy storage and conversion, optoelectronics, catalysis, and biological sensors, etc. To satisfy the actual requirements of different types of devices, chemical structure design and self-assembly process control have been synergistically performed. The morphology and other basic properties of multiscale OS components are governed on a broad scale from nanometers to macroscopic micrometers. Herein, the up-to-date design strategies for fabricating multiscale OSs are comprehensively reviewed. Related representative works are introduced, applications in practical devices are discussed, and future research directions are presented. Design strategies combining the advances in organic synthetic chemistry and supramolecular assembly technology perform an integral role in the development of a new generation of multiscale OSs.
Collapse
Affiliation(s)
- Ling Bai
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 27 # Shanda South Street, Jinan, 250100, P. R. China
| | - Ning Wang
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 27 # Shanda South Street, Jinan, 250100, P. R. China
| | - Yuliang Li
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 27 # Shanda South Street, Jinan, 250100, P. R. China
- Institute of Chemistry, Chinese Academy of Sciences, No. 2 # Zhongguancun North First Street, Beijing, 100190, P. R. China
| |
Collapse
|
22
|
|
23
|
Hui L, Xue Y, Xing C, Liu Y, Du Y, Fang Y, Yu H, Huang B, Li Y. Highly Loaded Independent Pt 0 Atoms on Graphdiyne for pH-General Methanol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104991. [PMID: 35393786 PMCID: PMC9165484 DOI: 10.1002/advs.202104991] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/08/2022] [Indexed: 06/01/2023]
Abstract
The emergence of platinum-based catalysts promotes efficient methanol oxidation reactions (MOR). However, the defects of such noble metal catalysts are high cost, easy poisoning, and limited commercial applications. The efficient utilization of a low-cost, anti-poisoning catalyst has been expected. Here, it is skillfully used N-doped graphdiyne (NGDY) to prepare a zero-valent platinum atomic catalyst (Pt/NGDY), which shows excellent activity, high pH adaptability, and high CO tolerance for MOR. The Pt/NGDY electrocatalysts for MOR with specific activity 154.2 mA cm-2 (1449.3 mA mgPt -1 ), 29 mA cm-2 (296 mA mgPt -1 ) and 22 mA cm-2 (110 mA mgPt -1 ) in alkaline, acid, and neutral solutions. The specific activity of Pt/NGDY is 9 times larger than Pt/C in alkaline solution. Density functional theory (DFT) calculations confirm that the incorporation of electronegativity nitrogen atoms can increase the high coverage of Pt to achieve a unique atomic state, in which the shared contributions of different Pt sites reach the balance between the electroactivity and the stability to guarantee the higher performance of MOR and durability with superior anti-poisoning effect.
Collapse
Affiliation(s)
- Lan Hui
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yurui Xue
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- Science Center for Material Creation and Energy ConversionSchool of Chemistry and Chemical EngineeringShandong UniversityJinan250100P. R. China
| | - Chengyu Xing
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Yuxin Liu
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yuncheng Du
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Yan Fang
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Huidi Yu
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Bolong Huang
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SARP. R. China
| | - Yuliang Li
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
24
|
Zhao S, Zheng Z, Qi L, Xue Y, Li Y. Controlled Growth of Donor-Bridge-Acceptor Interface for High-Performance Ammonia Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107136. [PMID: 35119196 DOI: 10.1002/smll.202107136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The intrinsic catalytic activity and active sites of the catalyst originate from the interface efficient charge transfer. A 2D graphdiyne (GDY) layer grown on the surface of zeolitic imidazolate framework nanocubes (ZIFNC@GDY) forms a novel structure of a perfect "donor-bridge-acceptor" interface, in which the ZIFNC and GDY act as electron donor and acceptor, respectively, linked by the sp-C-Co and sp-C-N bonds as bridges. Importantly, the as-prepared catalyst exhibits intrinsically high reactivity for ammonia production through the nitrate reduction reaction (NtRR) in neutral aqueous solutions at ambient pressures and temperatures. The NtRR performance of the as-prepared electrocatalyst is confirmed by the high NH3 yield rate (YNH3 ) of 0.40 ± 0.02 mmol h-1 cm-2 at potential of -0.745V versus RHE and Faradaic efficiency (FE) of 98.51 ± 0.75%, as well as the excellent stability. We show that such unique interfacial structures can accelerate the efficient electron transfers between the zeolitic imidazolate framework nanocubes (ZIFNC) core and GDY shell, enrich the electron density on the GDY surface, and thereby promote fast redox switching, creating more active sites, and improving the catalytic performances.
