1
|
Chen H, Cao W, Cui Y, Qian G, Liao Z. Intensive and Persistent Chemiluminescence from Orderly Arranged Ligands within Metal-Organic Frameworks for Inflammation Imaging. Inorg Chem 2025; 64:2529-2536. [PMID: 39873107 DOI: 10.1021/acs.inorgchem.4c05171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Chemiluminescence offers ultrasensitive imaging for the diagnosis of a variety of diseases by removing the interference from excitation light sources. Here, we prepared two chemiluminescent metal-organic frameworks (Mn-ADA and Zn-ADA) by using (2E,2'E)-3,3'-(anthracene-9,10-diyl)diacrylic acid (ADA) as a ligand. In Mn-ADA and Zn-ADA, the Mn atoms and Zn atoms are six-coordinated and eight-coordinated, respectively, and their frameworks are different in spatial structure. Due to the orderly arrangement of the fluorescence ligands and one-dimensional channel control of the diffusion of the reactant, Mn-ADA exhibits superstrong intensity and persistent chemiluminescence compared to ADA. The intensity of Mn-ADA is 43 times higher, and the lifetime is two times longer than that of ADA. Furthermore, different coordination also causes the chemiluminescence intensity of Mn-ADA to be stronger than that of Zn-ADA. It is established that Mn-ADA can detect H2O2 and image inflammation in mice without the excitation light. This methodology demonstrates the potential of metal-organic frameworks (MOFs) to enhance chemiluminescence and offers a new avenue for the development of MOF materials intended for biomedical application.
Collapse
Affiliation(s)
- Hongxu Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenqian Cao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuanjing Cui
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guodong Qian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengluan Liao
- School of Clinical Medical, Hangzhou Medical College, Hangzhou 310053, China
| |
Collapse
|
2
|
Tian Y, Lu X, Xiao D, Zhou C. Long-Lasting Chemiluminescence Based on Functionalized Multicolor Protein Capsules for Multiple Visualization Detection of Avian Influenza Virus Biomarkers. Anal Chem 2024; 96:16978-16984. [PMID: 39392770 DOI: 10.1021/acs.analchem.4c04248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Long-lasting chemiluminescence (CL) emissions are necessary for improving the detection accuracy and expanding the application scope. Here, we have synthesized three oil-in-water (O/W) multicolor protein capsules (LCBA, F/LCBA, and RB/F/LCBA) using a simple ultrasound method and have engineered specific target-triggered catalytic hairpin assembly on their surface and chemiluminescence resonance energy transfer inside. Consequently, three multicolor capsules exhibit excellent structural stability, generate blue-, green-, and red-colored emissions when reacting with H2O2, have long-lasting CL emission over 1 h, and successfully achieve the accurate multiple visualization detection of avian influenza virus subtype targets. Without the need for complex instruments and analysis procedures, the CL imaging assays can be carried out and recorded with a common smartphone. The detection limits for visualizing H1N1, H7N9, and H5N1 are 5.5, 7.6, and 9.0 pM, respectively. There is a linear range between 20.0 and 625 pM and excellent selectivity against interfering DNA. Furthermore, visualization detection has been successfully applied for the detection of H1N1, H7N9, and H5N1 in healthy human serum samples. With these merits, this facile, ultrasensitive, and multiple visualization sensor has potential applications in point-of-care testing and early diagnosis.
Collapse
Affiliation(s)
- Yafei Tian
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xueyun Lu
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
3
|
Li SH, Zhang GR, He YT, Yang L, Li HL, Long CY, Cui Y, Wang XQ. Emission Wavelength-Tunable Bicyclic Dioxetane Chemiluminescent Probes for Precise In Vitro and In Vivo Imaging. Anal Chem 2023; 95:13191-13200. [PMID: 37610431 DOI: 10.1021/acs.analchem.3c02126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Chemiluminescent probes have become increasingly popular in various research areas including precise tumor imaging and immunofluorescence analysis. Nevertheless, previously developed chemiluminescence probes are mainly limited to studying oxidation reaction-associated biological events. This study presents the first example of bioimaging applicable bicyclic dioxetane chemiluminescent probes with tunable emission wavelengths that range from 525 to 800 nm. These newly developed probes were able to detect the analytes of β-Gal, H2O2, and superoxide with high specificity and a limit of detection of 77 mU L-1, 96, and 28 nM, respectively. The bioimaging application of the probes was verified in ovarian and liver cancer cells and macrophage cells, allowing the detection of the content of β-Gal, H2O2, and superoxide inside the cells. The high specificity allowed us to image the xenografted tumor in mice. We expect that our probes will receive extensive applications in recording complex biomolecular events using noninvasive imaging techniques.
