1
|
Das S, Buschermöhle J, Zant DW, Schmidtmann M, van der Vlugt JI. Selective Manipulation of Well-Defined Trinuclear Pd(II)-Complexes. Chemistry 2024; 30:e202400044. [PMID: 38334955 DOI: 10.1002/chem.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/10/2024]
Abstract
Several strategies are available to design well-defined multimetallic molecular entities bearing functional ligands. Substoichiometric exchange reactions in the coordination sphere of pre-existing multinuclear precursors are relatively underexploited in this context. Palladium(II) acetate is not a mononuclear compound in the solid state but rather exists as a trimer, i. e. [Pd3(OAc)6]. Although this material is ubiquitously used to synthesize mononuclear Pd species, it may principally also lend itself to selective exchange of some of the edge-sharing acetate units in its triangular motif, whilst keeping the overall multinuclear architecture intact. Strikingly, little is known about the controlled manipulation and substoichiometric substitution chemistry of this well-defined conglomerate. We herein conclusively demonstrate that, for the first time, the targeted exchange of two or four acetate units from the Pd3(acetate)6 platform is possible, thereby installing either one or two new tridentate ligands onto this trinuclear architecture. Follow-up exchange and substitution chemistry is available without disrupting the multimetallic nature of the core structure. New complexes 2-7 are all conclusively characterized using multinuclear NMR spectroscopy, UV-vis and IR spectroscopy as well as X-ray diffraction analysis.
Collapse
Affiliation(s)
- Siuli Das
- Bioinspired Coordination Chemistry and Homogeneous Catalysis Group, Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| | - Julia Buschermöhle
- Bioinspired Coordination Chemistry and Homogeneous Catalysis Group, Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| | - Dirk W Zant
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, the, Netherlands
| | - M Schmidtmann
- Bioinspired Coordination Chemistry and Homogeneous Catalysis Group, Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| | - Jarl Ivar van der Vlugt
- Bioinspired Coordination Chemistry and Homogeneous Catalysis Group, Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
| |
Collapse
|
2
|
Tian Q, Yin X, Sun R, Wu X, Li Y. The lower the better: Efficient carbonylative reactions under atmospheric pressure of carbon monoxide. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Oddy MJ, Kusza DA, Epton RG, Lynam JM, Unsworth WP, Petersen WF. Visible-Light-Mediated Energy Transfer Enables the Synthesis of β-Lactams via Intramolecular Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2022; 61:e202213086. [PMID: 36205440 PMCID: PMC9828223 DOI: 10.1002/anie.202213086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 11/07/2022]
Abstract
The synthesis of 2-azetidinones (β-lactams) from simple acrylamide starting materials by visible-light-mediated energy transfer catalysis is reported. The reaction features a C(sp3 )-H functionalization via a variation of the Norrish-Yang photocyclization involving a carbon-to-carbon 1,5-hydrogen atom transfer (supported by deuterium labelling and DFT calculations) and can be used for the construction of a diverse range of β-lactam products.
Collapse
Affiliation(s)
- Meghan J. Oddy
- Department of ChemistryUniversity of Cape TownRondebosch, Cape Town7700South Africa
| | - Daniel A. Kusza
- Department of ChemistryUniversity of Cape TownRondebosch, Cape Town7700South Africa
| | - Ryan G. Epton
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
| | | | | | - Wade F. Petersen
- Department of ChemistryUniversity of Cape TownRondebosch, Cape Town7700South Africa
| |
Collapse
|
4
|
Zhuang Z, Liu S, Cheng J, Yeung K, Qiao JX, Meanwell NA, Yu J. Ligand-Enabled β-C(sp 3 )-H Lactamization of Tosyl-Protected Aliphatic Amides Using a Practical Oxidant. Angew Chem Int Ed Engl 2022; 61:e202207354. [PMID: 35790471 PMCID: PMC9439703 DOI: 10.1002/anie.202207354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/25/2022]
Abstract
The development of C(sp3 )-H functionalization reactions that use common protecting groups and practical oxidants remains a significant challenge. Herein we report a monoprotected aminoethyl thioether (MPAThio) ligand-enabled β-C(sp3 )-H lactamization of tosyl-protected aliphatic amides using tert-butyl hydrogen peroxide (TBHP) as the sole oxidant. This protocol features exceedingly mild reaction conditions, reliable scalability, and the use of practical oxidants and protecting groups. Further derivatization of the β-lactam products enables the synthesis of a range of biologically important motifs including β-amino acids, γ-amino alcohols, and azetidines.