Collapse
Affiliation(s)
- Shuya Zhao
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Zhiqiang Zheng
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Lu Qi
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yurui Xue
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yuliang Li
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
25
|
Abstract
As a new member of carbon allotropes, graphdiyne (GDY) has the characteristics of being one-atom-thick with two-dimensional layers comprising sp and sp2 hybridized carbon atoms, and represents a trend in the development of carbon materials. Its unique chemical and electronic structures give GDY many unique and fascinating properties such as rich chemical bonds, highly conjugated and super-large π structures, infinitely distributed pores and high inhomogeneity of charge distribution. GDY has entered a period of rapid development, especially with the significant emergence of fundamental research and applied research achievements over the past five years. As one of the frontiers of chemistry and materials science, graphdiyne was listed in the Top 10 research areas in the 2020 Research Frontiers report and was jointly released in the Top 10 in the world by Clarivate and the Chinese Academy of Sciences. The research results have shown the great potential of GDY in the applications of energy, catalysis, environmental science, electronic devices, detectors, biomedicine and therapy, etc. Scientists are eager to explore and fully reveal the new properties, discover new scientific concepts and phenomena, discover the new conversion modes and mechanisms of GDY in photoelectricity, energy, and catalysis, etc., and build the important scientific value of new conversion devices. This review covers research on the foundation and application of GDY, such as the controlled preparation of new methods of GDY and GDY-based materials, studies on new mechanisms and properties in chemistry and physics, and the foundation and applications in energy, catalysis, photoelectric and devices.
Collapse
Affiliation(s)
- Yan Fang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuxin Liu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lu Qi
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yurui Xue
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yuliang Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
26
|
An J, Zhang H, Qi L, Li G, Li Y. Self‐Expanding Ion‐Transport Channels on Anodes for Fast‐Charging Lithium‐Ion Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Juan An
- Science Center for Materials Creation and Energy Conversion Institute of Frontier and Interdisciplinary Science School of Chemistry and Chemical Engineering Shandong University Qingdao 266237 P. R. China
| | - Hongyu Zhang
- School of Physics East China University of Science and Technology Shanghai 200237 P. R. China
| | - Lu Qi
- Science Center for Materials Creation and Energy Conversion Institute of Frontier and Interdisciplinary Science School of Chemistry and Chemical Engineering Shandong University Qingdao 266237 P. R. China
| | - Guoxing Li
- Science Center for Materials Creation and Energy Conversion Institute of Frontier and Interdisciplinary Science School of Chemistry and Chemical Engineering Shandong University Qingdao 266237 P. R. China
| | - Yuliang Li
- Science Center for Materials Creation and Energy Conversion Institute of Frontier and Interdisciplinary Science School of Chemistry and Chemical Engineering Shandong University Qingdao 266237 P. R. China
- Institute of Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
27
|
Lu T, Deng X, Sun Q, Xiao J, He J, Wang K, Huang C. 3D Carbiyne Nanospheres Boosting Excellent Lithium and Sodium Storage Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106328. [PMID: 34873841 DOI: 10.1002/smll.202106328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Reasonable design of electrode materials with specific morphology and structure can efficiently improve the metal ions storage and transmission properties of metal ion batteries. Here the preparation of spirobifluorene-based three-dimensional carbiyne nanosphere (SBFCY-NS) that is composed of spirobifluorene (SBF) and alkyne bonds is reported. Benefiting from the rigid spatial structure of SBF, numerous precursors are coupled through the connection of acetylene bonds, extending to form solid nanospheres. Abundant storage spaces and convenient multi-directional transmission paths for metal ions are available inside the three-dimensional (3D) carbiyne structure. Thus, SBFCY-NS is applied as efficient anode for lithium-ion battery and sodium-ion battery. The good stability of SBFCY-NS-based electrode and its improved Coulombic efficiency can be attributed to the special morphology of nanospheres, which can easily form thin and stable solid electrolyte interface film on the surface. Those results further promote the preparation of spherical carbon-based materials with abundant pores that can be applied in the field of electrodes.
