1
|
Tâmega GS, Costa MO, de Araujo Pereira A, Barbosa Ferreira MA. Data Science Guiding Analysis of Organic Reaction Mechanism and Prediction. CHEM REC 2024:e202400148. [PMID: 39499081 DOI: 10.1002/tcr.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/09/2024] [Indexed: 11/07/2024]
Abstract
Advancements in synthetic organic chemistry are closely related to understanding substrate and catalyst reactivities through detailed mechanistic studies. Traditional mechanistic investigations are labor-intensive and rely on experimental kinetic, thermodynamic, and spectroscopic data. Linear free energy relationships (LFERs), exemplified by Hammett relationships, have long facilitated reactivity prediction despite their inherent limitations when using experimental constants or incorporating comprehensive experimental data. Data-driven modeling, which integrates cheminformatics with machine learning, offers powerful tools for predicting and interpreting mechanisms and effectively handling complex reactivities through multiparameter strategies. This review explores selected examples of data-driven strategies for investigating organic reaction mechanisms. It highlights the evolution and application of computational descriptors for mechanistic inference.
Collapse
Affiliation(s)
- Giovanna Scalli Tâmega
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Mateus Oliveira Costa
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Ariel de Araujo Pereira
- Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | | |
Collapse
|
2
|
Schmid SP, Schlosser L, Glorius F, Jorner K. Catalysing (organo-)catalysis: Trends in the application of machine learning to enantioselective organocatalysis. Beilstein J Org Chem 2024; 20:2280-2304. [PMID: 39290209 PMCID: PMC11406055 DOI: 10.3762/bjoc.20.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Organocatalysis has established itself as a third pillar of homogeneous catalysis, besides transition metal catalysis and biocatalysis, as its use for enantioselective reactions has gathered significant interest over the last decades. Concurrent to this development, machine learning (ML) has been increasingly applied in the chemical domain to efficiently uncover hidden patterns in data and accelerate scientific discovery. While the uptake of ML in organocatalysis has been comparably slow, the last two decades have showed an increased interest from the community. This review gives an overview of the work in the field of ML in organocatalysis. The review starts by giving a short primer on ML for experimental chemists, before discussing its application for predicting the selectivity of organocatalytic transformations. Subsequently, we review ML employed for privileged catalysts, before focusing on its application for catalyst and reaction design. Concluding, we give our view on current challenges and future directions for this field, drawing inspiration from the application of ML to other scientific domains.
Collapse
Affiliation(s)
- Stefan P Schmid
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich CH-8093, Switzerland
| | - Leon Schlosser
- Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany
| | - Kjell Jorner
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich CH-8093, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, ETH Zurich, Zurich CH-8093, Switzerland
| |
Collapse
|
3
|
Cuomo A, Ibarraran S, Sreekumar S, Li H, Eun J, Menzel JP, Zhang P, Buono F, Song JJ, Crabtree RH, Batista VS, Newhouse TR. Feed-Forward Neural Network for Predicting Enantioselectivity of the Asymmetric Negishi Reaction. ACS CENTRAL SCIENCE 2023; 9:1768-1774. [PMID: 37780365 PMCID: PMC10540279 DOI: 10.1021/acscentsci.3c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 10/03/2023]
Abstract
Density functional theory (DFT) is a powerful tool to model transition state (TS) energies to predict selectivity in chemical synthesis. However, a successful multistep synthesis campaign must navigate energetically narrow differences in pathways that create some limits to rapid and unambiguous application of DFT to these problems. While powerful data science techniques may provide a complementary approach to overcome this problem, doing so with the relatively small data sets that are widespread in organic synthesis presents a significant challenge. Herein, we show that a small data set can be labeled with features from DFT TS calculations to train a feed-forward neural network for predicting enantioselectivity of a Negishi cross-coupling reaction with P-chiral hindered phosphines. This approach to modeling enantioselectivity is compared with conventional approaches, including exclusive use of DFT energies and data science approaches, using features from ligands or ground states with neural network architectures.