Collapse
Affiliation(s)
- Zhe Zhuang
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA 92037USA
| | - Shuang Liu
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA 92037USA
| | - Jin‐Tang Cheng
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA 92037USA
| | - Kap‐Sun Yeung
- Small Molecule Drug DiscoveryBristol Myers Squibb Research and Early Development100 Binney StreetCambridgeMA 02142USA
| | - Jennifer X. Qiao
- Small Molecule Drug DiscoveryBristol Myers Squibb Research and Early DevelopmentP.O. Box 4000PrincetonNJ 08543USA
| | - Nicholas A. Meanwell
- Small Molecule Drug DiscoveryBristol Myers Squibb Research and Early DevelopmentP.O. Box 4000PrincetonNJ 08543USA
| | - Jin‐Quan Yu
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA 92037USA
| |
Collapse
|
5
|
Kang C, Xu J, Li X, Wang S, Jiang G, Ji F. Oxidative C-H/N-H Carbonylation of Benzamide by Nickel Catalysis with CO as the Carbonyl Source. J Org Chem 2022; 87:10390-10397. [PMID: 35881524 DOI: 10.1021/acs.joc.2c00673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and direct carbonylation of aminoquinoline benzamides has been developed using abundant and inexpensive Ni(OAc)2·4H2O as the catalyst and carbon monoxide as a cost-efficient C1 building block. This process features good functional-group tolerance and can be conducted on gram scale. The directing group can be easily removed under mild conditions.
Collapse
Affiliation(s)
- Chen Kang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Jiawei Xu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Xuan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| |
Collapse
|
6
|
Zhuang Z, Liu S, Cheng JT, Yeung KS, Qiao JX, Meanwell NA, Yu JQ. Ligand‐Enabled β‐C(sp3)−H Lactamization of Tosyl‐Protected Aliphatic Amides Using a Practical Oxidant. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhe Zhuang
- The Scripps Research Institute Department of Chemistry 10550 N Torrey Pines Road 92037 La jolla UNITED STATES
| | - Shuang Liu
- The Scripps Research Institute Department of Chemistry 10550 N Torrey Pines Road 92037 La jolla UNITED STATES
| | - Jin-Tang Cheng
- The Scripps Research Institute Department of Chemistry 10550 N Torrey Pines Road 92037 La jolla UNITED STATES
| | - Kap-Sun Yeung
- Bristol Myers Squibb Research and Early Development UNITED STATES
| | - Jennifer X. Qiao
- Bristol-Myers Squibb Research Research and Early Development UNITED STATES
| | | | - Jin-Quan Yu
- The Scripps Research Institute chemistry 10550 N Torrey Pines Road 92037 La Jolla UNITED STATES
| |
Collapse
|
7
|
Affiliation(s)
- Yichang Liu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Yi-Hung Chen
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| |
Collapse
|
8
|
Ye H, Wu L, Zhang M, Jiang G, Dai H, Wu XX. Palladium-catalyzed Heck cyclization/carbonylation with formates: synthesis of azaindoline-3-acetates and furoazaindolines. Chem Commun (Camb) 2022; 58:6825-6828. [PMID: 35615964 DOI: 10.1039/d2cc02152h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report herein a palladium-catalyzed domino cyclization/carbonylation to access ester-functionalized azaindolines, applying formates as a convenient carbonyl source. All four azaindoline isomers were constructed, exhibiting good functional group compatibility. On this basis, modifying the starting tether on the aminopyridine led to furoazaindolines via an intramolecular reductive cyclization after the palladium-catalyzed process.
Collapse
Affiliation(s)
- Hao Ye
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Linhui Wu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Minrui Zhang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Guomin Jiang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Hong Dai
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Xin-Xing Wu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| |
Collapse
|
9
|
Stereoselective synthesis of new β-lactams from the main functional group of indomethacin. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02466-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Sun LZ, Yang X, Li NN, Li M, Ouyang Q, Xie JB. Rhodium-Catalyzed Ring Expansion of Azetidines via Domino Conjugate Addition/N-Directed α-C(sp 3)-H Activation. Org Lett 2022; 24:1883-1888. [PMID: 35266389 DOI: 10.1021/acs.orglett.2c00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile synthetic method for 4-aryl-4,5-dihydropyrrole-3-carboxylates is developed, with a rhodium-catalyzed ring expansion strategy from readily available 2-(azetidin-3-ylidene) acetates and aryl boronic acids. Mechanistic investigations suggest a novel domino "conjugate addition/N-directed α-C(sp3)-H activation" process. The asymmetric catalytic synthesis of the 4-aryl-4,5-dihydropyrrole-3-carboxylate is realized by using QuinoxP* (91-97% ee). The synthetic utility of this protocol is demonstrated by the synthesis of 3,4-disubstituted or 2,3,4-trisubstituted pyrrolidines with excellent diastereoselectivities.
Collapse
Affiliation(s)
- Ling-Zhi Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Xuan Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Nan-Nan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Meng Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Jian-Bo Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
11
|
Babu SA, Aggarwal Y, Patel P, Tomar R. Diastereoselective palladium-catalyzed functionalization of prochiral C(sp 3)-H bonds of aliphatic and alicyclic compounds. Chem Commun (Camb) 2022; 58:2612-2633. [PMID: 35113087 DOI: 10.1039/d1cc05649b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We highlight the reported developments of the palladium-catalyzed C-H activation and functionalization of the inactive/unreactive prochiral C(sp3)-H bonds of aliphatic and alicyclic compounds. There exist numerous classical methods for generating contiguous stereogenic centers in a compound with a high degree of stereocontrol. Along similar lines, the Pd(II)-catalyzed, directing group-aided functionalization of inactive prochiral/diastereotopic C(sp3)-H bonds have been exploited to accomplish the stereoselective construction of stereo-arrays in organic compounds. We present a concise discussion on how specific strategies consisting of Pd(II)-catalyzed, directing group-aided C(sp3)-H functionalization have been utilized to generate two or more stereogenic centers in aliphatic and alicyclic compounds.