Collapse
Affiliation(s)
- Shen-Huan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Guo-Rong Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yu-Ting He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Liu Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Han-Lu Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Cheng-Yu Long
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yue Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Xue-Qiang Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| |
Collapse
|
4
|
Single-atom nanozymes with axial ligand-induced self-adaptive conformation in alkaline medium boost chemiluminescence. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Li W, Zhang X, Chen S, Ji Y, Li R. Paper-based fluorescent devices for multifunctional assays: Biomarkers detection, inhibitors screening and chiral recognition. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Li Y, Zhu B, Han W, Tang W, Duan X. A bright chemiluminescence conjugated polymer-mesoporous silica nanoprobe for imaging of colonic tumors in vivo. Analyst 2022; 147:2060-2067. [PMID: 35437532 DOI: 10.1039/d2an00294a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypochlorite acid (ClO-) is one of the major reactive oxygen species (ROS) in colon cancer, providing an effective target for colonic tumor in vivo imaging. For detection of ClO- and tumor imaging, poly[(9,9-di(2-ethylhexyl)-9H-fluorene-2,7-vinylene)-co-(1-methoxy-4-(2-ethylhexyloxy)-2,5-phenylenevinylene)] (PFV-co-MEHPV, namely CP1) was encapsulated in mesoporous silica nanoparticles (MSNs) that were pre-modified with polyphenylenevinylene (PPV) via in situ polymerization to construct bright PPV@MSN-CP1 nanoparticles. The synthesized nanoparticles were size-stable and not cytotoxic as confirmed by FE-TEM, FE-SEM, and MTT assay. Hypochlorite oxidizes the vinylidene bond of CP1 through π2-π2 cycloaddition to form PPV-dioxetane intermediates to generate photons. The CL quantum yield of PPV@MSN-CP1 was 16.7 times higher than that of Pluronic F-127 wrapped CP1. CL nanoparticles PPV@MSN-CP1 have good selectivity for hypochlorite detection among biological oxidants (mainly ROS). The linear range and the LOD of PPV@MSN@CP1 for ClO- detection are 4-90 and 1.02 μM, respectively. Subsequently, we further coated PPV@MSN@CP1 with folic acid for tumor targeting by phospholipid wrapping. PPV@MSN-CP1@FA was successfully applied for in vivo imaging of endogenously produced ClO- of tumor tissue in living animals.
Collapse
Affiliation(s)
- Yukun Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Beibei Zhu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Wanying Han
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Wei Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| |
Collapse
|
7
|
Jang JW, Kim H, Kim I, Lee SW, Jung HG, Hwang KS, Lee JH, Lee G, Lee D, Yoon DS. Surface Functionalization of Enzyme-Coronated Gold Nanoparticles with an Erythrocyte Membrane for Highly Selective Glucose Assays. Anal Chem 2022; 94:6473-6481. [PMID: 35438972 DOI: 10.1021/acs.analchem.1c04541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colorimetric glucose sensors using enzyme-coronated gold nanoparticles have been developed for high-throughput assays to monitor the blood glucose levels of diabetic patients. Although those sensors have shown sensitivity and wide linear detection ranges, they suffer from poor selectivity and stability in detecting blood glucose, which has limited their practical use. To address this limitation, herein, we functionalized glucose-oxidase-coronated gold nanoparticles with an erythrocyte membrane (EM-GOx-GNPs). Because the erythrocyte membrane (EM) selectively facilitates the permeation of glucose via glucose transporter-1 (GLUT1), the functionalization of GOx-GNPs with EM improved the stability, selectivity (3.3- to 15.8-fold higher), and limit of detection (LOD). Both membrane proteins, GLUT1 and aquaporin-1 (AQP1), on EM were shown to be key components for selective glucose detection by treatment with their inhibitors. Moreover, we demonstrated the stability of EM-GOx-GNPs in high-antioxidant-concentration conditions, under long-term storage (∼4 weeks) and a freeze-thaw cycle. Selectivity of the EM-GOx-GNPs against other saccharides was increased, which improved the LOD in phosphate-buffered saline and human serum. Our results indicated that the functionalization of colorimetric glucose sensors with EM is beneficial for improving selectivity and stability, which may make them candidates for use in a practical glucose sensor.