Collapse
Affiliation(s)
- Abbigayle
E. Cuomo
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Sebastian Ibarraran
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Sanil Sreekumar
- Chemical
Development, Boehringer Ingelheim Pharmaceuticals
Inc, 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Haote Li
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Jungmin Eun
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Jan Paul Menzel
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Pengpeng Zhang
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Frederic Buono
- Chemical
Development, Boehringer Ingelheim Pharmaceuticals
Inc, 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Jinhua J. Song
- Chemical
Development, Boehringer Ingelheim Pharmaceuticals
Inc, 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Robert H. Crabtree
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Victor S. Batista
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Timothy R. Newhouse
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
4
|
Xu EY, Werth J, Roos CB, Bendelsmith AJ, Sigman MS, Knowles RR. Noncovalent Stabilization of Radical Intermediates in the Enantioselective Hydroamination of Alkenes with Sulfonamides. J Am Chem Soc 2022; 144:18948-18958. [PMID: 36197450 PMCID: PMC9668373 DOI: 10.1021/jacs.2c07099] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Noncovalent interactions (NCIs) are critical elements of molecular recognition in a wide variety of chemical contexts. While NCIs have been studied extensively for closed-shell molecules and ions, very little is understood about the structures and properties of NCIs involving free radical intermediates. In this report, we describe a detailed mechanistic study of the enantioselective radical hydroamination of alkenes with sulfonamides and present evidence suggesting that the basis for asymmetric induction in this process arises from attractive NCIs between a neutral sulfonamidyl radical intermediate and a chiral phosphoric acid (CPA). We describe experimental, computational, and data science-based evidence that identifies the specific radical NCIs that form the basis for the enantioselectivity. Kinetic studies support that C-N bond formation determines the enantioselectivity. Density functional theory investigations revealed the importance of both strong H-bonding between the CPA and the N-centered radical and a network of aryl-based NCIs that serve to stabilize the favored diastereomeric transition state. The contributions of these specific aryl-based NCIs to the selectivity were further confirmed through multivariate linear regression analysis by comparing the measured enantioselectivity to computed descriptors. These results highlight the power of NCIs to enable high levels of enantioselectivity in reactions involving uncharged open-shell intermediates and expand our understanding of radical-molecule interactions.
Collapse
Affiliation(s)
- Eve Y. Xu
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, United States
| | - Jacob Werth
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, United States
| | - Andrew J. Bendelsmith
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton University, Princeton, New Jersey, 08544, United States
| |
Collapse
|
5
|
Xiong H, Yoshida K, Okada K, Ueda H, Tokuyama H. Catalytic enantioselective 5-endo-bromocycloetherification of unactivated cyclic alkenes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Gallarati S, Laplaza R, Corminboeuf C. Harvesting the fragment-based nature of bifunctional organocatalysts to enhance their activity. Org Chem Front 2022. [DOI: 10.1039/d2qo00550f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhancing the activity of bifunctional organocatalysts: a fragment-based approach coupled with activity maps helps identifying better-performing catalytic motifs.