Collapse
Affiliation(s)
- Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Yashika Aggarwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Pooja Patel
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Radha Tomar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
12
|
Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2022; 122:3180-3218. [PMID: 34797053 PMCID: PMC9714963 DOI: 10.1021/acs.chemrev.1c00614] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tammy D Pham
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Skylar Blank
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
13
|
Font M, Gulías M, Mascareñas JL. Transition‐Metal‐Catalyzed Annulations Involving the Activation of C(sp
3
)−H Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marc Font
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Moisés Gulías
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
14
|
Font M, Gulías M, Mascareñas JL. Transition-Metal-Catalyzed Annulations Involving the Activation of C(sp 3 )-H Bonds. Angew Chem Int Ed Engl 2022; 61:e202112848. [PMID: 34699657 PMCID: PMC9300013 DOI: 10.1002/anie.202112848] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 12/15/2022]
Abstract
The selective functionalization of C(sp3 )-H bonds using transition-metal catalysis is among the more attractive transformations of modern synthetic chemistry. In addition to its inherent atom economy, such reactions open unconventional retrosynthetic pathways that can streamline synthetic processes. However, the activation of intrinsically inert C(sp3 )-H bonds, and the selection among very similar C-H bonds, represent highly challenging goals. In recent years there has been notable progress tackling these issues, especially with regard to the development of intermolecular reactions entailing the formation of C-C and C-heteroatom bonds. Conversely, the assembly of cyclic products from simple acyclic precursors using metal-catalyzed C(sp3 )-H bond activations has been less explored. Only recently has the number of reports on such annulations started to grow. Herein we give an overview of some of the more relevant advances in this exciting topic.
Collapse
Grants
- SAF2016-76689-R Ministerio de Ciencia, Innovación y Universidades
- PID2019-108624RBI00 Ministerio de Ciencia, Innovación y Universidades
- PID2019-110385GB-I00 Ministerio de Ciencia, Innovación y Universidades
- IJCI-2017-31450 Ministerio de Ciencia, Innovación y Universidades
- 2021-CP054, ED431C-2021/25 Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- ED431G 2019/03 Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- 340055 FP7 Ideas: European Research Council
- European Regional Development Fund
- Ministerio de Ciencia, Innovación y Universidades
- Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- FP7 Ideas: European Research Council
- European Regional Development Fund
Collapse
Affiliation(s)
- Marc Font
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Moisés Gulías
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| |
Collapse
|
15
|
Qiu M, Fu X, Fu P, Huang J. Construction of aziridine, azetidine, indole and quinoline-like heterocycles via Pd-mediated C-H activation/annulation strategies. Org Biomol Chem 2022; 20:1339-1359. [PMID: 35044404 DOI: 10.1039/d1ob02146j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
N-Heterocycles can be found in natural products and drug molecules and are indispensable components in the area of organic synthesis, medicinal chemistry and materials science. The construction of these N-containing heterocycles by traditional methods usually requires the preparation of reactive intermediates. In the past decades, with the rapid growth of transition metal catalysed coupling reactions, syntheses of heterocycles from precursors with inert chemical bonds have become a challenge. More recently, in the field of transition metal associated C-H direct functionalization, efficient methods have been developed for the syntheses of N-heterocyclic compounds such as aziridines, azetidines, indoles and quinolines under the click type of reaction mode. In this review, representative synthetic methodologies developed in the recent 10 years for the preparation of this small class of N-heterocycles via the Pd-catalysed C-H activation and C-N bond formation pathway are discussed. We hope this article will provide new insights from the strategies highlighted into future molecular design, synthesis and applications in medical and materials sciences.
Collapse
Affiliation(s)
- Mengyu Qiu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China. .,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, China.,Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xuegang Fu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China. .,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, China.,Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Peng Fu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China. .,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, China.,Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jianhui Huang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China. .,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, China.,Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
16
|
Liu B, Romine AM, Rubel CZ, Engle KM, Shi BF. Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp 3)-H Bonds. Chem Rev 2021; 121:14957-15074. [PMID: 34714620 PMCID: PMC8968411 DOI: 10.1021/acs.chemrev.1c00519] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transition-metal-catalyzed, coordination-assisted C(sp3)-H functionalization has revolutionized synthetic planning over the past few decades as the use of these directing groups has allowed for increased access to many strategic positions in organic molecules. Nonetheless, several challenges remain preeminent, such as the requirement for high temperatures, the difficulty in removing or converting directing groups, and, although many metals provide some reactivity, the difficulty in employing metals outside of palladium. This review aims to give a comprehensive overview of coordination-assisted, transition-metal-catalyzed, direct functionalization of nonactivated C(sp3)-H bonds by covering the literature since 2004 in order to demonstrate the current state-of-the-art methods as well as the current limitations. For clarity, this review has been divided into nine sections by the transition metal catalyst with subdivisions by the type of bond formation. Synthetic applications and reaction mechanism are discussed where appropriate.