Collapse
Affiliation(s)
- Tiantian Lu
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Xin Deng
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, P. R. China
| | - Quanhu Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Jinchong Xiao
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, P. R. China
| | - Jianjiang He
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Kun Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Changshui Huang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100191, P. R. China
- Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
28
|
An J, Zhang H, Qi L, Li G, Li Y. Self-Expanding Ion-Transport Channels on Anodes for Fast-Charging Lithium-Ion Batteries. Angew Chem Int Ed Engl 2021; 61:e202113313. [PMID: 34854185 DOI: 10.1002/anie.202113313] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/10/2022]
Abstract
We propose self-expanding lithium-ion transport channels to construct a fast-charging anode and realize high-performance fast-charging Li-ion batteries. The self-expanded Li-ion transport channels can be enabled by a self-reversible conversion of chemical bonds with different bond lengths in the anode driven by the interactions with Li ions during cycling, reduce the energy barrier of Li-ion transport and allow a fast Li-ion solid-state diffusion, whereby the severe voltage polarization and Li metal plating are effectively eliminated. Our proof-of-concept demonstration of the self-reversible conversion of chemical bonds on the surface of graphdiyne successfully verifies the self-expanded Li-ion transport channels, self-accelerated Li in-plane/out-of-plane migration, and superior fast-charging capability with a high capacity (342 mA h g-1 ) and an ultra-long lifespan (22 000 cycles) under extremely fast-charging conditions (6 C rate, 1 C=744 mA g-1 ), even at low temperatures (-10 °C).
Collapse
Affiliation(s)
- Juan An
- Science Center for Materials Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Hongyu Zhang
- School of Physics, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Lu Qi
- Science Center for Materials Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Guoxing Li
- Science Center for Materials Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Yuliang Li
- Science Center for Materials Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China.,Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
29
|
Tang J, Zhao M, Cai X, Liu L, Li X, Jiu T. Graphdiyne Oxide Modified NiOx for Enhanced Charge Extraction in Inverted Planar MAPbI3 Perovskite Solar Cells. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
|
31
|
Xie Z, Zhang B, Ge Y, Zhu Y, Nie G, Song Y, Lim CK, Zhang H, Prasad PN. Chemistry, Functionalization, and Applications of Recent Monoelemental Two-Dimensional Materials and Their Heterostructures. Chem Rev 2021; 122:1127-1207. [PMID: 34780169 DOI: 10.1021/acs.chemrev.1c00165] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The past decades have witnessed a rapid expansion in investigations of two-dimensional (2D) monoelemental materials (Xenes), which are promising materials in various fields, including applications in optoelectronic devices, biomedicine, catalysis, and energy storage. Apart from graphene and phosphorene, recently emerging 2D Xenes, specifically graphdiyne, borophene, arsenene, antimonene, bismuthene, and tellurene, have attracted considerable interest due to their unique optical, electrical, and catalytic properties, endowing them a broader range of intriguing applications. In this review, the structures and properties of these emerging Xenes are summarized based on theoretical and experimental results. The synthetic approaches for their fabrication, mainly bottom-up and top-down, are presented. Surface modification strategies are also shown. The wide applications of these emerging Xenes in nonlinear optical devices, optoelectronics, catalysis, biomedicine, and energy application are further discussed. Finally, this review concludes with an assessment of the current status, a description of existing scientific and application challenges, and a discussion of possible directions to advance this fertile field.
Collapse
Affiliation(s)
- Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518038, Guangdong, P.R. China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Bin Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Yanqi Ge
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Yao Zhu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Guohui Nie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - YuFeng Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Chang-Keun Lim
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan City 010000, Kazakhstan
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo 14260-3000, United States
| |
Collapse
|
32
|
Wang Z, Qi L, Zheng Z, Xue Y, Li Y. 2D Graphdiyne: A Rising Star on the Horizon of Energy Conversion. Chem Asian J 2021; 16:3259-3271. [PMID: 34467664 DOI: 10.1002/asia.202100858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Indexed: 12/20/2022]
Abstract
Two-dimensional (2D) graphdiyne (GDY), a rapidly rising star on the horizon of carbon materials, is a new carbon allotrope featuring sp- and sp2 -cohybridized carbon atoms and 2D one-atom-thick network. Since the first successful synthesis of GDY by Professor Li's group in 2010, GDY has attached great interests from both scientific and industrial viewpoints based on its unique structure and physicochemical properties, which provides a fertile ground for applications in various fields including electrocatalysis, energy conversion, energy storage and optoelectronic devices. In this work, various potential properties of the GDY-based electrocatalysts and their recent advances in energy conversion are reviewed, including atomic catalysts, heterogeneous catalysts, and metal-free catalysts. The critical role of GDY in improving catalytic activity and stability is analyzed. The perspectives of the challenges and opportunities faced by GDY-based materials for energy conversion are also outlined.
