1
|
Li S, Cui CR, Huang N, Wang BQ, Feng C, Shi Y, Xiang SK. Palladium-Catalyzed Annulation Reaction of Bay-Diiodinated Arenes with o-Chloroaromatic Carboxylic Acids to Access Polycyclic Aromatic Compounds. J Org Chem 2024; 89:15665-15677. [PMID: 39396198 DOI: 10.1021/acs.joc.4c01785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
A palladium-catalyzed annulation reaction of bay-diiodinated arenes with o-chloroaromatic carboxylic acids was established. This approach enables the synthesis of a variety of polycyclic aromatic compounds, especially polyalkoxy-substituted polycyclic aromatic compounds, frequently found in discotic liquid-crystalline materials. The investigations indicate that the product 2,3,8,9,12,13-hexakis(hexyloxy)-5-azadibenzo[fg,op]tetracene demonstrates favorable room-temperature liquid-crystalline properties.
Collapse
Affiliation(s)
- Song Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Cheng-Rong Cui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Na Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Chun Feng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Yingbo Shi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| | - Shi-Kai Xiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, P. R. China
| |
Collapse
|
2
|
Morinaka Y, Ito H, Fujimoto KJ, Yanai T, Ono Y, Tanaka T, Itami K. Nonplanar Nanographene: A Hydrocarbon Hole-Transporting Material That Competes with Triarylamines. Angew Chem Int Ed Engl 2024; 63:e202409619. [PMID: 39137131 DOI: 10.1002/anie.202409619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Hole-transporting materials (HTMs) are essential for optoelectronic devices, such as organic light-emitting diodes (OLEDs), dye-sensitized solar cells, and perovskite solar cells. Triarylamines have been employed as HTMs since they were introduced in 1987. However, heteroatoms or side chains embedded in the core skeleton of triarylamines can cause thermal and chemical stability problems. Herein, we report that hexabenzo[a,c,fg,j,l,op]tetracene (HBT), a small nonplanar nanographene, functions as a hydrocarbon HTM with hole transport properties that match those of triarylamine-based HTMs. X-ray structural analysis and theoretical calculations revealed effective multidirectional orbital interactions and transfer integrals for HBT. In-depth experimental and theoretical analyses revealed that the nonplanarity-inducing annulative π-extension can achieve not only a stable amorphous state in bulk films, but also a higher increase in the highest occupied molecular orbital level than conventional linear or cyclic π-extension. Furthermore, an in-house manufactured HBT-based OLED exhibited excellent performance, featuring superior curves for current density-voltage, external quantum efficiency-luminance, and lifetime compared to those of representative triarylamine-based OLEDs. A notable improvement in device lifetime was observed for the HBT-based OLED, highlighting the advantages of the hydrocarbon HTM. This study demonstrates the immense potential of small nonplanar nanographenes for optoelectronic device applications.
Collapse
Affiliation(s)
- Yuta Morinaka
- Tokyo Research Center, Organic Materials Research Laboratory, Tosoh Corporation, Hayakawa, Ayase, Kanagawa, 252-1123, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan
| | - Kazuhiro J Fujimoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8602, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8602, Japan
| | - Yohei Ono
- Tokyo Research Center, Organic Materials Research Laboratory, Tosoh Corporation, Hayakawa, Ayase, Kanagawa, 252-1123, Japan
| | - Tsuyoshi Tanaka
- Tosoh Corporation Tokyo Midtown Yaesu, Yaesu Central Tower, 28th & 29th Floors, 2-2-1, Yaesu, Chuo-ku, Tokyo, 104-8467, Japan
| | - Kenichiro Itami
- JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8602, Japan
- Molecule Creation Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
3
|
Huang L, Wang Q, Fu P, Sun Y, Xu J, Browne DL, Huang J. Extended Quinolizinium-Fused Corannulene Derivatives: Synthesis and Properties. JACS AU 2024; 4:1623-1631. [PMID: 38665663 PMCID: PMC11040561 DOI: 10.1021/jacsau.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 04/28/2024]
Abstract
Reported here is the design and synthesis of a novel class of extended quinolizinium-fused corannulene derivatives with curved geometry. These intriguing molecules were synthesized through a rationally designed synthetic strategy, utilizing double Skraup-Doebner-Von Miller quinoline synthesis and a rhodium-catalyzed C-H activation/annulation (CHAA) as the key steps. Single-crystal X-ray analysis revealed a bowl depth of 1.28-1.50 Å and a unique "windmill-like" shape packing of 12a(2PF6-) due to the curvature and incorporation of two aminium ions. All of the newly reported curved salts exhibit green to orange fluorescence with enhanced quantum yields (Φf = 9-13%) and improved dispersibility compared to the pristine corannulene (Φf = 1%). The reduced optical energy gap and lower energy frontier orbital found by doping extended corannulene systems with nitrogen cations was investigated by UV-vis, fluorescence, and theoretical calculations. Electrochemical measurements reveal a greater electron-accepting behavior compared with that of their pyridine analogues. The successful synthesis, isolation, and evaluation of these curved salts provide a fresh perspective and opportunity for the design of cationic nitrogen-doped curved aromatic hydrocarbon-based materials.
Collapse
Affiliation(s)
- Lin Huang
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin
Key Laboratory for Modern Drug Delivery & High-Efficiency, School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Qing Wang
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- National
Institute of Biological Sciences, Beijing, No. 7 Science Park Road, Zhongguancun Life Science
Park, Beijing 102206, China
| | - Peng Fu
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin
Key Laboratory for Modern Drug Delivery & High-Efficiency, School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuzhu Sun
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin
Key Laboratory for Modern Drug Delivery & High-Efficiency, School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jun Xu
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Duncan L. Browne
- Department
of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London (UCL), 29-39 Brunswick Square, Bloomsbury, London WC1N
1AX, U.K.
| | - Jianhui Huang
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin
Key Laboratory for Modern Drug Delivery & High-Efficiency, School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
4
|
Bhattacharyya A, Sk MR, Sen S, Kundu S, Maji MS. Annulative π-Extension by Cp*Co(III)-Catalyzed Ketone-Directed peri-Annulation: An Approach to Access Fused Arenes. Org Lett 2023. [PMID: 38032281 DOI: 10.1021/acs.orglett.3c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
A masked-bay-region selective first-row transition-metal Cp*Co(III)-catalyzed annulative π-extension of arene-derived ketones is achieved to afford K-region-functionalized benzo[e]pyrenes, benzotetraphenes, and pyrenes. Comprehensive density functional theory studies buttress the mechanistic pathway comprising key steps like peri-C-H activation, alkyne 1,2-migratory insertion, and nucleophilic attack toward ketone, this attack being the rate-determining step. In addition, π-conjugated 1,1'-bipyrenes, potential photocatalyst pyrene-quinones, and putative n-type semiconductor cyano group-containing dibenzo[de,qr]tetracenes are also accessed.