Collapse
Affiliation(s)
- Simone Gallarati
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ruben Laplaza
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National Center for Competence in Research – Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Clemence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National Center for Competence in Research – Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National Center for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Iwabuchi Y, Nagasawa S. The Utility of Oxoammonium Species in Organic Synthesis: Beyond Alcohol Oxidation. HETEROCYCLES 2022. [DOI: 10.3987/rev-21-sr(r)2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Crawford JM, Kingston C, Toste FD, Sigman MS. Data Science Meets Physical Organic Chemistry. Acc Chem Res 2021; 54:10.1021/acs.accounts.1c00285. [PMID: 34351757 PMCID: PMC9078128 DOI: 10.1021/acs.accounts.1c00285] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ConspectusAt the heart of synthetic chemistry is the holy grail of predictable catalyst design. In particular, researchers involved in reaction development in asymmetric catalysis have pursued a variety of strategies toward this goal. This is driven by both the pragmatic need to achieve high selectivities and the inability to readily identify why a certain catalyst is effective for a given reaction. While empiricism and intuition have dominated the field of asymmetric catalysis since its inception, enantioselectivity offers a mechanistically rich platform to interrogate catalyst-structure response patterns that explain the performance of a particular catalyst or substrate.In the early stages of an asymmetric reaction development campaign, the overarching mechanism of the reaction, catalyst speciation, the turnover limiting step, and many other details are unknown or posited based on related reactions. Considering the unclear details leading to a successful reaction, initial enantioselectivity data are often used to intuitively guide the ultimate direction of optimization. However, if the conditions of the Curtin-Hammett principle are satisfied, then measured enantioselectivity can be directly connected to the ensemble of diastereomeric transition states (TSs) that lead to the enantiomeric products, and the associated free energy difference between competing TSs (ΔΔG⧧ = -RT ln[(S)/(R)], where (S) and (R) represent the concentrations of the enantiomeric products). We, and others, speculated that this important piece of information can be leveraged to guide reaction optimization in a quantitative way.Although traditional linear free energy relationships (LFERs), such as Hammett plots, have been used to illuminate important mechanistic features, we sought to develop data science derived tools to expand the power of LFERs in order to describe complex reactions frequently encountered in modern asymmetric catalysis. Specifically, we investigated whether enantioselectivity data from a reaction can be quantitatively connected to the attributes of reaction components, such as catalyst and substrate structural features, to harness data for asymmetric catalyst design.In this context, we developed a workflow to relate computationally derived features of reaction components to enantioselectivity using data science tools. The mathematical representation of molecules can incorporate many aspects of a transformation, such as molecular features from substrate, product, catalyst, and proposed transition states. Statistical models relating these features to reaction outputs can be used for various tasks, such as performance prediction of untested molecules. Perhaps most importantly, statistical models can guide the generation of mechanistic hypotheses that are embedded within complex patterns of reaction responses. Overall, merging traditional physical organic experiments with statistical modeling techniques creates a feedback loop that enables both evaluation of multiple mechanistic hypotheses and future catalyst design. In this Account, we highlight the evolution and application of this approach in the context of a collaborative program based on chiral phosphoric acid catalysts (CPAs) in asymmetric catalysis.
Collapse
Affiliation(s)
- Jennifer M Crawford
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Cian Kingston
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| |
Collapse
|
9
|
Escudero-Casao M, Licini G, Orlandi M. Enantioselective α-Arylation of Ketones via a Novel Cu(I)-Bis(phosphine) Dioxide Catalytic System. J Am Chem Soc 2021; 143:3289-3294. [PMID: 33635068 PMCID: PMC8041290 DOI: 10.1021/jacs.0c13236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 12/15/2022]
Abstract
A novel catalytic system based on copper(I) and chiral bis(phosphine) dioxides is described. This allows the arylation of silyl enol ethers to access enolizable α-arylated ketones in good yields and enantiomeric excess up to 95%. Noncyclic ketones are amenable substrates with this method, which complements other approaches based on palladium catalysis. Optimization of the ligand structure is accomplished via rational design driven by correlation analysis. Preliminary mechanistic hypotheses are also evaluated in order to identify the role of chiral bis(phosphine) dioxides.
Collapse
Affiliation(s)
| | - Giulia Licini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
- CIRCC−Consorzio Interuniversitario
per le Reattività Chimiche e la Catalisi, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | | |
Collapse
|
10
|
Díaz-Salazar H, Jiménez EI, Vallejo Narváez WE, Rocha-Rinza T, Hernández-Rodríguez M. Bifunctional squaramides with benzyl-like fragments: analysis of CH⋯π interactions by a multivariate linear regression model and quantum chemical topology. Org Chem Front 2021. [DOI: 10.1039/d0qo01610a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A multivariate linear regression model and quantum chemical topology are used for the quantitative description of non-covalent interactions in the transition state of the Michael addition catalyzed by bifunctional squaramides.