Collapse
Affiliation(s)
- Jae Won Jang
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea.,Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| | - Hyunji Kim
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea.,Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| | - Insu Kim
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Sang Won Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Hyo Gi Jung
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea.,Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02453, South Korea
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea.,Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Dongtak Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea.,Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| |
Collapse
|
8
|
Wu XJ, Yang CP, Jiang ZW, Xiao SY, Wang XY, Hu CY, Zhen SJ, Wang DM, Huang CZ, Li YF. A catalyst-free co-reaction system of long-lasting and intensive chemiluminescence applied to the detection of alkaline phosphatase. Mikrochim Acta 2022; 189:181. [PMID: 35394213 DOI: 10.1007/s00604-022-05287-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
A catalyst-free co-reaction luminol-H2O2-K2S2O8 chemiluminescence (CL) system was developed, with long-life and high-intensity emission, and CL emission lasting for 6 h. A possible mechanism of persistent and intense emission in this CL system was discussed in the context of CL spectra, cyclic voltammetry, electron spin resonance (ESR), and the effects of radical scavengers on luminol-H2O2-K2S2O8 system. H2O2 and K2S2O8 co-reactants can promote each other to continuously generate corresponding radicals (OH•, 1O2, O2•-, SO4•-) that trigger the CL emission of luminol. H2O2 can also be constantly produced by the reaction of K2S2O8 and H2O to further extend the persistence of this CL system. CL emission can be quenched via ascorbic acid (AA), which can be generated through hydrolysis reaction of L-ascorbic acid 2-phosphate trisodium salt (AAP) and alkaline phosphatase (ALP). Next, a CL-based method was established for the detection of ALP with good linearity from 0.08 to 5 U·L-1 and a limit of detection of 0.049 U·L-1. The proposed method was used to detect ALP in human serum samples.
Collapse
Affiliation(s)
- Xin Jie Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chang Ping Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhong Wei Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Si Yu Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xiao Yan Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Cong Yi Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Shu Jun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Dong Mei Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
9
|
Ouyang H, Xian J, Gao J, Zhang L, Wang W, Fu Z. Highly Sensitive Chemiluminescent Immunoassay of Mycotoxins Using ZIF-8-Derived Yolk-Shell Co Single-Atom Site Catalysts as Superior Fenton-like Probes. Anal Chem 2022; 94:3400-3407. [PMID: 35138805 DOI: 10.1021/acs.analchem.1c05557] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Superior to traditional nanoscale catalysts, single-atom site catalysts (SASCs) show such merits as maximal catalysis efficiency and outstanding catalytic activity for the construction of analytical methodological platforms. Hereby, an in situ etching strategy was designed to prepare yolk-shell Co SASCs derived from ZIF-8@SiO2 nanoparticles. On the basis of direct chemical interactions between precursors and supports, the Co element with isolated atomic dispersion was anchored on ZIF-8@SiO2 nanoparticles. The Co SASCs possess high Fenton-like activity and thus can catalyze the decomposition of H2O2 to produce massive superoxide radical anions instead of singlet oxygen and hydroxyl radicals. With the activity for producing superoxide radical anion, Co SASCs can greatly improve the chemiluminescent (CL) response of a luminol system by 3133.7 times. Furthermore, the SASCs with active sites of Co-O5 moieties were utilized as the CL probes for establishment of an immunoassay method for sensitive detection of mycotoxins by adopting aflatoxin B1 as a mode analyte. The quantitation range is 10-1000 pg/mL, and the limit of detection is 0.44 pg/mL (3σ) for aflatoxin B1. The proof-of-principle work elucidates the practicability of direct chemical interactions between precursors and supports for forming SASCs with ultrahigh CL response, which can be extended to the exploitation of more sorts of SASCs for tracing biological binding events.