Collapse
Affiliation(s)
- Arya Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Md Raja Sk
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Supreeta Sen
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Fujishiro K, Morinaka Y, Ono Y, Tanaka T, Scott LT, Ito H, Itami K. Lithium-Mediated Mechanochemical Cyclodehydrogenation. J Am Chem Soc 2023; 145:8163-8175. [PMID: 37011146 DOI: 10.1021/jacs.3c01185] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Cyclodehydrogenation is an essential synthetic method for the preparation of polycyclic aromatic hydrocarbons, polycyclic heteroaromatic compounds, and nanographenes. Among the many examples, anionic cyclodehydrogenation using potassium(0) has attracted synthetic chemists because of its irreplaceable reactivity and utility in obtaining rylene structures from binaphthyl derivatives. However, existing methods are difficult to use in terms of practicality, pyrophoricity, and lack of scalability and applicability. Herein, we report the development of a lithium(0)-mediated mechanochemical anionic cyclodehydrogenation reaction for the first time. This reaction could be easily performed using a conventional and easy-to-handle lithium(0) wire at room temperature, even under air, and the reaction of 1,1'-binaphthyl is complete within 30 min to afford perylene in 94% yield. Using this novel and user-friendly protocol, we investigated substrate scope, reaction mechanism, and gram-scale synthesis. As a result, remarkable applicability and practicality over previous methods, as well as limitations, were comprehensively studied by computational studies and nuclear magnetic resonance analysis. Furthermore, we demonstrated two-, three-, and five-fold cyclodehydrogenations for the synthesis of novel nanographenes. In particular, quinterrylene ([5]rylene or pentarylene), the longest nonsubstituted molecular rylene, was synthesized for the first time.
Collapse
Affiliation(s)
- Kanna Fujishiro
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yuta Morinaka
- Tokyo Research Center, Organic Materials Research Laboratory, Tosoh Corporation, 2743-1 Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Yohei Ono
- Tokyo Research Center, Organic Materials Research Laboratory, Tosoh Corporation, 2743-1 Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Tsuyoshi Tanaka
- Tosoh Corporation, 3-8-2 Shiba, Minato-ku, Tokyo 105-8623, Japan
| | - Lawrence T Scott
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
6
|
Wang W, Ma XH, Liu M, Tang S, Ding X, Zhao Y, Tan YZ, Kertesz M, Wang X. A Triply Negatively Charged Nanographene Bilayer with Spin Frustration. Angew Chem Int Ed Engl 2023; 62:e202217788. [PMID: 36577698 DOI: 10.1002/anie.202217788] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
We report on the largest open-shell graphenic bilayer and also the first example of triply negatively charged radical π-dimer. Upon three-electron reduction, bilayer nanographene fragment molecule (C96 H24 Ar6 )2 (Ar=2,6-dimethylphenyl) (12 ) was transformed to a triply negatively charged species 12 3.- , which has been characterized by single-crystal X-ray diffraction, electron paramagnetic resonance (EPR) spectroscopy and magnetic properties on a superconducting quantum interference device (SQUID). 12 3.- features a 96-center-3-electron (96c/3e) pancake bond with a doublet ground state, which can be thermally excited to a quartet state. It consists of 34 π-fused rings with 96 conjugated sp2 carbon atoms. Spin frustration is observed with the frustration parameter f>31.8 at low temperatures in 12 3.- , which indicates graphene upon reduction doping may behave as a quantum spin liquid.
Collapse
Affiliation(s)
- Wenqing Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, 241002, Wuhu, Anhui, China
| | - Xiao-Hui Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Min Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Xuguang Ding
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, 241002, Wuhu, Anhui, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Yuan-Zhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Miklos Kertesz
- Department of Chemistry and Institute of Soft Matter, Georgetown University, 20057-1227, Washington, DC, USA
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
7
|
Kawahara KP, Ito H, Itami K. Rapid access to polycyclic thiopyrylium compounds from unfunctionalized aromatics by thia-APEX reaction. Chem Commun (Camb) 2023; 59:1157-1160. [PMID: 36594536 DOI: 10.1039/d2cc06706d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We developed a sulfur-embedding annulative π-extension (thia-APEX) reaction that could construct a sulfur-embedding cationic hexagonal aromatic ring, thiopyrylium, onto unfunctionalized aromatics in one step. The key of thia-APEX is the use of S-imidated ortho-arenoyl arenethiols, and a variety of π-extended thiopyryliums can easily be synthesized. The synthesized thiopyryliums showed diverse absorption and emission properties over the visible light to NIR region, depending on minor structural differences.