Collapse
Affiliation(s)
- Zhongqiang Wang
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Lu Qi
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Zhiqiang Zheng
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Yurui Xue
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Yuliang Li
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China.,Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
33
|
Graphdiyne Hybrid Nanowall Arrays for High-capacity Aqueous Rechargeable Zinc Ion Battery. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Zhang C, Li Y. Graphdiyne Based Atomic Catalyst: an Emerging Star for Energy Conversion. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1349-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Li X, Guo M, Chen C. Graphdiyne: from Preparation to Biomedical Applications. Chem Res Chin Univ 2021; 37:1176-1194. [PMID: 34720525 PMCID: PMC8536907 DOI: 10.1007/s40242-021-1343-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/21/2021] [Indexed: 01/15/2023]
Abstract
Graphdiyne(GDY) is a kind of two-dimensional carbon nanomaterial with specific configurations of sp and sp 2 carbon atoms. The key progress in the preparation and application of GDY is bringing carbon materials to a brand-new level. Here, the various properties and structures of GDY are introduced, including the existing strategies for the preparation and modification of GDY. In particular, GDY has gradually emerged in the field of life sciences with its unique properties and performance, therefore, the development of biomedical applications of GDY is further summarized. Finally, the challenges of GDY toward future biomedical applications are discussed.
Collapse
Affiliation(s)
- Xiaodan Li
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190 P. R. China
| | - Mengyu Guo
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190 P. R. China
| | - Chunying Chen
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190 P. R. China
| |
Collapse
|
36
|
|
37
|
Sha X, Krowne CM. First principles quantum calculations for graphyne for electronic devices. NANOSCALE ADVANCES 2021; 3:5853-5859. [PMID: 36132670 PMCID: PMC9419551 DOI: 10.1039/d1na00336d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/07/2021] [Indexed: 06/16/2023]
Abstract
Moving beyond traditional 2D materials is now desirable in order to have switching capabilities (e.g., transistors). Here we propose using γ graphyne-n because, as shown in this paper, obtaining regions of the electronic band structure which act as valence and conduction bands, with an apparent bandgap, are found. Electron spatial density and electronic band structures with ε(k) vs. k are calculated for graphyne-1 and graphyne-2 having respectively, one and two triple C-C carbon-carbon bonds between adjoining benzene rings; such side by side comparisons never before done. The ab initio quantum calculations were performed using both the local density approximation (LDA) and the generalized gradient approximation (GGA) for density functional theory (DFT).
Collapse
Affiliation(s)
- Xianwei Sha
- General Dynamics Information Technology Corporation Falls Church VA 22042 USA
- Information Technology Division, Center for Computational Science, Naval Research Laboratory Washington DC USA
| | - Clifford M Krowne
- Electromagnetics Technology Branch, Electronics Science & Technology Division, Naval Research Laboratory Washington DC 20375 USA
| |
Collapse
|
38
|
|
39
|
Abdi G, Alizadeh A, Grochala W, Szczurek A. Developments in Synthesis and Potential Electronic and Magnetic Applications of Pristine and Doped Graphynes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2268. [PMID: 34578583 PMCID: PMC8469384 DOI: 10.3390/nano11092268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
Doping and its consequences on the electronic features, optoelectronic features, and magnetism of graphynes (GYs) are reviewed in this work. First, synthetic strategies that consider numerous chemically and dimensionally different structures are discussed. Simultaneous or subsequent doping with heteroatoms, controlling dimensions, applying strain, and applying external electric fields can serve as effective ways to modulate the band structure of these new sp2/sp allotropes of carbon. The fundamental band gap is crucially dependent on morphology, with low dimensional GYs displaying a broader band gap than their bulk counterparts. Accurately chosen precursors and synthesis conditions ensure complete control of the morphological, electronic, and physicochemical properties of resulting GY sheets as well as the distribution of dopants deposited on GY surfaces. The uniform and quantitative inclusion of non-metallic (B, Cl, N, O, or P) and metallic (Fe, Co, or Ni) elements into graphyne derivatives were theoretically and experimentally studied, which improved their electronic and magnetic properties as row systems or in heterojunction. The effect of heteroatoms associated with metallic impurities on the magnetic properties of GYs was investigated. Finally, the flexibility of doped GYs' electronic and magnetic features recommends them for new electronic and optoelectronic applications.