Collapse
Affiliation(s)
- Howard Díaz-Salazar
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Mexico
| | - Eddy I. Jiménez
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Mexico
| | - Wilmer E. Vallejo Narváez
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Mexico
| | - Tomás Rocha-Rinza
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Mexico
| | | |
Collapse
|
11
|
Kar S, Leszczynski J. Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opin Drug Discov 2020; 15:1473-1487. [PMID: 32735147 DOI: 10.1080/17460441.2020.1798926] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION We are in an era of bioinformatics and cheminformatics where we can predict data in the fields of medicine, the environment, engineering and public health. Approaches with open access in silico tools have revolutionized disease management due to early prediction of the absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles of the chemically designed and eco-friendly next-generation drugs. AREAS COVERED This review meticulously encompasses the fundamental functions of open access in silico prediction tools (webservers and standalone software) and advocates their use in drug discovery research for the safety and reliability of any candidate-drug. This review also aims to help support new researchers in the field of drug design. EXPERT OPINION The choice of in silico tools is critically important for drug discovery and the accuracy of ADMET prediction. The accuracy largely depends on the types of dataset, the algorithm used, the quality of the model, the available endpoints for prediction, and user requirement. The key is to use multiple in silico tools for predictions and comparing the results, followed by the identification of the most probable prediction.
Collapse
Affiliation(s)
- Supratik Kar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University , Jackson, MS, USA
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University , Jackson, MS, USA
| |
Collapse
|
12
|
Roos CB, Demaerel J, Graff DE, Knowles RR. Enantioselective Hydroamination of Alkenes with Sulfonamides Enabled by Proton-Coupled Electron Transfer. J Am Chem Soc 2020; 142:5974-5979. [PMID: 32182054 DOI: 10.1021/jacs.0c01332] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An enantioselective, radical-based method for the intramolecular hydroamination of alkenes with sulfonamides is reported. These reactions are proposed to proceed via N-centered radicals formed by proton-coupled electron transfer (PCET) activation of sulfonamide N-H bonds. Noncovalent interactions between the neutral sulfonamidyl radical and a chiral phosphoric acid generated in the PCET event are hypothesized to serve as the basis for asymmetric induction in a subsequent C-N bond forming step, achieving selectivities of up to 98:2 er. These results offer further support for the ability of noncovalent interactions to enforce stereoselectivity in reactions of transient and highly reactive open-shell intermediates.
Collapse
Affiliation(s)
- Casey B Roos
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Joachim Demaerel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - David E Graff
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert R Knowles
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
13
|
Reid JP, Hu M, Ito S, Huang B, Hong CM, Xiang H, Sigman MS, Toste FD. Strategies for remote enantiocontrol in chiral gold(iii) complexes applied to catalytic enantioselective γ,δ-Diels-Alder reactions. Chem Sci 2020; 11:6450-6456. [PMID: 34094110 PMCID: PMC8152632 DOI: 10.1039/d0sc00497a] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The use of chiral square planar gold(iii) complexes to access enantioenriched products has rarely been applied in asymmetric catalysis. In this context, we report a mechanistic and synthetic investigation into the use of N-heterocyclic (NHC) gold(iii) complexes in γ,δ-Diels–Alder reactions of 2,4-dienals with cyclopentadiene. The optimal catalyst bearing a unique 2-chloro-1-naphthyl substituent allowed