Collapse
Affiliation(s)
- Kou P Kawahara
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| | - Hideto Ito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan. .,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
8
|
Matsuoka W, Kawahara KP, Ito H, Sarlah D, Itami K. π-Extended Rubrenes via Dearomative Annulative π-Extension Reaction. J Am Chem Soc 2023; 145:658-666. [PMID: 36563098 PMCID: PMC9837837 DOI: 10.1021/jacs.2c11338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Among a large variety of organic semiconducting materials, rubrene (5,6,11,12-tetraphenyltetracene) represents one of the most prominent molecular entities mainly because of its unusually high carrier mobility. Toward finding superior rubrene-based organic semiconductors, several synthetic strategies for related molecules have been established. However, despite its outstanding properties and significant attention in the field of materials science, late-stage functionalizations of rubrene remains undeveloped, thereby limiting the accessible chemical space of rubrene-based materials. Herein, we report on a late-stage π-extension of rubrene by dearomative annulative π-extension (DAPEX), leading to the generation of rubrene derivatives having an extended acene core. The Diels-Alder reaction of rubrene with 4-methyl-1,2,4-triazoline-3,5-dione occurred to give 1:1 and 1:2 cycloadducts which further underwent iron-catalyzed annulative diarylation. The thus-formed 1:1 and 1:2 adducts were subjected to radical-mediated oxidation and thermal cycloreversion to furnish one-side and two-side π-extended rubrenes, respectively. These π-extended rubrenes displayed a marked red shift in absorption and emission spectra, clearly showing that the acene π-system of rubrene was extended not only structurally but also electronically. The X-ray crystallographic analysis uncovered interesting packing modes of these π-extended rubrenes. Particularly, two-side π-extended rubrene adopts a brick-wall packing structure with largely overlapping two-dimensional face-to-face π-π interactions. Finally, organic field-effect transistor devices using two-side π-extended rubrene were fabricated, and their carrier mobilities were measured. The observed maximum hole mobility of 1.49 × 10-3 cm2V-1 s-1, which is a comparable value to that of the thin-film transistor using rubrene, clearly shows the potential utility of two-side π-extended rubrene in organic electronics.
Collapse
Affiliation(s)
- Wataru Matsuoka
- Department
of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kou P. Kawahara
- Department
of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hideto Ito
- Department
of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - David Sarlah
- Department
of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Kenichiro Itami
- Department
of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
9
|
Zhu Q, Kan C, Cao Y, Tang Z, Xu K, Hang P, Li B, Yao Y, Lei M, Yu X. Tandem Electro-Oxidative C-C and C-N Coupling and Aromatization for the Construction of Pyrazine-Fused Bis -aza[7]helicene. Org Lett 2022; 24:7053-7057. [PMID: 35984449 DOI: 10.1021/acs.orglett.2c02370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Repeated tandem electro-oxidative C-C and C-N coupling and aromatization were employed for the efficient construction of aza[7]helicene (BA7) as a key intermediate and the targeted pyrazine-fused bis-aza[7]helicene (PBBA7) derivatives in 90.0-93.2% isolated yields under a controlled potential. The electrosynthetic protocol showed high selectivity and enabled rapid access to functionalized organic conjugated materials from readily available polycyclic aromatic amines. A synthetic mechanistic study along with an investigation of the photoelectrical properties and application of PBBA7-C16 as a potential hole-transporting material for perovskite solar cells were performed.
Collapse
Affiliation(s)
- Qiwei Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chenxia Kan
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yucai Cao
- State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins, Shanghai Research Institute of Chemical Industry Company Ltd., Shanghai 200062, China
| | - Zefeng Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Kang Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pengjie Hang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Biao Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuxin Yao
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ming Lei
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xuegong Yu
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
10
|
New paradigms in molecular nanocarbon science. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Yamaguchi E, Abe A, Itoh A. Synthesis of Dibenzo[g,p]Chrysenes via Organophotocatalytic Sequential Single‐Electron Oxidation. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eiji Yamaguchi
- Gifu Pharmaceutical University 1-25-4, Daigaku-Nishi Gifu Gifu 501–1196 Japan
| | - Ayaka Abe
- Gifu Pharmaceutical University 1-25-4, Daigaku-Nishi Gifu Gifu 501–1196 Japan
| | - Akichika Itoh
- Gifu Pharmaceutical University 1-25-4, Daigaku-Nishi Gifu Gifu 501–1196 Japan
| |
Collapse
|
12
|
Chan P, Baratay C, Li W, Mathiew M, Yu L, Kyne S, Rao W. Gold‐ and Brønsted Acid‐Catalysed Deacyloxylative Cycloaromatisation of 1,6‐Diyne Esters to 11H‐Benzo[a]fluorenes and 13H‐Indeno[1,2‐l]phenanthrenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Wenhai Li
- China Pharmaceutical University CHINA
| | | | - Lei Yu
- Monash University AUSTRALIA
| | | | | |
Collapse
|
13
|
Wang K, Zhang J, Hu R, Liu C, Bartholome TA, Ge H, Li B. Transition-Metal-Catalyzed C–C Bond-Forming Reactions via C–H Activation for the Development of Fluorescent Materials with Practical Value. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kangmin Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Jingxian Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Ruike Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Chong Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Tyler A. Bartholome
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
14
|
Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2022; 122:3180-3218. [PMID: 34797053 PMCID: PMC9714963 DOI: 10.1021/acs.chemrev.1c00614] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tammy D Pham
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Skylar Blank
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
15
|
Wei J, Liu M, Ye X, Zhang S, Sun E, Shan C, Wojtas L, Shi X. Facile synthesis of diverse hetero polyaromatic hydrocarbons (PAHs) via the styryl Diels–Alder reaction of conjugated diynes. Org Chem Front 2022. [DOI: 10.1039/d2qo00644h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intramolecular styryl Diels–Alder reaction with conjugated diynes under thermally stable triazole-gold (TA–Au) catalytic conditions and the sequential transformation through alkyne activation to access various PAHs with high efficiency was reported for the first time.