Collapse
Affiliation(s)
- Gisya Abdi
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland; (G.A.); (W.G.)
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Abdolhamid Alizadeh
- Department of Organic Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran 1993893973, Iran;
| | - Wojciech Grochala
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland; (G.A.); (W.G.)
| | - Andrzej Szczurek
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland; (G.A.); (W.G.)
| |
Collapse
|
40
|
Hua B, Kang H, Zhong J, Zhan X, Xu L, Li J, Zheng Y, Zheng Z. Enhancing Lithium-Storage Performance via Graphdiyne/Graphene Interface by Self-Supporting Framework Synthesized. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34332-34340. [PMID: 34275282 DOI: 10.1021/acsami.1c08164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The self-supporting graphdiyne/exfoliated graphene (GDY/EG) composites materials were prepared by the solvothermal method and applied as lithium-ion batteries (LIBs). Graphdiyne (GDY) is a new type of carbon allotrope with a natural macroporous structure, but its conductivity is poor. A small amount of highly conductive graphene can improve surface conductivity and facilitate electron transport. The layered GDY/graphene heterogeneous interface can reduce the electron aggregation polarization, enhance the ability to obtain electrons from the electrolyte, and form a more uniform solid-electrolyte interface (SEI) film. The structural performance and electrochemical performance have been systematically studied. The results showed that the GDY/EG composite electrode has a reversible capacity of 1253 mA h g-1 after 600 cycles at a current density of 0.5 A g-1. When the current density is 5 A g-1, the GDY/EG composite electrode can still maintain a reversible capacity of 324 mA h g-1 after 2000 cycles, and the electrode can still maintain a good morphology after recycling. GDY/EG has a high reversible capacity, excellent rate capability, and cycle stability. A small amount of EG and inner foam copper form a double-layer conductivity, which changes the storage method of lithium ions and facilitates the rapid diffusion of lithium ions.
Collapse
Affiliation(s)
- Binchang Hua
- College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Huifang Kang
- College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Jingyan Zhong
- College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Xiaoling Zhan
- College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Lanqing Xu
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Jiaxin Li
- College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Yongping Zheng
- College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Zhifeng Zheng
- Fujian Provincial Industry Technologies Development Base for New Energy, College of Energy, Xiamen University, Xiamen 361102, P. R. China
- Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen 361102, P. R. China
| |
Collapse
|
41
|
Gao L, Yang Z, Li X, Huang C. Post-modified Strategies of Graphdiyne for Electrochemical Applications. Chem Asian J 2021; 16:2185-2194. [PMID: 34196117 DOI: 10.1002/asia.202100579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/29/2021] [Indexed: 12/30/2022]
Abstract
The new carbon material graphdiyne (GDY) has been verified to have a great application prospect in electrochemical field. In order to study its properties and expand its scope of application, various experiments including structural control tests are imposed on GDY. Among them, as one of the most commonly used methods to modify the structure, heteroatom doping is favored for its advantages in synthesis methods and the control of mechanical, electrical and even magnetic properties of carbon materials. According to the published studies, the top-down methods of doping heteroatoms for GDY only need cheap raw materials, simple synthetic route and strong controllability, which is conducive to rapid performance breakthroughs in electrochemical applications. This review selects the typical cases in the development of that post-modification method from the application of GDY in the electrochemical field. Here, based on the existed reports, the commonly used non-metal elements (such as nitrogen, sulfur) and metal elements (such as iron) have been introduced to post-modify GDY. Then, a detailed analysis is made for corresponding electrochemical applications, such as energy storage and electrocatalysis. Finally, the challenges and prospects of post-modified GDY in synthesis and electrochemical applications are proposed. This review provides us a useful guidance for the development of high-quality GDY suitable for electrochemical applications.