Collapse
Affiliation(s)
- Bin Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Andrew M. Romine
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Camille Z. Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States.,Corresponding Author- (K. M. E.); (B.-F. S.)
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China,Corresponding Author- (K. M. E.); (B.-F. S.)
| |
Collapse
|
17
|
(4 + 2) Cycloadditions via Pd C(sp3)–H activation. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Sahoo SR, Dutta S, Al-Thabaiti SA, Mokhtar M, Maiti D. Transition metal catalyzed C-H bond activation by exo-metallacycle intermediates. Chem Commun (Camb) 2021; 57:11885-11903. [PMID: 34693418 DOI: 10.1039/d1cc05042g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
exo-Metallacycles have become the key reaction intermediates in activating various remote C(sp2)-H and C(sp3)-H bonds in the past decade and aided in achieving unusual site-selectivity. Various novel exo-chelating auxiliaries have assisted metals to reach desired remote C-H bonds of different alcohol and amine-derived substrates. As a result, a wide range of organic transformations of C-H bonds like halogenation, acetoxylation, amidation, sulfonylation, olefination, acylation, arylation, etc. were accessible using the exo-metallacycle strategy. In this review, we have summarized the developments in C-H bond activation via four-, five-, six-, seven- and eight-membered exo-metallacycles and the key reaction intermediates, including the mechanistic aspects, are discussed concisely.
Collapse
Affiliation(s)
- Sumeet Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.
| | - Subhabrata Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.
| | - Shaeel A Al-Thabaiti
- Chemistry Department, Faculty of Science King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Mokhtar
- Chemistry Department, Faculty of Science King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.
| |
Collapse
|
19
|
Wasa M, Yesilcimen A. Enantioselective Cooperative Catalysis within Frustrated Lewis Pair Complexes. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masayuki Wasa
- Department of Chemistry, Merkert Chemistry Center, Boston College
| | | |
Collapse
|
20
|
Sahoo PK, Zhang Y, Das S. CO 2-Promoted Reactions: An Emerging Concept for the Synthesis of Fine Chemicals and Pharmaceuticals. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05681] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Prakash Kumar Sahoo
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Yu Zhang
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
21
|
Chang Y, Cao M, Chan JZ, Zhao C, Wang Y, Yang R, Wasa M. Enantioselective Synthesis of N-Alkylamines through β-Amino C-H Functionalization Promoted by Cooperative Actions of B(C 6F 5) 3 and a Chiral Lewis Acid Co-Catalyst. J Am Chem Soc 2021; 143:2441-2455. [PMID: 33512998 DOI: 10.1021/jacs.0c13200] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We disclose a catalytic method for β-C(sp3)-H functionalization of N-alkylamines for the synthesis of enantiomerically enriched β-substituted amines, entities prevalent in pharmaceutical compounds and used to generate different families of chiral catalysts. We demonstrate that a catalyst system comprising of seemingly competitive Lewis acids, B(C6F5)3, and a chiral Mg- or Sc-based complex, promotes the highly enantioselective union of N-alkylamines and α,β-unsaturated compounds. An array of δ-amino carbonyl compounds was synthesized under redox-neutral conditions by enantioselective reaction of a N-alkylamine-derived enamine and an electrophile activated by the chiral Lewis acid co-catalyst. The utility of the approach is highlighted by late-stage β-C-H functionalization of bioactive amines. Investigations in regard to the mechanistic nuances of the catalytic processes are described.
Collapse
Affiliation(s)
- Yejin Chang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Min Cao
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jessica Z Chan
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Cunyuan Zhao
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yuankai Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Rose Yang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Masayuki Wasa
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
22
|
Wang P, Yang D, Liu H. Recent Advances on the Synthesis of β-Lactams by Involving Carbon Monoxide. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Song KL, Wu B, Gan WE, Yang WC, Chen XB, Cao J, Xu LW. Palladium-catalyzed gaseous CO-free carbonylative C–C bond activation of cyclobutanones. Org Chem Front 2021. [DOI: 10.1039/d1qo00467k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A palladium-catalyzed carbonylative C–C bond activation reaction of cyclobutanones is reported, and it affords a variety of indanones bearing ester or amide groups using phenyl formate and benzene-1,3,5-triyl triformate as CO surrogates.