efficient synthesis of functionally rich carbocycles in good yields, diastereo- and enantioselectivities. Transition state and multivariate linear regression (MLR) analysis of both catalyst and substrate trends using molecular descriptors derived from designer parameter acquisition platforms, reveals attractive non-covalent interactions (NCIs) to be key selectivity determinates. These analyses demonstrate that a putative π–π interaction between the substrate proximal double bond and the catalyst aromatic group is an essential feature for high enantioselectivity. Chiral square planar gold(iii) complexes are employed as catalysts in asymmetric Diels–Alder reactions. The non-covalent interactions responsible for the enantioselectivity are revealed through multivariate linear regression analysis.![]()
Collapse
Affiliation(s)
- Jolene P Reid
- Department of Chemistry, University of Utah 315 South 1400 East Salt Lake City Utah 84112 USA
| | - Mingyou Hu
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Susumu Ito
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Banruo Huang
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Cynthia M Hong
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Hengye Xiang
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Matthew S Sigman
- Department of Chemistry, University of Utah 315 South 1400 East Salt Lake City Utah 84112 USA
| | - F Dean Toste
- Department of Chemistry, University of California Berkeley California 94720 USA
| |
Collapse
|
14
|
Rothermel K, Žabka M, Hioe J, Gschwind RM. Disulfonimides versus Phosphoric Acids in Brønsted Acid Catalysis: The Effect of Weak Hydrogen Bonds and Multiple Acceptors on Complex Structures and Reactivity. J Org Chem 2019; 84:13221-13231. [PMID: 31550152 PMCID: PMC6863592 DOI: 10.1021/acs.joc.9b01811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Indexed: 12/20/2022]
Abstract
In Brønsted acid catalysis, hydrogen bonds play a crucial role for reactivity and selectivity. However, the contribution of weak hydrogen bonds or multiple acceptors has been unclear so far since it is extremely difficult to collect experimental evidence for weak hydrogen bonds. Here, our hydrogen bond and structural access to Brønsted acid/imine complexes was used to analyze BINOL-derived chiral disulfonimide (DSI)/imine complexes. 1H and 15N chemical shifts as well as 1JNH coupling constants revealed for DSI/imine complexes ion pairs with very weak hydrogen bonds. The high acidity of the DSIs leads to a significant weakening of the hydrogen bond as structural anchor. In addition, the five hydrogen bond acceptors of DSI allow an enormous mobility of the imine in the binary DSI complexes. Theoretical calculations predict the hydrogen bonds to oxygen to be energetically less favored; however, their considerable population is corroborated experimentally by NOE and exchange data. Furthermore, an N-alkylimine, which shows excellent reactivity and selectivity in reactions with DSI, reveals an enlarged structural space in complexes with the chiral phosphoric acid TRIP as potential explanation of its reduced reactivity and selectivity. Thus, considering factors such as flexibility and possible hydrogen bond sites is essential for catalyst development in Brønsted acid catalysis.
Collapse
Affiliation(s)
| | | | - Johnny Hioe
- Institute of Organic Chemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Ruth M. Gschwind
- Institute of Organic Chemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
15
|
Rothermel K, Melikian M, Hioe J, Greindl J, Gramüller J, Žabka M, Sorgenfrei N, Hausler T, Morana F, Gschwind RM. Internal acidity scale and reactivity evaluation of chiral phosphoric acids with different 3,3'-substituents in Brønsted acid catalysis. Chem Sci 2019; 10:10025-10034. [PMID: 32015815 PMCID: PMC6977555 DOI: 10.1039/c9sc02342a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022] Open
Abstract
NMR H-bond analysis reveals an offset of internal and external acidities of catalysts and allows for a detailed reactivity analysis.