Collapse
Affiliation(s)
- Lei Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Ze Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Xiaodong Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Changshui Huang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
42
|
Tang X, Fan T, Wang C, Zhang H. Halogen Functionalization in the 2D Material Flatland: Strategies, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005640. [PMID: 33783132 DOI: 10.1002/smll.202005640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Given the electronegativity and bonding environment of halogen elements, halogenation (i.e., fluorination, chlorination, bromination, and iodination) serves as a versatile strategy for chemical modifications of materials. The combination of halogens and 2D materials has triggered extensive interests since the first report on graphene fluorination in 2008. Subsequently, scholars consistently conduct pre-, in-process, or posthalogenation modifications of emerging 2D materials to achieve desired properties and broad device applications. They also continuously explore the role of halogens in 2D material functionalization. The multiple advantages introduced by halogen decoration make 2D materials outstanding from each subclass. In this review, an overall retrospect is provided on the research advances in the area of 2D material halogenation, including experimental halogenation strategies, halogen-triggered novel physics and properties, and advanced applications across the studied objects. Future research directions in this area are also proposed.
Collapse
Affiliation(s)
- Xian Tang
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| | - Touwen Fan
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| | - Cong Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
43
|
Wu J, Liang J, Zhang Y, Zhao X, Yuan C. Synthesis of hydrogen-substituted graphdiynes via dehalogenative homocoupling reactions. Chem Commun (Camb) 2021; 57:5036-5039. [PMID: 33881054 DOI: 10.1039/d1cc00453k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new method is introduced to prepare hydrogen-substituted graphdiynes (HsGDYs) via the dehalogenative homocoupling of terminal alkynyl bromides. Compared with previous synthetic strategies, the reaction conditions are moderate and the time is shortened. HsGDYs exhibit porous structures and hydrogen/oxygen evolution reaction (HER/OER) catalytic activity, endowing applications in electrochemical catalysis.
Collapse
Affiliation(s)
- Jiasheng Wu
- College of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
| | | | | | | | | |
Collapse
|
44
|
Sulfur-Doped Graphdiyne as a High-Capacity Anode Material for Lithium-Ion Batteries. NANOMATERIALS 2021; 11:nano11051161. [PMID: 33946712 PMCID: PMC8145426 DOI: 10.3390/nano11051161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022]
Abstract
Heteroatom doping is regarded as a promising approach to enhance the electrochemical performance of carbon materials, while the poor controllability of heteroatoms remains the main challenge. In this context, sulfur-doped graphdiyne (S-GDY) was successfully synthesized on the surface of copper foil using a sulfur-containing multi-acetylene monomer to form a uniform film. The S-GDY film possesses a porous structure and abundant sulfur atoms decorated homogeneously in the carbon skeleton, which facilitate the fast diffusion and storage of lithium ions. The lithium-ion batteries (LIBs) fabricated with S-GDY as anode exhibit excellent performance, including the high specific capacity of 920 mA h g−1 and superior rate performances. The LIBs also show long-term cycling stability under the high current density. This result could potentially provide a modular design principle for the construction of high-performance anode materials for lithium-ion batteries.
Collapse
|
45
|
Kong S, Cai D, Li G, Xu X, Zhou S, Ding X, Zhang Y, Yang S, Zhou X, Nie H, Huang S, Peng P, Yang Z. Hydrogen-substituted graphdiyne/graphene as an sp/sp 2 hybridized carbon interlayer for lithium-sulfur batteries. NANOSCALE 2021; 13:3817-3826. [PMID: 33565536 DOI: 10.1039/d0nr07878f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To overcome the shuttle effect in lithium-sulfur (Li-S) batteries, an sp/sp2 hybridized all-carbon interlayer by coating graphene (Gra) and hydrogen-substituted graphdiyne (HsGDY) with a specific surface area as high as 2184 m2 g-1 on a cathode is designed and prepared. The two-dimensional network and rich pore structure of HsGDY can enable the fast physical adsorption of lithium polysulfides (LiPSs). In situ Raman spectroscopy and ex situ X-ray photoelectron spectroscopy (XPS) combined with density functional theory (DFT) computations confirm that the acetylenic bonds in HsGDY can trap the Li+ of LiPSs owing to the strong adsorption of Li+ by acetylenic active sites. The strong physical adsorption and chemical anchoring of LiPSs by the HsGDY materials promote the conversion reaction of LiPSs to further mitigate the shuttling problem. As a result, Li-S batteries integrated with the all-carbon interlayers exhibit excellent cycling stability during long-term cycling with an attenuation rate of 0.089% per cycle at 1 C over 500 cycles.