Collapse
Affiliation(s)
- Jingwen Wei
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, USA
| | - Mengjia Liu
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, USA
| | - Xiaohan Ye
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, USA
| | - Shuyao Zhang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, USA
| | - Elaine Sun
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, USA
| | - Chuan Shan
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, USA
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, USA
| |
Collapse
|
16
|
Krzeszewski M, Ito H, Itami K. Infinitene: A Helically Twisted Figure-Eight [12]Circulene Topoisomer. J Am Chem Soc 2021; 144:862-871. [PMID: 34910487 DOI: 10.1021/jacs.1c10807] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New forms of molecular nanocarbon particularly looped polyarenes adopting various topologies contribute to the fundamental science and practical applications. Here we report the synthesis of an infinity-shaped polyarene, infinitene (1) (cyclo[c.c.c.c.c.c.e.e.e.e.e.e]dodecakisbenzene), comprising consecutively fused 12-benzene rings forming an enclosed loop with a strain energy of 60.2 kcal·mol-1. Infinitene (1) represents a topoisomer of still-hypothetical [12]circulene, and its scaffold can be formally visualized as the outcome of the "stitching" of two homochiral [6]helicene subunits by both their ends. The synthetic strategy encompasses transformation of a rationally designed dithiacyclophane to cyclophadiene through the Stevens rearrangement and pyrolysis of the corresponding S,S'-bis(oxide) followed by the photocyclization. The structure of 1 is a unique hybrid of helicene and circulene with a molecular formula of C48H24, which can be regarded as an isomer for kekulene, [6,6]carbon nanobelt ([6,6]CNB), and [12]cyclacene. Infinitene (1) is a bench-stable yellow solid with green fluorescence and soluble to common organic solvents. Its figure-eight molecular structure was unambiguously confirmed by X-ray crystallography. The scaffold of 1 is significantly compressed as manifested by a remarkably shortened distance (3.152-3.192 Å) between the centroids of two π-π stacked central benzene rings and the closest C···C distance of 2.920 Å. Fundamental photophysical properties of 1 were thoroughly elucidated by UV-vis absorption and fluorescence spectroscopic studies and density functional theory calculations. Its configurational stability enabled separation of the corresponding enantiomers (P,P) and (M,M) by a chiral HPLC. Circular dichroism (CD) and circularly polarized luminescence (CPL) measurements revealed that 1 has moderate |gCD| and |gCPL| values.
Collapse
Affiliation(s)
- Maciej Krzeszewski
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
17
|
John SE, Tokala R, Kaki VR, Shankaraiah N. Expedition to Phenanthrene Nucleus: A Two‐decade Research on Bench. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stephy Elza John
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Ramya Tokala
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Venkata Rao Kaki
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
18
|
Diversity-oriented synthesis of nanographenes enabled by dearomative annulative π-extension. Nat Commun 2021; 12:3940. [PMID: 34168148 PMCID: PMC8225822 DOI: 10.1038/s41467-021-24261-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/08/2021] [Indexed: 11/30/2022] Open
Abstract
Nanographenes and polycyclic aromatic hydrocarbons (PAHs) are among the most important classes of compounds, with potential applications in nearly all areas of science and technology. While the theoretically possible number of nanographene structures is extraordinary, most of these molecules remain synthetically out of reach due to a lack of programmable and diversity-oriented synthetic methods, and their potentially huge structure-property diversity has not been fully exploited. Herein we report a diversity-oriented, growth-from-template synthesis of nanographenes enabled by iterative annulative π-extension (APEX) reactions from small PAH starting materials. The developed dearomative annulative π-extension (DAPEX) reaction enables π-elongation at the less-reactive M-regions of PAHs, and is successfully combined with complementary APEX reactions that occur at K- and bay-regions to access a variety of previously untapped nanographenes. Nanographenes and polycyclic aromatic hydrocarbons (PAHs) are important classes of compounds with numerous applications, but challenging to access due to a lack of programmable and diversity-oriented methods. Here, the authors report a diversity-oriented, growth-from-template synthesis of nanographenes enabled by iterative annulative π-extension reactions from small PAH starting materials.
Collapse
|
19
|
Taniguchi T, Nishii Y, Mori T, Nakayama KI, Miura M. Synthesis, Structure, and Chiroptical Properties of Indolo- and Pyridopyrrolo-Carbazole-Based C 2 -Symmetric Azahelicenes. Chemistry 2021; 27:7356-7361. [PMID: 33778999 DOI: 10.1002/chem.202100327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 12/14/2022]
Abstract
Treatment of 11,12-bis(1,1'-biphenyl-3-yl or 6-phenylpyridin-2-yl)-substituted 11,12-dihydro-indolo[2,3-a]carbazole with an oxidizing system of Pd(II)/Ag(I) induced effective double dehydrogenative cyclization to afford the corresponding π-extended azahelicenes. The optical resolutions were readily achieved by a preparative chiral HPLC. It was found that the pyridopyrrolo-carbazole-based azahelicene that contains four nitrogen atoms exhibits ca. 6 times larger dissymmetry factors both in circularly dichroism (CD) and circularly polarized luminescence (CPL), |gCD | and |gCPL | values being 1.1×10-2 and 4.4×10-3 , respectively, as compared with the parent indolocarbazole-based azahelicene. Theoretical calculations at the RI-CC2 level were employed to rationalize the observed enhanced chiroptical responses. The (chir)optical properties of the former helicene was further tuned by a protonation leading to remarkable red-shift with a considerable enhancement of the |gCPL | value.
Collapse
Affiliation(s)
- Taisei Taniguchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tadashi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ken-Ichi Nakayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
20
|
Ikai T, Yamakawa S, Suzuki N, Yashima E. One-Step Simultaneous Synthesis of Circularly Polarized Luminescent Multiple Helicenes Using a Chrysene Framework. Chem Asian J 2021; 16:769-774. [PMID: 33449407 DOI: 10.1002/asia.202100035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 11/12/2022]
Abstract
A series of multiple helicenes was simultaneously synthesized in one step by intramolecular cyclization of a single chrysene derivative containing two 2-[(4-alkoxyphenyl)ethynyl]phenyl units accompanied by rearrangements of the aryl pendants. The electrophile-induced double cyclization with or without aryl migrations proceeded efficiently under acidic conditions to afford annulative π-extension of the chrysene units and produced quadruple (QH-2), triple (TH-2), and double (DH-2) helicenes containing [4]- and/or [5]helicene frameworks with dynamic and/or static helicene chirality in one step. Three multiple helicenes' structures were determined by X-ray crystallography and/or density functional theory calculations. The multiple TH-2 and DH-2 helicenes were separated into enantiomers because of the stable one and two [5]helicene moieties, respectively, and showed intense circular dichroism and circularly polarized luminescence. Although QH-2, which comprises four [4]helicene subunits, was not resolved into enantiomers, the TH-2 enantiomers were further separated into a pair of diastereomers at low temperature resulting from their substituted [4]helicene chirality.