The concept of hydrogen bonding for enhancing substrate binding and controlling selectivity and reactivity is central in catalysis. However, the properties of these key hydrogen bonds and their catalyst-dependent variations are extremely difficult to determine directly by experiments. Here, for the first time the hydrogen bond properties of a whole series of BINOL-derived chiral phosphoric acid (CPA) catalysts in their substrate complexes with various imines were investigated to derive the influence of different 3,3′-substituents on the acidity and reactivity. NMR 1H and 15N chemical shifts and 1JNH coupling constants of these hydrogen bonds were used to establish an internal acidity scale corroborated by calculations. Deviations from calculated external acidities reveal the importance of intermolecular interactions for this key feature of CPAs. For CPAs with similarly sized binding pockets, a correlation of reactivity and hydrogen bond strengths of the catalyst was found. A catalyst with a very small binding pocket showed significantly reduced reactivities. Therefore, NMR isomerization kinetics, population and chemical shift analyses of binary and ternary complexes as well as reaction kinetics were performed to address the steps of the transfer hydrogenation influencing the overall reaction rate. The results of CPAs with different 3,3′-substituents show a delicate balance between the isomerization and the ternary complex formation to be rate-determining. For CPAs with an identical acidic motif and similar sterics, reactivity and internal acidity correlated inversely. In cases where higher sterical demand within the binary complex hinders the binding of the second substrate, the correlation between acidity and reactivity breaks down.
Collapse
Affiliation(s)
- Kerstin Rothermel
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| | - Maxime Melikian
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| | - Johnny Hioe
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| | - Julian Greindl
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| | - Johannes Gramüller
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| | - Matej Žabka
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| | - Nils Sorgenfrei
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| | - Thomas Hausler
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| | - Fabio Morana
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| | - Ruth M Gschwind
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| |
Collapse
|
16
|
Jing D, Lu C, Chen Z, Jin S, Xie L, Meng Z, Su Z, Zheng K. Light‐Driven Intramolecular C−N Cross‐Coupling via a Long‐Lived Photoactive Photoisomer Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dong Jing
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Cong Lu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai 200237 P. R. China
| | - Songyang Jin
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Lijuan Xie
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Ziyi Meng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
17
|
Jing D, Lu C, Chen Z, Jin S, Xie L, Meng Z, Su Z, Zheng K. Light-Driven Intramolecular C-N Cross-Coupling via a Long-Lived Photoactive Photoisomer Complex. Angew Chem Int Ed Engl 2019; 58:14666-14672. [PMID: 31373432 DOI: 10.1002/anie.201906112] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/15/2019] [Indexed: 12/24/2022]
Abstract
Reported herein is a visible-light-driven intramolecular C-N cross-coupling reaction under mild reaction conditions (metal- and photocatalyst-free, at room temperature) via a long-lived photoactive photoisomer complex. This strategy was used to rapidly prepare the N-substituted polycyclic quinazolinone derivatives with a broad substrate scope (>50 examples) and further exploited to synthesize the natural products tryptanthrin, rutaecarpine, and their analogues. The success of gram-scale synthesis and solar-driven transformation, as well as promising tumor-suppressing biological activity, proves the potential of this strategy for practical applications. Mechanistic investigations, including control experiments, DFT calculations, UV-vis spectroscopy, EPR, and X-ray single-crystal structure of the key intermediate, provides insight into the mechanism.
Collapse
Affiliation(s)
- Dong Jing
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Cong Lu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Songyang Jin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Lijuan Xie
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Ziyi Meng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
18
|
Campos KR, Coleman PJ, Alvarez JC, Dreher SD, Garbaccio RM, Terrett NK, Tillyer RD, Truppo MD, Parmee ER. The importance of synthetic chemistry in the pharmaceutical industry. Science 2019; 363:363/6424/eaat0805. [PMID: 30655413 DOI: 10.1126/science.aat0805] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Innovations in synthetic chemistry have enabled the discovery of many breakthrough therapies that have improved human health over the past century. In the face of increasing challenges in the pharmaceutical sector, continued innovation in chemistry is required to drive the discovery of the next wave of medicines. Novel synthetic methods not only unlock access to previously unattainable chemical matter, but also inspire new concepts as to how we design and build chemical matter. We identify some of the most important recent advances in synthetic chemistry as well as opportunities at the interface with partner disciplines that are poised to transform the practice of drug discovery and development.