Collapse
Affiliation(s)
- Suzhen Kong
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Dong Cai
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Guifa Li
- School of Material Science and Engineering, Nanchang Hangkong University, Jiangxi, 330063, China
| | - Xiangju Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Suya Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Xinwei Ding
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Yongqin Zhang
- School of Material Science and Engineering, Nanchang Hangkong University, Jiangxi, 330063, China
| | - Shuo Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China. and College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Huagui Nie
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Shaoming Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Peng
- School of Material Science and Engineering, Hunan University, Hunan, 410082, China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
46
|
Huang Q, Li H, Ma W. Enabling Enhanced Lithium Ion Storage Performance of Graphdiyne by Doping with Group-15 Elements: A First-Principles Study. ACS OMEGA 2021; 6:1456-1464. [PMID: 33490805 PMCID: PMC7818639 DOI: 10.1021/acsomega.0c05135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
As a typical two-dimensional material possessing sp and sp2 hybrid orbitals, graphdiyne (GDY) and its derivatives have been proposed as an attractive candidate for high-performance lithium ion batteries (LIBs). In this work, an advanced GDY LIB electrode is designed by doping with group-15 elements. With the aid of first-principles simulations, the geometric properties, electronic structures, theoretical storage capacities, open-circuit voltages, and diffusion path of Li atoms on doped GDY are comprehensively investigated. Specifically, 14 different adsorption sites are proposed, most of which are situated out of plane of the carbon network, resulting from the out of plane Pz orbitals of conduction band minimum and valence band maximum. Among the five doped GDY, phosphorus-doped graphdiyne (P-GDY) exhibits prominent lithium ion storage behavior, i.e., the maximum theoretical capacity is 1949 mA·h·g-1, which is ∼2.6 times higher than that of GDY. Moreover, calculation results in terms of the in-plane migration of lithium ion on P-GDY indicate that Li atoms prefer to diffuse across the carbon network (with a moderate barrier of 0.46 eV) rather than directly through the middle of the hexagonal aperture (with a higher barrier of 1.78 eV). Thus, this approach provides novel insights into the Li ion storage properties of group-15 element-doped GDY from the prospect of theoretical calculations, which would be useful to guide the future design of high-capacity GDY anodes for LIBs.
Collapse
Affiliation(s)
- Qiuzhi Huang
- Ningxia Key Laboratory of Photovoltaic Materials, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - Haibo Li
- Ningxia Key Laboratory of Photovoltaic Materials, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - Wei Ma
- Ningxia Key Laboratory of Photovoltaic Materials, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| |
Collapse
|
47
|
Wen J, Zhu L, Li M. C-C Coupling Reactions for the Synthesis of Two-Dimensional Conjugated Polymers. Chempluschem 2020; 85:2636-2651. [PMID: 33305907 DOI: 10.1002/cplu.202000643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Indexed: 12/18/2022]
Abstract
Extension of conjugated polymers from 1D to 2D can not only significantly enhance the dissociation of charge and excitons, but also induce other advantages, such as high in-plane mechanical strength, large specific surface area and porosity, and more active centers. 2D conjugated polymers can be divided into C-C bonded 2D polymers based on C-C coupling reactions, and heteroatomic bonded 2D polymers based on reversible heteroatom coupling reactions. C-C bonded 2D polymers are generally more stable than heteroatomic bonded 2D polymers as the latter bonds are easily hydrolyzed. This Review mainly summarizes C-C coupling reactions that are suitable for synthesizing 2D conjugated polymers, and the properties of these 2D conjugated polymers are also introduced.