Collapse
Affiliation(s)
- Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Shoya Yamakawa
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Nozomu Suzuki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
21
|
Toyota K, Mikami S. Iodine-Containing 4,7-Dihalobenzo[b]thiophene Building Blocks and Related Iodobenzo[b]thiophenes: Promising Molecular Scaffolds for Bio-Inspired Molecular Architecture. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Zhao Q, Choy PY, Li L, Kwong FY. Recent explorations of palladium-catalyzed regioselective aromatic extension processes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Hendrich CM, Sekine K, Koshikawa T, Tanaka K, Hashmi ASK. Homogeneous and Heterogeneous Gold Catalysis for Materials Science. Chem Rev 2020; 121:9113-9163. [DOI: 10.1021/acs.chemrev.0c00824] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christoph M. Hendrich
- Organisch-Chemisches Institut, Im Neuenheimer Feld 270, Heidelberg University, Heidelberg 69120, Germany
| | - Kohei Sekine
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Takumi Koshikawa
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Im Neuenheimer Feld 270, Heidelberg University, Heidelberg 69120, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Li B, Ali AI, Ge H. Recent Advances in Using Transition-Metal-Catalyzed C–H Functionalization to Build Fluorescent Materials. Chem 2020. [DOI: 10.1016/j.chempr.2020.08.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Báti G, Csókás D, Yong T, Tam SM, Shi RRS, Webster RD, Pápai I, García F, Stuparu MC. Mechanochemical Synthesis of Corannulene‐Based Curved Nanographenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Gábor Báti
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Dániel Csókás
- Institute of Organic Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Teoh Yong
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Si Man Tam
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Raymond R. S. Shi
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Imre Pápai
- Institute of Organic Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Felipe García
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| |
Collapse
|
26
|
Báti G, Csókás D, Yong T, Tam SM, Shi RRS, Webster RD, Pápai I, García F, Stuparu MC. Mechanochemical Synthesis of Corannulene‐Based Curved Nanographenes. Angew Chem Int Ed Engl 2020; 59:21620-21626. [DOI: 10.1002/anie.202007815] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Gábor Báti
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Dániel Csókás
- Institute of Organic Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Teoh Yong
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Si Man Tam
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Raymond R. S. Shi
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Imre Pápai
- Institute of Organic Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Felipe García
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| |
Collapse
|
27
|
Qian Y, Shang J, Lyu Z, Huang X, Guan A, Xu L, Gong H. Synthesis of
π‐Extended
Carbazoles via
One‐Pot
C—C Coupling and Chlorination Promoted by
FeCl
3
. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yang Qian
- Department of Chemistry, Renmin University of China Zhongguancundajie 59 Beijing 100872 China
- College of Chemistry, Beijing Normal University Xinjiekouwaidajie 19 Beijing 100875 China
| | - Jia Shang
- College of Chemistry, Beijing Normal University Xinjiekouwaidajie 19 Beijing 100875 China
| | - Zhen‐Hua Lyu
- College of Chemistry, Beijing Normal University Xinjiekouwaidajie 19 Beijing 100875 China
| | - Xin Huang
- College of Chemistry, Beijing Normal University Xinjiekouwaidajie 19 Beijing 100875 China
| | - Ai‐jiao Guan
- Institute of Chemistry, Chinese Academy of Sciences Zhongguancunbeiyijie 2 Beijing 100190 China
| | - Li‐Jin Xu
- Department of Chemistry, Renmin University of China Zhongguancundajie 59 Beijing 100872 China
| | - Han‐Yuan Gong
- College of Chemistry, Beijing Normal University Xinjiekouwaidajie 19 Beijing 100875 China
| |
Collapse
|
28
|
Ito H, Matsuoka W, Yano Y, Shibata M, Itami K. Annulative π-Extension (APEX) Reactions for Precise Synthesis of Polycyclic Aromatic Compounds. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hideto Ito
- Graduate School of Science, Nagoya University
- JST-ERATO Itami Molecular Nanocarbon Project
- Institute of Transformative Bio-Molecules, Nagoya University
| | | | | | | | - Kenichiro Itami
- Graduate School of Science, Nagoya University
- JST-ERATO Itami Molecular Nanocarbon Project
- Institute of Transformative Bio-Molecules, Nagoya University
| |
Collapse
|
29
|
Guo T, Han L, Wang T, Lei L, Zhang J, Xu D. Copper-Catalyzed Three-Component Formal [3 + 1 + 2] Benzannulation for Carbazole and Indole Synthesis. J Org Chem 2020; 85:9117-9128. [DOI: 10.1021/acs.joc.0c01056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tenglong Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| | - Li Han
- Dalian University of Technology, Dalian 116024 China
| | - Tingpeng Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| | - Lan Lei
- Dalian University of Technology, Dalian 116024 China
| | - Jian Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| | - Dezhu Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| |
Collapse
|
30
|
Hu X, Nie L, Zhang G, Lei A. Electrochemical Oxidative [4+2] Annulation for the π‐Extension of Unfunctionalized Heterobiaryl Compounds. Angew Chem Int Ed Engl 2020; 59:15238-15243. [DOI: 10.1002/anie.202003656] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/24/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Xia Hu
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Lei Nie
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Guoting Zhang
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
31
|
Pan C, Wang L, Han J. Palladium-Catalyzed Site-Selective Benzocylization of Aromatic Acids with o-Fluoro-Substituted Diaryliodonium Salts toward 3,4-Benzocoumarins. Org Lett 2020; 22:4776-4780. [DOI: 10.1021/acs.orglett.0c01577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Cheng Pan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai−Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
32
|
Hu X, Nie L, Zhang G, Lei A. Electrochemical Oxidative [4+2] Annulation for the π‐Extension of Unfunctionalized Heterobiaryl Compounds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xia Hu
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Lei Nie
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Guoting Zhang
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
33
|
Moshniaha L, Żyła-Karwowska M, Cybińska J, Chmielewski PJ, Favereau L, Stępień M. Bipyrrole boomerangs via Pd-mediated tandem cyclization-oxygenation. Controlling reaction selectivity and electronic properties. Beilstein J Org Chem 2020; 16:895-903. [PMID: 32461771 PMCID: PMC7214875 DOI: 10.3762/bjoc.16.81] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Boomerang-shaped bipyrroles containing donor-acceptor units were obtained through a tandem palladium-mediated reaction consisting of a cyclization step, involving double C-H bond activation, and a double α-oxygenation. The latter reaction can be partly suppressed for the least reactive systems, providing access to α-unsubstituted boomerangs for the first time. These "α-free" systems are highly efficient fluorophores, with emission quantum yields exceeding 80% in toluene. Preliminary measurements show that helicene-like boomerangs may be usable as circularly polarized luminescent materials.