Collapse
Affiliation(s)
- Hui Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Jiaxin Xian
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Jiaqi Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Lvxia Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Wenwen Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
10
|
Yu Y, Xie BR, Liu XH, Ye JJ, Cheng H, Zhong Z, Zhang XZ. A H2O2-responsive theranostic platform for chemiluminescence detection and synergistic therapy of tumor. J Mater Chem B 2022; 10:1634-1640. [DOI: 10.1039/d2tb00015f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemiluminescence substances that respond to hydrogen peroxide (H2O2) in the tumor microenvironment have the potential to achieve accurate tumor imaging. Here, Pluronic F-127 (PF127) and polymers containing oxalate ester (POE)...
Collapse
|
11
|
Ouyang H, Xian J, Luo S, Zhang L, Wang W, Fu Z. Emitter-Quencher Pair of Single Atomic Co Sites and Monolayer Titanium Carbide MXenes for Luminol Chemiluminescent Reactions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60945-60954. [PMID: 34914377 DOI: 10.1021/acsami.1c20489] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A facile, one-step doping protocol was adopted to synthesize Co single atomic site catalysts (SASCs) in UiO-66 metal-organic frameworks. In view of highly uniform active sites of Co-O6 moieties, the SASCs specifically contribute to catalyzing the generation of a large amount of singlet oxygen instead of superoxide or hydroxyl radicals, which endows Co SASCs with a the remarkable enhancement effect (∼3775 times) on luminol chemiluminescent (CL) emission. Interestingly, monolayer titanium carbide MXenes can drastically quench the CL signal of the Co SASC-boosted luminol reaction by ∼94.6% as highly efficient luminescent absorbents. Furthermore, the emitter-quencher pair of Co SASCs and titanium carbide MXenes was successfully adopted to develop an immunoassay method for cardiac troponin I (cTnI) on an immunochromatographic test strip platform. With a sandwich immunoreaction mode, a titanium carbide MXene-labeled cTnI tracer antibody was captured on the test line of a test strip, which significantly inhibited the CL response of the Co SACs-boosted luminol system. The dynamic range for quantitating cTnI is 1.0-100 pg mL-1, with a detection limit of 0.33 pg mL-1 (3σ). The test strip was successfully used to detect cTnI in human serum samples collected from cardiopathy patients. This proof-of-principle work manifests both the CL enhancement of SASCs and the quenching behavior of MXenes, which shows the thrilling prospects of combinational usage of the two functionalized nanomaterials for tracking biological recognition events.