Collapse
Affiliation(s)
- Kun-Long Song
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- and Key Laboratory of Organosilicon Material Technology of Zhejiang Province
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Bin Wu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- and Key Laboratory of Organosilicon Material Technology of Zhejiang Province
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Wan-Er Gan
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- and Key Laboratory of Organosilicon Material Technology of Zhejiang Province
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Wan-Chun Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- and Key Laboratory of Organosilicon Material Technology of Zhejiang Province
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Xiao-Bing Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- and Key Laboratory of Organosilicon Material Technology of Zhejiang Province
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- and Key Laboratory of Organosilicon Material Technology of Zhejiang Province
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- and Key Laboratory of Organosilicon Material Technology of Zhejiang Province
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| |
Collapse
|
24
|
Ashley MA, Rovis T. Photoredox-Catalyzed Deaminative Alkylation via C–N Bond Activation of Primary Amines. J Am Chem Soc 2020; 142:18310-18316. [DOI: 10.1021/jacs.0c08595] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Melissa A. Ashley
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
25
|
Kapoor M, Singh A, Sharma K, Hua Hsu M. Site‐Selective C(
sp
3
)−H and C(
sp
2
)−H Functionalization of Amines Using a Directing‐Group‐Guided Strategy. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000689] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Mohit Kapoor
- Chitkara University Institute of Engineering and Technology Chitkara University Punjab India 140401
| | - Adhish Singh
- Chitkara University Institute of Engineering and Technology Chitkara University Punjab India 140401
| | - Kirti Sharma
- Chitkara University Institute of Engineering and Technology Chitkara University Punjab India 140401
| | - Ming Hua Hsu
- Department of Chemistry National Changhua University of Education Taiwan 500, R.O.C Changhua
| |
Collapse
|
26
|
Čarný T, Rocaboy R, Clemenceau A, Baudoin O. Synthesis of Amides and Esters by Palladium(0)‐Catalyzed Carbonylative C(sp
3
)−H Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tomáš Čarný
- Slovak University of Technology Department of Organic Chemistry Radlinského 9 81237 Bratislava Slovakia
| | - Ronan Rocaboy
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel Switzerland
| | - Antonin Clemenceau
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel Switzerland
| | - Olivier Baudoin
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
27
|
Čarný T, Rocaboy R, Clemenceau A, Baudoin O. Synthesis of Amides and Esters by Palladium(0)‐Catalyzed Carbonylative C(sp
3
)−H Activation. Angew Chem Int Ed Engl 2020; 59:18980-18984. [DOI: 10.1002/anie.202007922] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/08/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Tomáš Čarný
- Slovak University of Technology Department of Organic Chemistry Radlinského 9 81237 Bratislava Slovakia
| | - Ronan Rocaboy
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel Switzerland
| | - Antonin Clemenceau
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel Switzerland
| | - Olivier Baudoin
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
28
|
Affiliation(s)
- Zhiping Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jian-Xing Xu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| |
Collapse
|
29
|
Su B, Bunescu A, Qiu Y, Zuend SJ, Ernst M, Hartwig JF. Palladium-Catalyzed Oxidation of β-C(sp 3)-H Bonds of Primary Alkylamines through a Rare Four-Membered Palladacycle Intermediate. J Am Chem Soc 2020; 142:7912-7919. [PMID: 32216373 PMCID: PMC11620756 DOI: 10.1021/jacs.0c01629] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Site-selective functionalizations of C-H bonds are often achieved with a directing group that leads to five- or six-membered metallacyclic intermediates. Analogous reactions that occur through four-membered metallacycles are rare. We report a challenging palladium-catalyzed oxidation of primary C-H bonds β to nitrogen in an imine of an aliphatic amine, a process that occurs through a four-membered palladacyclc intermediate. The success of the reaction relies on the identification, by H/D exchange, of a simple directing group (salicylaldehyde) capable of inducing the formation of this small ring. To gain insight into the steps of the catalytic cycle of this unusual oxidation reaction, a series of mechanistic experiments and density functional theory (DFT) calculations were conducted. The experimental studies showed that cleavage of the C-H bond is rate-limiting and formation of the strained four-membered palladacycle is thermodynamically uphill. DFT calculations corroborated these conclusions and suggested that the presence of an intramolecular hydrogen bond between the oxygen of the directing group and hydroxyl group of the ligating acetic acid is crucial for stabilization of the palladacyclic intermediate.
Collapse
Affiliation(s)
- Bo Su
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ala Bunescu
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Yehao Qiu
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Stephan J Zuend
- BASF Corporation, 46820 Fremont Boulevard, Fremont, California 94538, United States
| | - Martin Ernst
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
30
|
Howarth A, Ermanis K, Goodman JM. DP4-AI automated NMR data analysis: straight from spectrometer to structure. Chem Sci 2020; 11:4351-4359. [PMID: 34122893 PMCID: PMC8152620 DOI: 10.1039/d0sc00442a] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/02/2020] [Indexed: 01/31/2023] Open
Abstract
A robust system for automatic processing and assignment of raw 13C and 1H NMR data DP4-AI has been developed and integrated into our computational organic molecule structure elucidation workflow. Starting from a molecular structure with undefined stereochemistry or other structural uncertainty, this system allows for completely automated structure elucidation. Methods for NMR peak picking using objective model selection and algorithms for matching the calculated 13C and 1H NMR shifts to peaks in noisy experimental NMR data were developed. DP4-AI achieved a 60-fold increase in processing speed, and near-elimination of the need for scientist time, when rigorously evaluated using a challenging test set of molecules. DP4-AI represents a leap forward in NMR structure elucidation and a step-change in the functionality of DP4. It enables high-throughput analyses of databases and large sets of molecules, which were previously impossible, and paves the way for the discovery of new structural information through machine learning. This new functionality has been coupled with an intuitive GUI and is available as open-source software at https://github.com/KristapsE/DP4-AI.