Collapse
Affiliation(s)
- Liliia Moshniaha
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Marika Żyła-Karwowska
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Joanna Cybińska
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.,PORT - Polski Ośrodek Rozwoju Technologii, ul. Stabłowicka 147, 54-066 Wrocław, Poland
| | - Piotr J Chmielewski
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Ludovic Favereau
- Université Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, F-35000 Rennes, France
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
34
|
Gonzalez-Rodriguez E, Abdo MA, Dos Passos Gomes G, Ayad S, White FD, Tsvetkov NP, Hanson K, Alabugin IV. Twofold π-Extension of Polyarenes via Double and Triple Radical Alkyne peri-Annulations: Radical Cascades Converging on the Same Aromatic Core. J Am Chem Soc 2020; 142:8352-8366. [PMID: 32249571 DOI: 10.1021/jacs.0c01856] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A versatile synthetic route to distannyl-substituted polyarenes was developed via double radical peri-annulations. The cyclization precursors were equipped with propargylic OMe traceless directing groups (TDGs) for regioselective Sn-radical attack at the triple bonds. The two peri-annulations converge at a variety of polycyclic cores to yield expanded difunctionalized polycyclic aromatic hydrocarbons (PAHs). This approach can be extended to triple peri-annulations, where annulations are coupled with a radical cascade that connects two preexisting aromatic cores via a formal C-H activation step. The installed Bu3Sn groups serve as chemical handles for further functionalization via direct cross-coupling, iodination, or protodestannylation and increase solubility of the products in organic solvents. Photophysical studies reveal that the Bu3Sn-substituted PAHs are moderately fluorescent, and their protodestannylation results in an up to 10-fold fluorescence quantum yield enhancement. DFT calculations identified the most likely possible mechanism of this complex chemical transformation involving two independent peri-cyclizations at the central core.
Collapse
Affiliation(s)
- Edgar Gonzalez-Rodriguez
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Miguel A Abdo
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Gabriel Dos Passos Gomes
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Suliman Ayad
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Frankie D White
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Nikolay P Tsvetkov
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
35
|
Kawahara KP, Matsuoka W, Ito H, Itami K. Synthesis of Nitrogen-Containing Polyaromatics by Aza-Annulative π-Extension of Unfunctionalized Aromatics. Angew Chem Int Ed Engl 2020; 59:6383-6388. [PMID: 32011794 DOI: 10.1002/anie.201913394] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/13/2020] [Indexed: 11/11/2022]
Abstract
Nitrogen-containing polycyclic aromatic compounds (N-PACs) are an important class of compounds in materials science. Reported here is a new aza-annulative π-extension (aza-APEX) reaction that allows rapid access to a range of N-PACs in 11-84 % yields from readily available unfunctionalized aromatics and imidoyl chlorides. In the presence of silver hexafluorophosphate, arenes and imidoyl chlorides couple in a regioselective fashion. The follow-up oxidative treatment with p-chloranil affords structurally diverse N-PACs, which are very difficult to synthesize. DFT calculations reveal that the aza-APEX reaction proceeds through the formal [4+2] cycloaddition of an arene and an in situ generated diarylnitrilium salt, with sequential aromatizations having relatively low activation energies. Transformation of N-PACs into nitrogen-doped nanographenes and their photophysical properties are also described.
Collapse
Affiliation(s)
- Kou P Kawahara
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Wataru Matsuoka
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hideto Ito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
36
|
Kawahara KP, Matsuoka W, Ito H, Itami K. Synthesis of Nitrogen‐Containing Polyaromatics by Aza‐Annulative π‐Extension of Unfunctionalized Aromatics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kou P. Kawahara
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
| | - Wataru Matsuoka
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
| | - Hideto Ito
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
- JST-ERATOItami Molecular Nanocarbon ProjectNagoya University Chikusa Nagoya 464-8602 Japan
| | - Kenichiro Itami
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
- JST-ERATOItami Molecular Nanocarbon ProjectNagoya University Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM)Nagoya University Chikusa Nagoya 464-8601 Japan
| |
Collapse
|
37
|
Jang JH, Ahn S, Park SE, Kim S, Byon HR, Joo JM. Synthesis of Redox-Active Phenanthrene-Fused Heteroarenes by Palladium-Catalyzed C-H Annulation. Org Lett 2020; 22:1280-1285. [PMID: 32027138 DOI: 10.1021/acs.orglett.9b04545] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pd-catalyzed C-H annulation reactions of halo- and aryl-heteroarenes were developed using readily available o-bromobiaryls and o-dibromoaryls, respectively. A variety of five-membered heteroarenes rapidly provided the corresponding phenanthrene-fused heteroarenes, which led to the identification of phenanthro-pyrazole and thiazole as new, stable -2 V redox couples. The flexible syntheses and tunability of the redox potentials of these azole-fused phenanthrenes over a wide range are expected to facilitate their application as redox-active organic functional materials.