Collapse
Affiliation(s)
- Hui Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jiaxin Xian
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shuai Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lvxia Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Wenwen Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Fan W, Li L, Yuan J, Ma X, Jia J, Zhang X. Aggregation-Induced Emission Effect within Peroxyoxalate-Loaded Mesoporous Silica Nanoparticles for Efficient Harvest of Chemiluminescence Energy in Aqueous Solutions. Anal Chem 2021; 93:17043-17050. [PMID: 34907772 DOI: 10.1021/acs.analchem.1c03798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aggregation-induced emission (AIE) molecules that can avoid the aggregation-caused quenching (ACQ) effect and break the concentration limit have been widely used for biosensing. Similar to fluorescence dyes, AIE molecules can be chemiexcited simply by a peroxyoxalate-based chemiluminescence (CL) reaction, but the hydrolysis of peroxyoxalate is often a problem in an aqueous solution. Herein, we report an AIE effect within peroxyoxalate-loaded silica nanoparticles (PMSNs) for an efficient harvest of CL energy as well as alleviation of bis(2,4,5-trichloro-6-carbopentoxyphenyl) oxalate (CPPO) hydrolysis. Peroxyoxalate (i.e., CPPO) and AIE molecules (i.e., 1,2-benzothiazol-2-triphenylamino acrylonitrile, BTPA) were loaded together within the mesoporous silica nanoparticles (MSNs) to synthesize the BTPA-PMSN nanocomposite. The BTPA-PMSNs not only allowed CPPO to be dispersed well in an aqueous solution but also avoided the hydrolysis of CPPO. Meanwhile, the proximity between BTPA and CPPO molecules in the mesopores of MSNs facilitated the BTPA aggregate to harvest the energy from CL intermediates. Hence, the CL system of BTPA-PMSNs can work efficiently in aqueous solutions at a physiological pH. The CL quantum yield of the BTPA-PMSN system was measured to be 9.91 × 10-5, about 20 000-fold higher than that obtained in the rhodamine B (RhB, a typical ACQ dye)-PMSN system. Using BTPA-PMSNs for H2O2 sensing, a limit of detection (LOD) as low as 5 nM can be achieved, 1000-fold lower than that achieved in the RhB-PMSNs system. Due to the feasibility of working at a physiological pH, this CL system is also quite suitable for the detection of oxidase substrates such as glucose and cholesterol. This BTPA-PMSN CL system with the merits of high CL quantum yield at a physiological pH is appealing for biosensing.
Collapse
Affiliation(s)
- Wentong Fan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Lin Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Jiajia Yuan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Xuejuan Ma
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Jia Jia
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Xinfeng Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
13
|
Lv C, Guo X, Hou Y, Liu W, Guo Y, Zhang Z, Jin Y, Li B. Long-Lasting Luminol Chemiluminescence Emission with 1,10-Phenanthroline-2,9-dicarboxylic Acid Copper(II) Complex on Paper. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53787-53797. [PMID: 34726366 DOI: 10.1021/acsami.1c14563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As most of the known systems are flashtype, long-lasting chemiluminescence (CL) emissions are extremely needed for the application of cold light sources, accurate CL quantitative analysis, and biological mapping. In this work, the flashtype system of luminol was altered to a long lasting CL system just because of the paper substrate. The Cu(II)-based organic complex was loaded on the paper surface, which can trigger luminol-H2O2 to produce a long lasting CL emission for over 30 min. By using 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) as the ligand, a hexacoordinated Cu(II)-based organic complex was synthesized by the simple freeze-drying method. It is interesting that the complex morphology can be controlled by adding different amounts of water in the synthesizing procedure. The complex with a certain size can be definitely trapped in the pores of the cellulose. Then, slow diffusion, which can be attributed to the long lasting CL emission, was produced. With the high catalytic activity of the complex, reactive oxygen species from H2O2 was generated and was responsible for the high CL intensity. By using the paper substrate, the flash-type luminol system can be easily transferred to the long-duration CL system without any extra reagent. This long-lasting emission system was used for hydrogen sulfide detection by the CL imaging method. This paper-based sensor has great potential for CL imaging in the clinical field in the future.
Collapse
Affiliation(s)
- Congcong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaoyan Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yanli Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Zixuan Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
14
|
Li J, Zhang X, Gao F, Yuan Q, Zhang C, Yuan H, Liu Y, Chen L, Han Y, Gao X, Gao L. Catalytic Clusterbody for Enhanced Quantitative Protein Immunoblot. Anal Chem 2021; 93:10807-10815. [PMID: 34328735 DOI: 10.1021/acs.analchem.1c00779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To assess low-abundance protein biomarkers associated with tumor progression, we have developed artificial catalytic antibodies based on well-defined metal clusters modified with rationally designed peptides, termed clusterbodies. Such clusterbodies possess favorable integrated features of matched ultrasmall sizes, intrinsic fluorescence, and enzyme-like catalytic and selective recognition properties that are inaccessible to traditional antibodies. Consequently, a quantitative assay with high accuracy and high sensitivity is established by measuring the fluorescence and catalytic chemiluminescence of metal clusters preferentially recognizing the protein biomarker, which is confirmed by the molecular-weight marker references of immunoblotting. The results of quantitative immunoblotting are highly close to that derived from the enzyme-linked immunosorbent assay, implying the reliability of this protocol. Remarkably, the detection limit of the aimed protein achieved is as low as 1.0 pg, one magnitude lower than that of the conventional immunoassay. The significant variation of expression levels of the biomarker in tumor cells evidently indicates their distinguished invasion ability. This platform has potential application in analyzing low-abundance protein biomarkers in complex biological matrixes, which is essential to corroborate tumor malignancy in early stage. It inspires the construction of clusterbody-based precise bioprobes with customized structures and integrative functions for advanced quantitative biosensing.