Collapse
Affiliation(s)
- Ju Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ling Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ming Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
48
|
Feng Z, Tang Y, Chen W, Li Y, Li R, Ma Y, Dai X. BN cluster-doped graphdiyne as visible-light assisted metal-free catalysts for conversion CO 2 to hydrocarbon fuels. NANOTECHNOLOGY 2020; 31:495401. [PMID: 32990268 DOI: 10.1088/1361-6528/abb26e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon dioxide electrochemical reduction reaction (CO2RR) under ambient conditions provides an intriguing picture for conversion of CO2 to useful fuels and chemicals. Here by means of density functional theory (DFT) computations, the formation configuration and CO2RR catalytic activity of boron nitrogen cluster-doped graphdiyne (BN-doped GDY) were systematically investigated. The band structure and optical adsorption spectra reveal that BN-doped GDY exhibits semiconductor with the band gap of 0.902 eV and shows photothermal effect under visible and even infrared light irradiation. The BN-doped GDY could act as a hot spot to enhance CO2RR. The adsorption configurations of various reaction intermediates indicate that boron atoms are active sites, which can be further confirmed by charge analysis. Based on thermodynamic analysis, the reaction pathways and onset potentials were studied as compared with Cu(111) surface. For the production of CO, the onset potential for BN-doped GDY (-1.06 V) is higher than that for Cu(111) surface. While for the reduction of CO2 to HCOOH, CH4, CH3OH, and C2H4 on BN-doped GDY, the onset potentials are lower than that on Cu(111) surface, which are -0.57 V, -0.62 V, -0.57 V, and -0.82 V, respectively. Moreover, the onset potential of competitive hydrogen evolution reaction on BN-doped GDY is high to -0.82 V, which shows us a good selectivity towards to CO2RR rather than HER. Our results may pave a new avenue for the conversion of CO2 into high-value fuels and chemicals.
Collapse
Affiliation(s)
- Zhen Feng
- School of Materials Science and Engineering, Henan Institute of Technology, Xinxiang, Henan 453000, People's Republic of China
- School of Physics, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Yanan Tang
- College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044, People's Republic of China
| | - Weiguang Chen
- College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044, People's Republic of China
| | - Yi Li
- School of Physics, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Renyi Li
- School of Physics, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Yaqiang Ma
- School of Physics, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Xianqi Dai
- School of Physics, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| |
Collapse
|
49
|
Zuo Z, He F, Wang F, Li L, Li Y. Spontaneously Splitting Copper Nanowires into Quantum Dots on Graphdiyne for Suppressing Lithium Dendrites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004379. [PMID: 33150673 DOI: 10.1002/adma.202004379] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/04/2020] [Indexed: 06/11/2023]
Abstract
As an emerging carbon allotrope, the controllable growth of graphdiyne has been an important means to explore its unique scientific properties and applications. In this work, the effect of the crystal structure of copper (Cu) on the growth of graphdiyne is systematically studied. It is found that the crystal boundaries are the origin of the reaction activity. The polycrystalline Cu nanowire with many crystal boundaries is spontaneously split into Cu quantum dots (about 3 nm) by the grown graphdiyne. These Cu quantum dots are uniformly dispersed on the graphdiyne, and they block the long-range ordered growth of the graphdiyne. These Cu quantum dots in situ supported on graphdiyne demonstrate high efficiency in inhibiting the growth of lithium dendrites in lithium metal batteries. Based on this interesting finding, the Cu quantum dots anchored on the all-carbon graphdiyne can be prepared on a large scale, and unique applications of Cu quantum dots in electrochemical fields can be implemented.
Collapse
Affiliation(s)
- Zicheng Zuo
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feng He
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
50
|
Cui M, Hu T, Chen L, Li P, Gong Y, Wu Z, Wang S. Recent Progress in Graphdiyne for Electrocatalytic Reactions. ChemElectroChem 2020. [DOI: 10.1002/celc.202001313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Min Cui
- Qilu University of Technology (Shandong Academy of Sciences) Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering 3501 Daxue Road, Changqing District 250353 Jinan China
| | - Tingting Hu
- Qilu University of Technology (Shandong Academy of Sciences) Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering 3501 Daxue Road, Changqing District 250353 Jinan China
- Qingdao University of Science & Technology College of Chemical Engineering 53 Zhengzhou Road, Shibei District 260042 Qingdao China
| | - Lulu Chen
- China University of Petroleum (East China) School of Materials Science and Engineering 66 Changjiang West Road, Huangdao District 266580 Qingdao China
| | - Ping Li
- Ocean University of China School of Materials Science and Engineering 238 Songling Road, Laoshan District 266100 Qingdao China
| | - Yinghua Gong
- Qilu University of Technology (Shandong Academy of Sciences) Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering 3501 Daxue Road, Changqing District 250353 Jinan China
- Gubkin University Department of Physical and Colloid Chemistry 65 Leninsky prospekt, Building 1 119991 Moscow Russian Federation
| | - Zexing Wu
- Qingdao University of Science & Technology Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering 53 Zhengzhou Road, Shibei District 266042 Qingdao China
| | - Shuai Wang
- Qilu University of Technology (Shandong Academy of Sciences) Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering 3501 Daxue Road, Changqing District 250353 Jinan China
| |
Collapse
|