Collapse
Affiliation(s)
- Kevin R Campos
- Global Chemistry, Merck & Co. Inc., Kenilworth, NJ 07033, USA.
| | - Paul J Coleman
- Global Chemistry, Merck & Co. Inc., Kenilworth, NJ 07033, USA.
| | - Juan C Alvarez
- Global Chemistry, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | | | | | | | | | - Emma R Parmee
- Global Chemistry, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| |
Collapse
|
19
|
Reep C, Sun S, Takenaka N. C(
sp
2
)−H Hydrogen‐Bond Donor Groups in Chiral Small‐Molecule Organocatalysts. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Carlyn Reep
- Department of Biomedical and Chemical Engineering and Sciences Florida Institute of Technology 150 West University Boulevard Melbourne, Florida 32901-6975
| | - Shiyu Sun
- Department of Biomedical and Chemical Engineering and Sciences Florida Institute of Technology 150 West University Boulevard Melbourne, Florida 32901-6975
| | - Norito Takenaka
- Department of Biomedical and Chemical Engineering and Sciences Florida Institute of Technology 150 West University Boulevard Melbourne, Florida 32901-6975
| |
Collapse
|
20
|
Abstract
The advent of transition-metal catalysis (and likewise, bio-catalysis, photoredox-catalysis and organo-catalysis, etc.) promises to greatly increase access to diverse chemical matter in medicinal chemistry, but new catalytic reactions often fail to deliver product in applied synthesis.
Collapse
Affiliation(s)
- Spencer D. Dreher
- Chemistry Capabilities Accelerating Therapeutics
- Merck & Co., Inc
- Kenilworth
- USA
| |
Collapse
|
21
|
Gualandi A, Rodeghiero G, Cozzi PG. Catalytic Stereoselective SN
1-Type Reactions Promoted by Chiral Phosphoric Acids as Brønsted Acid Catalysts. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800359] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Andrea Gualandi
- Dipartimento di Chimica “G. Ciamician”; ALMA MATER STUDIORUM Università di Bologna; Via Selmi 2 40126 Bologna Italy
| | - Giacomo Rodeghiero
- Dipartimento di Chimica “G. Ciamician”; ALMA MATER STUDIORUM Università di Bologna; Via Selmi 2 40126 Bologna Italy
- Cyanagen Srl; Via Stradelli Guelfi 40/C 40138 Bologna Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica “G. Ciamician”; ALMA MATER STUDIORUM Università di Bologna; Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
22
|
Coelho JAS, Matsumoto A, Orlandi M, Hilton MJ, Sigman MS, Toste FD. Enantioselective fluorination of homoallylic alcohols enabled by the tuning of non-covalent interactions. Chem Sci 2018; 9:7153-7158. [PMID: 30310638 PMCID: PMC6137454 DOI: 10.1039/c8sc02223b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
The study of the enantioselective fluorination of homoallylic alcohols via chiral anion phase transfer (CAPT) catalysis using an in situ generated directing group is described. Multivariate correlation analysis, including designer π-interaction derived parameters, revealed key structural features affecting the selectivity at the transition state (TS). Interpretation of the parameters found in the model equation highlights the key differences as well as similarities for the reaction of homoallylic and allylic substrates. A similar T-shaped π-interaction was found to occur between the substrate and the catalyst. The tuning of this crucial interaction by identification of the best combination of phosphoric acid catalyst and boronic acid directing group allowed for the development of a methodology to access γ-fluoroalkenols in typically high enantioselectivities (up to 96% ee).