Collapse
Affiliation(s)
- Jiaojiao Li
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Fuping Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Yuan
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Chunyu Zhang
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Hui Yuan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhong Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lu Chen
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ying Han
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xueyun Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Liang Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
15
|
Zhang GQ, Li YS, Liu WP, Gao XF. A fluorimetric and colorimetric dual-signal sensor for hydrogen peroxide and glucose based on the intrinsic peroxidase-like activity of cobalt and nitrogen co-doped carbon dots and inner filter effect. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3196-3204. [PMID: 34184019 DOI: 10.1039/d1ay00781e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, cobalt and nitrogen co-doped carbon dots (Co-N-CDs) were fabricated via a one-pot hydrothermal approach. The obtained Co-N-CDs displayed peroxidase-like activity and fluorescence properties. It could catalyze the oxidization of guaiacol (GA) in the presence of hydrogen peroxide (H2O2), and thus, resulted in color change, accompanied by a new absorption peak in 470 nm. Owing to the inner filter effect, the oxidized product of GA (known as 2-PQ) largely absorbed the Co-N-CD fluorescence which was excited at 380 nm. Such changes in absorbance and fluorescence intensity were H2O2 concentration-dependent. Specifically, H2O2 could be generated by glucose oxidase to catalyze the oxidation of glucose, and thus, a colorimetric and fluorimetric sensor for glucose was established with high selectivity and excellent sensitivity. After the optimization of experimental conditions, this colorimetric sensor has a good linear range from 2 to 100 μM for glucose and the detection limit was 1.16 μM. Besides, the linear relationship between the fluorescence quenching value (ΔF) and the glucose concentration (0.4-40 μM) was obtained with a detection limit of 0.18 μM. Meanwhile, the proposed sensor has also been successfully applied for glucose detection in human serum samples, and the results were consistent with those of the standard method.
Collapse
Affiliation(s)
- Guo-Qi Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | |
Collapse
|
16
|
Li J, Hu Y, Li Z, Liu W, Deng T, Li J. Photoactivatable Red Chemiluminescent AIEgen Probe for In Vitro/ Vivo Imaging Assay of Hydrazine. Anal Chem 2021; 93:10601-10610. [PMID: 34296856 DOI: 10.1021/acs.analchem.1c01804] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here, we have developed a novel photoactivatable red chemiluminescent AIEgen probe (ACL), based on the combination of the red-emission AIEgen fluorophore (TPEDC) that shows excellent singlet oxygen (1O2)-generation ability and the precursor of Schaap's dioxetane (the linker connected to adamantane is the C═C bond) that can be modified to target various analytes, for in vitro and in vivo measurement of hydrazine. Prior to applying for sensing detection, the C═C bond connected to adamantane in ACL was first converted into dioxetane by irradiation to form the activated chemiluminescent AIEgen probe (ACLD). Then, the self-immolative reaction was triggered upon the deprotection of the acylated phenolic hydroxyl group in ACLD in the presence of hydrazine, resulting in the release of the high energy held in the 1,2-dioxetanes, and then, the chemiexcitation was triggered, thereby producing red chemiluminescence through the intramolecular chemiluminescence resonance energy transfer from Schaap's dioxetane to TPEDC. This chemiluminescent AIEgen probe was evaluated in a clean buffer environment as well as using living cells and mouse models.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yingcai Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zuhao Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wei Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ting Deng
- Institute of Applied Chemistry, School of Science, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
17
|
Jiang L, Wang L, Zhan DS, Jiang WR, Fodjo EK, Hafez ME, Zhang YM, Zhao H, Qian RC, Li DW. Electrochemically renewable SERS sensor: A new platform for the detection of metabolites involved in peroxide production. Biosens Bioelectron 2021; 175:112918. [PMID: 33383430 DOI: 10.1016/j.bios.2020.112918] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