Collapse
Affiliation(s)
- Alexander Howarth
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Kristaps Ermanis
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jonathan M Goodman
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
31
|
Trowbridge A, Walton SM, Gaunt MJ. New Strategies for the Transition-Metal Catalyzed Synthesis of Aliphatic Amines. Chem Rev 2020; 120:2613-2692. [DOI: 10.1021/acs.chemrev.9b00462] [Citation(s) in RCA: 310] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Aaron Trowbridge
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Scarlett M. Walton
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Oncology
- IMED Biotech Unit, AstraZeneca, Darwin Building, Unit 310, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, United Kingdom
| | - Matthew J. Gaunt
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
32
|
Cendón B, Font M, Mascareñas JL, Gulı́as M. Palladium-Catalyzed Formal (4+2) Cycloaddition between Alkyl Amides and Dienes Initiated by the Activation of C(sp3)–H Bonds. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00664] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Borja Cendón
- Centro Singular de Investigación en Quı́mica Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Quı́mica Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Marc Font
- Centro Singular de Investigación en Quı́mica Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Quı́mica Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Quı́mica Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Quı́mica Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Moisés Gulı́as
- Centro Singular de Investigación en Quı́mica Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Quı́mica Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
33
|
Yuan Y, Guo X, Zhang X, Li B, Huang Q. Access to 5H-benzo[a]carbazol-6-ols and benzo[6,7]cyclohepta[1,2-b]indol-6-ols via rhodium-catalyzed C–H activation/carbenoid insertion/aldol-type cyclization. Org Chem Front 2020. [DOI: 10.1039/d0qo00820f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The rhodium-catalyzed mono-ortho C–H activation/carbenoid insertion/aldol-type cyclization of 3-aldehyde-2-phenyl-1H-indoles with diazo compounds has been developed.
Collapse
Affiliation(s)
- Yumeng Yuan
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Xiemin Guo
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Buhong Li
- MOE Key Laboratory of Optoelectronic Science and Technology for Medicine
- Fujian Key Laboratory for Photonics Technology
- Fujian Normal University
- Fuzhou
- P. R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| |
Collapse
|
34
|
Piec K, Kostera S, Jędrzkiewicz D, Ejfler J, John Ł. Mono-substituted amine-oligosilsesquioxanes as functional tools in Pd( ii) coordination chemistry: synthesis and properties. NEW J CHEM 2020. [DOI: 10.1039/d0nj01568g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unexpected reaction between mono-functionalized amino-POSS and palladium acetate (different from the well-known pathway between a classical amine and a palladium salt) leads to novel coordination entities.
Collapse
Affiliation(s)
- Kamila Piec
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Sylwia Kostera
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | | - Jolanta Ejfler
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Łukasz John
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| |
Collapse
|
35
|
Zhao Z, Kong X, Wang W, Hao J, Wang Y. Direct Use of Unprotected Aliphatic Amines to Generate N-Heterocycles via β-C–H Malonylation with Iodonium Ylide. Org Lett 2019; 22:230-233. [DOI: 10.1021/acs.orglett.9b04213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Zhiguo Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, Shandong, China
| | - Xiangjin Kong
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, Shandong, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, Shandong, China
| | - Jingcheng Hao
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, Shandong, China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, Shandong, China
| |
Collapse
|
36
|
Li MB, Posevins D, Geoffroy A, Zhu C, Bäckvall JE. Efficient Heterogeneous Palladium-Catalyzed Oxidative Cascade Reactions of Enallenols to Furan and Oxaborole Derivatives. Angew Chem Int Ed Engl 2019; 59:1992-1996. [PMID: 31729824 DOI: 10.1002/anie.201911462] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/06/2019] [Indexed: 12/14/2022]
Abstract
A heterogeneous palladium-catalyzed oxidative cyclization of enallenols has been developed for the construction of highly substituted furan and oxaborole derivatives. The heterogeneous catalyst (Pd-AmP-MCF) exhibits high activity, high site- and stereoselectivity, and efficient palladium recyclability in the transformations.