Collapse
Affiliation(s)
- Jaime A S Coelho
- Department of Chemistry , University of California , Berkeley , California 94720 , USA .
| | - Akira Matsumoto
- Department of Chemistry , University of California , Berkeley , California 94720 , USA .
| | - Manuel Orlandi
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , USA .
| | - Margaret J Hilton
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , USA .
| | - Matthew S Sigman
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , USA .
| | - F Dean Toste
- Department of Chemistry , University of California , Berkeley , California 94720 , USA .
| |
Collapse
|
23
|
Dong J, Xia Q, Yan C, Song H, Liu Y, Wang Q. C(sp3)–H Azidation Reaction: A Protocol for Preparation of Aminals. J Org Chem 2018; 83:4516-4524. [DOI: 10.1021/acs.joc.8b00235] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Qing Xia
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Changcun Yan
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People’s Republic of China
| |
Collapse
|
24
|
Maji R, Mallojjala SC, Wheeler SE. Chiral phosphoric acid catalysis: from numbers to insights. Chem Soc Rev 2018; 47:1142-1158. [DOI: 10.1039/c6cs00475j] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chiral phosphoric acids (CPAs) have emerged as powerful organocatalysts for asymmetric reactions, and applications of computational quantum chemistry have revealed important insights into the activity and selectivity of these catalysts.
Collapse
Affiliation(s)
- Rajat Maji
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Steven E. Wheeler
- Department of Chemistry
- Texas A&M University
- College Station
- USA
- Center for Computational Quantum Chemistry
| |
Collapse
|
25
|
Simón L. Enantioselectivity in CPA-catalyzed Friedel–Crafts reaction of indole and N-tosylimines: a challenge for guiding models. Org Biomol Chem 2018; 16:2225-2238. [DOI: 10.1039/c7ob02875j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reaction models derived from theoretical investigations for predicting the enantioselectivity of organocatalytic reactions are very useful, but difficult to formulate for the Friedel–Crafts reaction of indole and N-tosylimines.
Collapse
Affiliation(s)
- Luis Simón
- Facultad de Ciencias Químicas
- Universidad de Salamanca
- Salamanca E37004
- Spain
| |
Collapse
|
26
|
Biswas S, Kubota K, Orlandi M, Turberg M, Miles DH, Sigman MS, Toste FD. Enantioselective Synthesis of N
,S
-Acetals by an Oxidative Pummerer-Type Transformation using Phase-Transfer Catalysis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Souvagya Biswas
- Department of Chemistry; University of California; Berkeley CA 94720 USA
| | - Koji Kubota
- Department of Chemistry; University of California; Berkeley CA 94720 USA
| | - Manuel Orlandi
- Department of Chemistry; University of Utah; Salt Lake City UT 84112 USA
| | - Mathias Turberg
- Department of Chemistry; University of California; Berkeley CA 94720 USA
| | - Dillon H. Miles
- Department of Chemistry; University of California; Berkeley CA 94720 USA
| | - Matthew S. Sigman
- Department of Chemistry; University of Utah; Salt Lake City UT 84112 USA
| | - F. Dean Toste
- Department of Chemistry; University of California; Berkeley CA 94720 USA
| |
Collapse
|
27
|
Biswas S, Kubota K, Orlandi M, Turberg M, Miles DH, Sigman MS, Toste FD. Enantioselective Synthesis of N,S-Acetals by an Oxidative Pummerer-Type Transformation using Phase-Transfer Catalysis. Angew Chem Int Ed Engl 2017; 57:589-593. [PMID: 29171138 DOI: 10.1002/anie.201711277] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 11/12/2022]
Abstract
Reported is the first enantioselective oxidative Pummerer-type transformation using phase-transfer catalysis to deliver enantioenriched sulfur-bearing heterocycles. This reaction includes the direct oxidation of sulfides to a thionium intermediate, followed by an asymmetric intramolecular nucleophilic addition to form chiral cyclic N,S-acetals with moderate to high enantioselectivites. Deuterium-labelling experiments were performed to identify the stereodiscrimination step of this process. Further analysis of the reaction transition states, by means of multidimensional correlations and DFT calculations, highlight the existence of a set of weak noncovalent interactions between the catalyst and substrate that govern the enantioselectivity of the reaction.
Collapse
Affiliation(s)
- Souvagya Biswas
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Koji Kubota
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Manuel Orlandi
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Mathias Turberg
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Dillon H Miles
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|