The accurate detection of hydrogen peroxide (H2O2)-involved metabolites plays a significant role in the early diagnosis of metabolism-associated diseases, whereas most of current metabolite-sensing systems are often hindered by low sensitivity, interference of coexisting species, or tedious preparation. Herein, an electrochemistry-regenerated surface-enhanced Raman scattering (SERS) sensor was developed to serve as a universal platform for detecting H2O2-involved metabolites. The SERS sensor was constructed by modifying newly synthesized 2-mercaptohydroquinone (2-MHQ) molecules on the surface of gold nanoparticles (AuNPs) that were electrochemically predeposited on an ITO electrode. Metabolites were detected through the changes in the SERS spectrum as a result of the reaction of 2-MHQ with H2O2 induced by the metabolites. Combining the superiority of SERS fingerprint identification and the specificity of the related enzymatic reactions producing H2O2, the designed SERS sensor was highly selective in detecting glucose and uric acid as models of H2O2-involved metabolite with limits of detection (LODs) of 0.159 μM and 0.0857 μM, respectively. Moreover, the sensor maintained a high SERS activity even after more than 10 electrochemical regenerations within 2 min, demonstrating its effectiveness for the rapid detection of various metabolites with electrochemistry-driven regulation. Importantly, the presented SERS sensor showed considerable practicability for the detection of metabolites in real serum samples. Accordingly, the SERS sensor is a new detection platform for H2O2-involved metabolites detection in biological fluids, which may aid the early diagnosis of metabolism-related diseases.
Collapse
Affiliation(s)
- Lei Jiang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Lu Wang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - De-Sheng Zhan
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wen-Rong Jiang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Essy Kouadio Fodjo
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yan-Mei Zhang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Hu Zhao
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
18
|
Xu Y, Yang W, Zhang B. ROS-responsive probes for low-background optical imaging: a review. Biomed Mater 2021; 16:022002. [PMID: 33142272 DOI: 10.1088/1748-605x/abc745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Optical imaging is a facile tool for visualizing biological processes and disease progression, but its image quality is largely limited by light-induced autofluorescence or background signals. To overcome this issue, low-background optical-imaging techniques including chemiluminescence imaging, afterglow imaging and photoacoustic imaging have been developed, based on their unique working mechanisms, which are: the detection of light emissions from chemical reactions, the cessation of light excitation before signal collection, and the detection of ultrasonic signals instead of light signals, respectively. Stimuli-responsive probes are highly desirable for improved imaging results since they can significantly reduce surrounding interference signals. Reactive oxygen species (ROS), which are closely implicated in a series of diseases such as cancer and inflammation, are frequently employed as initiators for responsive agents to selectively change the imaging signal. Thus, ROS-responsive agents incorporated into low-background imaging techniques can achieve a more promising imaging quality. In this review, recent advances in ROS-responsive probes for low-background optical-imaging techniques are summarized. Moreover, the approaches to improving the sensitivity of probes and tissue penetration depth are discussed in detail. In particular, we highlight the reaction mechanisms between the probes and ROS, revealing the potential for low-background optical imaging.
Collapse
Affiliation(s)
- Yan Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | | | | |
Collapse
|
19
|
Yu X, Du S, Yang Y, Di Z, Wu M. Two Pyrene-Based Metal-Organic Frameworks for Chemiluminescence. Inorg Chem 2021; 60:1320-1324. [PMID: 33417445 DOI: 10.1021/acs.inorgchem.0c03627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fluorescent agents play an important role in the peroxyoxalate chemiluminescence system. However, the effect of different frameworks on chemiluminescence (CL) has not been explored. Herein two pyrene-based metal-organic frameworks (MOFs), [Pb2L]n·2nDMA·2nH2O (1) and [(Ca2L)·(DMF)3]n·2.5nDMF·6nH2O (2) (H4L = 5,5'-(-pyrene-1,6-diyl)-diisophthalic acid; DMA = N,N'-dimethylacetamide; DMF = N,N'-dimethylformamide), have been successfully synthesized and are applied to CL. They both exhibit strong and lasting emission that is visible to the naked eye and is significantly stronger than that of the ligand. More importantly, compared with 2, 1 has notably better CL performance. We infer that the reason may be that 1 has higher stability and larger open channels, which can avoid the aggregation of organic ligands as well as provide an effective pathway for the active substance to diffuse into the channels.