Collapse
Affiliation(s)
- Man-Bo Li
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Daniels Posevins
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Antoine Geoffroy
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Can Zhu
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Jan-E Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
37
|
Li M, Posevins D, Geoffroy A, Zhu C, Bäckvall J. Efficient Heterogeneous Palladium‐Catalyzed Oxidative Cascade Reactions of Enallenols to Furan and Oxaborole Derivatives. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Man‐Bo Li
- Department of Organic ChemistryArrhenius LaboratoryStockholm University 10691 Stockholm Sweden
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| | - Daniels Posevins
- Department of Organic ChemistryArrhenius LaboratoryStockholm University 10691 Stockholm Sweden
| | - Antoine Geoffroy
- Department of Organic ChemistryArrhenius LaboratoryStockholm University 10691 Stockholm Sweden
| | - Can Zhu
- Department of Organic ChemistryArrhenius LaboratoryStockholm University 10691 Stockholm Sweden
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius LaboratoryStockholm University 10691 Stockholm Sweden
| |
Collapse
|
38
|
Yuan F, Hou ZL, Pramanick PK, Yao B. Site-Selective Modification of α-Amino Acids and Oligopeptides via Native Amine-Directed γ-C(sp3)-H Arylation. Org Lett 2019; 21:9381-9385. [DOI: 10.1021/acs.orglett.9b03607] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Feipeng Yuan
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zhen-Lin Hou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Pranab K. Pramanick
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
39
|
Tong HR, Zheng W, Lv X, He G, Liu P, Chen G. Asymmetric Synthesis of β-Lactam via Palladium-Catalyzed Enantioselective Intramolecular C(sp3)–H Amidation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04768] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hua-Rong Tong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenrui Zheng
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xiaoyan Lv
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
40
|
Cai SL, Li Y, Yang C, Sheng J, Wang XS. NHC Ligand-Enabled, Palladium-Catalyzed Non-Directed C(sp3)–H Carbonylation To Access Indanone Cores. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03426] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Shou-Le Cai
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Chi Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
41
|
Romero EA, Chen G, Gembicky M, Jazzar R, Yu JQ, Bertrand G. Understanding the Activity and Enantioselectivity of Acetyl-Protected Aminoethyl Quinoline Ligands in Palladium-Catalyzed β-C(sp 3)-H Bond Arylation Reactions. J Am Chem Soc 2019; 141:16726-16733. [PMID: 31565934 DOI: 10.1021/jacs.9b06746] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chiral acetyl-protected aminoalkyl quinoline (APAQ) ligands were recently discovered to afford highly active and enantioselective palladium catalysts for the arylation of methylene C(sp3)-H bonds, and herein, we investigate the origins of these heightened properties. Unprecedented amide-bridged APAQ-Pd dimers were predicted by density functional theory (DFT) calculations and were confirmed by single-crystal X-ray diffraction studies. Comparison of structural features between APAQ-Pd complexes and an acetyl-protected aminoethylpyridine APAPy-Pd complex strongly suggests that the high activity of the former originates from the presence of the quinoline ring, which slows the formation of the off-cycle palladium dimer. Furthermore, steric topographic maps for a representative subset of monomeric, monoligated palladium complexes allowed us to draw a unique parallel between the three-dimensional structures of these catalysts and their reported asymmetric induction in β-C(sp3)-H bond arylation reactions. Finally, cooperative noncovalent interactions present between the APAQ ligand and the substrate were identified as a crucial factor for imparting selectivity between chemically equivalent methylenic C(sp3)-H bonds prior to concerted metalation deprotonation activation.
Collapse
Affiliation(s)
- Erik A Romero
- UCSD-CNRS Joint Research Laboratory (UMI 3555), Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093-0358 , United States
| | - Gang Chen
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Milan Gembicky
- UCSD-CNRS Joint Research Laboratory (UMI 3555), Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093-0358 , United States
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Laboratory (UMI 3555), Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093-0358 , United States
| | - Jin-Quan Yu
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Guy Bertrand
- UCSD-CNRS Joint Research Laboratory (UMI 3555), Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093-0358 , United States
| |
Collapse
|
42
|
Ying J, Gao Q, Wu XF. Site-Selective Carbonylative Synthesis of Structurally Diverse Lactams from Heterocyclic Amines with TFBen as the CO Source. J Org Chem 2019; 84:14297-14305. [DOI: 10.1021/acs.joc.9b02114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Ying
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Qian Gao
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, Rostock 18059, Germany
| |
Collapse
|
43
|
Fu LY, Ying J, Wu XF. Cobalt-Catalyzed Carbonylative Synthesis of Phthalimides from N-(Pyridin-2-ylmethyl)benzamides with TFBen as the CO Source. J Org Chem 2019; 84:12648-12655. [DOI: 10.1021/acs.joc.9b01890] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lu-Yang Fu
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Jun Ying
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
44
|
Le KKA, Nguyen H, Daugulis O. 1-Aminopyridinium Ylides as Monodentate Directing Groups for sp 3 C-H Bond Functionalization. J Am Chem Soc 2019; 141:14728-14735. [PMID: 31529954 DOI: 10.1021/jacs.9b06643] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1-Aminopyridinium ylides are efficient directing groups for palladium-catalyzed β-arylation and alkylation of sp3 C-H bonds in carboxylic acid derivatives. The efficiency of these directing groups depends on the substitution at the pyridine moiety. The unsubstituted pyridine-derived ylides allow functionalization of primary C-H bonds, while methylene groups are unreactive in the absence of external ligands. 4-Pyrrolidinopyridine-containing ylides are capable of C-H functionalization in acyclic methylene groups in the absence of external ligands, thus rivaling the efficiency of the aminoquinoline directing group. Preliminary mechanistic studies have been performed. A cyclopalladated intermediate has been isolated and characterized by X-ray crystallography, and its reactivity was studied.