Collapse
Affiliation(s)
- Jin Hyeok Jang
- Department of Chemistry and Chemistry Institute for Functional Materials , Pusan National University , Busan 46241 , Republic of Korea
| | - Seongmo Ahn
- Department of Chemistry at Korea Advanced Institute of Science and Technology (KAIST) and Advanced Battery Center at KAIST Institute for NanoCentury , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Soo Eun Park
- Department of Chemistry and Chemistry Institute for Functional Materials , Pusan National University , Busan 46241 , Republic of Korea
| | - Soeun Kim
- Department of Chemistry at Korea Advanced Institute of Science and Technology (KAIST) and Advanced Battery Center at KAIST Institute for NanoCentury , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Hye Ryung Byon
- Department of Chemistry at Korea Advanced Institute of Science and Technology (KAIST) and Advanced Battery Center at KAIST Institute for NanoCentury , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Jung Min Joo
- Department of Chemistry and Chemistry Institute for Functional Materials , Pusan National University , Busan 46241 , Republic of Korea
| |
Collapse
|
38
|
|
39
|
Xu LP, Haines BE, Ajitha MJ, Murakami K, Itami K, Musaev DG. Roles of Base in the Pd-Catalyzed Annulative Chlorophenylene Dimerization. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Li-Ping Xu
- Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Brandon E. Haines
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Manjaly J. Ajitha
- Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Graduate School of Science, and JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Graduate School of Science, and JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
40
|
Kong W, Shen Z, Finger LH, Ackermann L. Elektrochemischer Zugang zu aza‐polycyclischen aromatischen Kohlenwasserstoffen: Rhoda‐elektrokatalytische Domino‐Alkin‐Anellierungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei‐Jun Kong
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Zhigao Shen
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lars H. Finger
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
41
|
Kong WJ, Shen Z, Finger LH, Ackermann L. Electrochemical Access to Aza-Polycyclic Aromatic Hydrocarbons: Rhoda-Electrocatalyzed Domino Alkyne Annulations. Angew Chem Int Ed Engl 2020; 59:5551-5556. [PMID: 31793169 PMCID: PMC7155118 DOI: 10.1002/anie.201914775] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 11/11/2022]
Abstract
Nitrogen-doped polycyclic aromatic hydrocarbons (aza-PAHs) have found broad applications in material sciences. Herein, a modular electrochemical synthesis of aza-PAHs was developed via a rhodium-catalyzed cascade C-H activation and alkyne annulation. A multifunctional O-methylamidoxime enabled the high chemo- and regioselectivity. The isolation of two key rhodacyclic intermediates made it possible to delineate the exact order of three C-H activation steps. In addition, the metalla-electrocatalyzed multiple C-H transformation is characterized by unique functional group tolerance, including highly reactive iodo and azido groups.
Collapse
Affiliation(s)
- Wei-Jun Kong
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Zhigao Shen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lars H Finger
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
42
|
Yano Y, Wang F, Mitoma N, Miyauchi Y, Ito H, Itami K. Step-Growth Annulative π-Extension Polymerization for Synthesis of Cove-Type Graphene Nanoribbons. J Am Chem Soc 2020; 142:1686-1691. [DOI: 10.1021/jacs.9b11328] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuuta Yano
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Feijiu Wang
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Nobuhiko Mitoma
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yuhei Miyauchi
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hideto Ito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
43
|
Peng Q, Zhang W, Zhao K, Du Y, Feng C, Wang B, Fang D, Chen X, Ni H, Xiang S. Amide‐Directed Bay‐Region Two‐Step Annulative π‐Extension (APEX) of Biphenyls and Terphenyls with Diaryliodonium Salts: Efficient Access to Polycyclic Aromatic Hydrocarbons. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiong Peng
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Wen Zhang
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Ke Zhao
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Yu Du
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Chun Feng
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Bi‐Qin Wang
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Dong‐Mei Fang
- Chengdu Institute of BiologyChinese Academy of Sciences Chengdu 610041 P. R. of China
| | - Xiao‐Zhen Chen
- Chengdu Institute of BiologyChinese Academy of Sciences Chengdu 610041 P. R. of China
| | - Hai‐Liang Ni
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Shi‐Kai Xiang
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| |
Collapse
|
44
|
Jolly A, Miao D, Daigle M, Morin J. Emerging Bottom‐Up Strategies for the Synthesis of Graphene Nanoribbons and Related Structures. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906379] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anthony Jolly
- Department of Chemistry and Centre de Recherche sur les Matériaux AvancésUniversité Laval 1045 Ave de la Médecine Quebec QC G1V 0A6 Canada
| | - Dandan Miao
- Department of Chemistry and Centre de Recherche sur les Matériaux AvancésUniversité Laval 1045 Ave de la Médecine Quebec QC G1V 0A6 Canada
| | - Maxime Daigle
- Department of Chemistry and Centre de Recherche sur les Matériaux AvancésUniversité Laval 1045 Ave de la Médecine Quebec QC G1V 0A6 Canada
| | - Jean‐François Morin
- Department of Chemistry and Centre de Recherche sur les Matériaux AvancésUniversité Laval 1045 Ave de la Médecine Quebec QC G1V 0A6 Canada
| |
Collapse
|
45
|
Jolly A, Miao D, Daigle M, Morin JF. Emerging Bottom-Up Strategies for the Synthesis of Graphene Nanoribbons and Related Structures. Angew Chem Int Ed Engl 2019; 59:4624-4633. [PMID: 31265750 DOI: 10.1002/anie.201906379] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 11/09/2022]
Abstract
The solution-phase synthesis is one of the most promising strategies for the preparation of well-defined graphene nanoribbons (GNRs) in large scale. To prepare high quality, defect-free GNRs, cycloaromatization reactions need to be very efficient, proceed without side reaction and mild enough to accommodate the presence of various functional groups. In this Minireview, we present the latest synthetic approaches for the synthesis of GNRs and related structures, including alkyne benzannulation, photochemical cyclodehydrohalogenation, Mallory and Pd- and Ni-catalyzed reactions.