Collapse
Affiliation(s)
- Ky Khac Anh Le
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Hanh Nguyen
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Olafs Daugulis
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| |
Collapse
|
45
|
Nasr Allah T, Savourey S, Berthet JC, Nicolas E, Cantat T. Carbonylation of C-N Bonds in Tertiary Amines Catalyzed by Low-Valent Iron Catalysts. Angew Chem Int Ed Engl 2019; 58:10884-10887. [PMID: 31150564 DOI: 10.1002/anie.201903740] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 12/30/2022]
Abstract
The first iron catalysts able to promote the formal insertion of CO into the C-N bond of amines are reported. Using low-valent iron complexes, including K2 [Fe(CO)4 ], amides are formed from aromatic and aliphatic amines, in the presence of an iodoalkane promoter. Inorganic Lewis acids, such as AlCl3 and Nd(OTf)3 , have a positive influence on the catalytic activity of the iron salts, enabling the carbonylation at a low pressure of CO (6 to 8 bars).
Collapse
Affiliation(s)
- Tawfiq Nasr Allah
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette cedex, France
| | - Solène Savourey
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette cedex, France
| | - Jean-Claude Berthet
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette cedex, France
| | - Emmanuel Nicolas
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette cedex, France
| | - Thibault Cantat
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette cedex, France
| |
Collapse
|
46
|
Nasr Allah T, Savourey S, Berthet J, Nicolas E, Cantat T. Carbonylation of C−N Bonds in Tertiary Amines Catalyzed by Low‐Valent Iron Catalysts. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tawfiq Nasr Allah
- NIMBECEA, CNRS, Université Paris-SaclayCEA Saclay 91191 Gif-sur-Yvette cedex France
| | - Solène Savourey
- NIMBECEA, CNRS, Université Paris-SaclayCEA Saclay 91191 Gif-sur-Yvette cedex France
| | - Jean‐Claude Berthet
- NIMBECEA, CNRS, Université Paris-SaclayCEA Saclay 91191 Gif-sur-Yvette cedex France
| | - Emmanuel Nicolas
- NIMBECEA, CNRS, Université Paris-SaclayCEA Saclay 91191 Gif-sur-Yvette cedex France
| | - Thibault Cantat
- NIMBECEA, CNRS, Université Paris-SaclayCEA Saclay 91191 Gif-sur-Yvette cedex France
| |
Collapse
|
47
|
Ying J, Fu LY, Zhong G, Wu XF. Cobalt-Catalyzed Direct Carbonylative Synthesis of Free ( NH)-Benzo[ cd]indol-2(1 H)-ones from Naphthylamides. Org Lett 2019; 21:5694-5698. [PMID: 31246481 DOI: 10.1021/acs.orglett.9b02037] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A cobalt-catalyzed C-H carbonylation of naphthylamides for the synthesis of benzo[cd]indol-2(1H)-one scaffolds has been developed. The reaction employs a traceless directing group and uses benzene-1,3,5-triyl triormate as the CO source, affording various free (NH)-benzo[cd]indol-2(1H)-ones in moderate to high yields (up to 88%). Using this protocol, the total synthesis of BET bromodomain inhibitors A and B was accomplished as well.
Collapse
Affiliation(s)
- Jun Ying
- Department of Chemistry , Zhejiang Sci-Tech University , Xiasha Campus, Hangzhou 310018 , People's Republic of China
| | - Lu-Yang Fu
- Department of Chemistry , Zhejiang Sci-Tech University , Xiasha Campus, Hangzhou 310018 , People's Republic of China
| | - Guoqiang Zhong
- Department of Chemistry , Zhejiang Sci-Tech University , Xiasha Campus, Hangzhou 310018 , People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry , Zhejiang Sci-Tech University , Xiasha Campus, Hangzhou 310018 , People's Republic of China.,Leibniz-Institut für Katalyse e. V. an der Universität Rostock , Albert-Einstein-Straβe 29a , 18059 Rostock , Germany
| |
Collapse
|
48
|
Whitehurst WG, Blackwell JH, Hermann GN, Gaunt MJ. Carboxylate‐Assisted Oxidative Addition to Aminoalkyl Pd
II
Complexes: C(sp
3
)−H Arylation of Alkylamines by Distinct Pd
II
/Pd
IV
Pathway. Angew Chem Int Ed Engl 2019; 58:9054-9059. [DOI: 10.1002/anie.201902838] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Indexed: 11/05/2022]
Affiliation(s)
| | - J. Henry Blackwell
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Gary N. Hermann
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Matthew J. Gaunt
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
49
|
Rödl C, Wolf R. Flexidentate Coordination Behavior and Chemical Non‐Innocence of a Bis(1,3‐Diphosphacyclobutadiene) Sandwich Anion. Chemistry 2019; 25:8332-8343. [DOI: 10.1002/chem.201901061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Christian Rödl
- University of RegensburgInstitute of Inorganic Chemistry 93040 Regensburg Germany
| | - Robert Wolf
- University of RegensburgInstitute of Inorganic Chemistry 93040 Regensburg Germany
| |
Collapse
|
50
|
Whitehurst WG, Blackwell JH, Hermann GN, Gaunt MJ. Carboxylate‐Assisted Oxidative Addition to Aminoalkyl Pd
II
Complexes: C(sp
3
)−H Arylation of Alkylamines by Distinct Pd
II
/Pd
IV
Pathway. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - J. Henry Blackwell
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Gary N. Hermann
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Matthew J. Gaunt
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|