Collapse
Affiliation(s)
- Anthony Jolly
- Department of Chemistry and Centre de Recherche sur les Matériaux Avancés, Université Laval, 1045 Ave de la Médecine, Quebec, QC, G1V 0A6, Canada
| | - Dandan Miao
- Department of Chemistry and Centre de Recherche sur les Matériaux Avancés, Université Laval, 1045 Ave de la Médecine, Quebec, QC, G1V 0A6, Canada
| | - Maxime Daigle
- Department of Chemistry and Centre de Recherche sur les Matériaux Avancés, Université Laval, 1045 Ave de la Médecine, Quebec, QC, G1V 0A6, Canada
| | - Jean-François Morin
- Department of Chemistry and Centre de Recherche sur les Matériaux Avancés, Université Laval, 1045 Ave de la Médecine, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
46
|
Rank CK, Jones AW, Wall T, Di Martino-Fumo P, Schröck S, Gerhards M, Patureau FW. An intermolecular C-H oxidizing strategy to access highly fused carbazole skeletons from simple naphthylamines. Chem Commun (Camb) 2019; 55:13749-13752. [PMID: 31663087 DOI: 10.1039/c9cc05240b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly π-extended hetero-cyclic/aromatic skeletons are of great importance as they can be utilized in many organic material based technologies. Therefore, developing efficient, pre-activation-free, synthetic procedures for the rapid build-up of these complex structures remains a high priority objective. The herein presented approach delivers highly fused carbazole skeletons from simple naphthylamine derivatives.
Collapse
Affiliation(s)
- Christian K Rank
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Alexander W Jones
- FB Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger Strasse 52, 67663 Kaiserslautern, Germany
| | - Tatjana Wall
- FB Chemie, Technische Universität Kaiserslauter & Research Center Optimas, Erwin-Schrödinger Straße 52, 67663 Kaiserslautern, Germany
| | - Patrick Di Martino-Fumo
- FB Chemie, Technische Universität Kaiserslauter & Research Center Optimas, Erwin-Schrödinger Straße 52, 67663 Kaiserslautern, Germany
| | - Sarah Schröck
- FB Chemie, Technische Universität Kaiserslauter & Research Center Optimas, Erwin-Schrödinger Straße 52, 67663 Kaiserslautern, Germany
| | - Markus Gerhards
- FB Chemie, Technische Universität Kaiserslauter & Research Center Optimas, Erwin-Schrödinger Straße 52, 67663 Kaiserslautern, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| |
Collapse
|
47
|
Chen S, Liu F, Wang C, Shen J, Wu Y. Simple Route to Synthesize Fully Conjugated Ladder Isomer Copolymers with Carbazole Units. Polymers (Basel) 2019; 11:polym11101619. [PMID: 31591357 PMCID: PMC6835825 DOI: 10.3390/polym11101619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 11/25/2022] Open
Abstract
Two isomer polymers, P3 and P6, with fully conjugated ladder structures are presented by simple synthetic routes. The well-defined structures of fully conjugated ladder polymers P3 and P6 were ensured by the high yields of every reaction step. The fully rigid ladder structures were confirmed by nuclear magnetic resonance (NMR), fourier transform infrared spectroscopy (FTIR), and photophysical test. Polymers P3 and P6 with bulky alkyl side chains exhibit good solution processability and desirable thermostable properties. After the intramolecular cyclization reaction, the band gaps of polymers P3 and P6 become lower (2.86 eV and 2.66 eV, respectively) compared with polymers P1 and P4. This initial study provides insight for the rational design of fully ladder-conjugated isomeric polymers with well-defined structures.
Collapse
Affiliation(s)
- Shuang Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| | - Feng Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
- College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Chao Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| | - Jinghui Shen
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| | - Yonggang Wu
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
48
|
Yan J, Pulis AP, Perry GJP, Procter DJ. Metal‐Free Synthesis of Benzothiophenes by Twofold C−H Functionalization: Direct Access to Materials‐Oriented Heteroaromatics. Angew Chem Int Ed Engl 2019; 58:15675-15679. [DOI: 10.1002/anie.201908319] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/15/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jiajie Yan
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Alexander P. Pulis
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Gregory J. P. Perry
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - David J. Procter
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| |
Collapse
|
49
|
Yan J, Pulis AP, Perry GJP, Procter DJ. Metal‐Free Synthesis of Benzothiophenes by Twofold C−H Functionalization: Direct Access to Materials‐Oriented Heteroaromatics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jiajie Yan
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Alexander P. Pulis
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Gregory J. P. Perry
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - David J. Procter
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| |
Collapse
|
50
|
Zhou Y, Lin L, Wang Y, Zhu J, Song Q. Cu-Catalyzed Aromatic Metamorphosis of 3-Aminoindazoles. Org Lett 2019; 21:7630-7634. [PMID: 31503499 DOI: 10.1021/acs.orglett.9b02933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present a novel Cu-catalyzed aromatic metamorphosis of 3-aminoindazoles via oxidative cleavage of two C-N bonds of 3-aminoindazoles. This unprecedented reactivity of 3-aminoindazoles allows one to forge diverse nitrile-containing triphenylenes in decent yields via generation of the cyano group in situ. The current study reveals that 3-aminoindazoles could be harnessed as radical precursors via oxidative denitrogenation, the reaction mechanism of which was supported by density functional theory calculations.
Collapse
Affiliation(s)
- Yao Zhou
- Institute of Next Generation Matter Transformation , College of Materials Science & Engineering at Huaqiao University , 668 Jimei Blvd. , Xiamen , Fujian 361021 , People's Republic of China
| | - Lu Lin
- College of Chemistry and Chemical Engineering at Xiamen University , Xiamen , Fujian 361005 , People's Republic of China
| | - Ya Wang
- Institute of Next Generation Matter Transformation , College of Materials Science & Engineering at Huaqiao University , 668 Jimei Blvd. , Xiamen , Fujian 361021 , People's Republic of China
| | - Jun Zhu
- College of Chemistry and Chemical Engineering at Xiamen University , Xiamen , Fujian 361005 , People's Republic of China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation , College of Materials Science & Engineering at Huaqiao University , 668 Jimei Blvd. , Xiamen , Fujian 361021 , People's Republic of China.,Key Laboratory of Molecule Synthesis and Function Discovery , College of Chemistry at Fuzhou University , Fuzhou , Fujian 350108 , People's Republic of China
| |
Collapse
|