Collapse
Affiliation(s)
- Xuying Yu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shunfu Du
- College of Chemistry, Fuzhou University, Fuzhou 350108, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yan Yang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Zhengyi Di
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Mingyan Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
20
|
Sun X, Lei J, Jin Y, Li B. Long-Lasting and Intense Chemiluminescence of Luminol Triggered by Oxidized g-C 3N 4 Nanosheets. Anal Chem 2020; 92:11860-11868. [PMID: 32786482 DOI: 10.1021/acs.analchem.0c02221] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Most of the known chemiluminescence (CL) systems are flash-type, whereas a CL system with long-lasting and strong emission is very favorable for accurate CL quantitative analysis and imaging assays. In this work, we found that the oxidized g-C3N4 (g-CNOX) could trigger luminol-H2O2 to produce a long-lasting and intense CL emission. The CL emission lasted for over 10 min and could be observed by the naked eye in a dark room. By means of a CL spectrum, X-ray photoelectron spectra, and electron spin resonance spectra, the possible mechanism of this CL reaction was proposed. This strong and long-duration CL emission was attributed to the high catalytic activity of g-CNOX nanosheets and continuous generation of reactive oxygen species from H2O2 on g-CNOX surface. Taking full advantage of the long-lasting CL property of this system, we proposed one "non-in-situ mixing" mode of CL measurement. Compared with the traditional "in-situ mixing" CL measurement mode, this measurement mode was convenient to operate and had good reproducibility. This work not only provides a long-lasting CL reaction but also deepens the understanding of the structure and properties of g-C3N4 material.
Collapse
Affiliation(s)
- Xiaoqing Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
21
|
Yan M, Ye J, Zhu Q, Zhu L, Xiao T, Huang J, Yang X. Self-Enhanced Chemiluminescence of Tris(bipyridine) Ruthenium(II) Derivative Nanohybrids: Mechanism Insight and Application for Sensitive Silver Ions Detection. Anal Chem 2020; 92:7265-7272. [PMID: 32340448 DOI: 10.1021/acs.analchem.0c00897] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent years, self-enhanced tris(bipyridine) ruthenium(II)-based luminescence systems have achieved great development in electrochemiluminescence (ECL) but are seldom mentioned in chemiluminescence (CL). Herein, a self-enhanced CL luminophore with excellent CL behavior was synthesized by covalently cross-linking tris(4,4'-dicarboxylic acid-2,2'-bipyridyl) ruthenium(II) dichloride ([Ru(dcbpy)3]Cl2) with branched polyethylenimine (BPEI) in one molecule (BPEI-Ru(II)), which then self-assembled into nanoparticles (BRuNPs). The nanoparticles exhibited stable and strong CL emission with potassium persulfate (K2S2O8) as the oxidant. After the redox reaction between K2S2O8 and BRuNPs, and the subsequent intramolecular electron-transfer reaction, excited state luminophores were generated to emit light. This self-enhanced CL system shortened the electron transfer distance and reduced energy loss, thus improving the luminous efficiency. In addition, the CL lifetime of BRuNPs/K2S2O8 was longer than classical luminophores such as N-(4-aminobutyl)-N-ethylisoluminol (ABEI), indicating the potential application of this system in CL imaging. Surprisingly, Ag+ was found to greatly improve the CL efficiency of BRuNPs/K2S2O8 by catalyzing the decomposition of K2S2O8 to generate SO4•-. On the basis of the enhancement effect of Ag+, a simple and rapid CL method was proposed for Ag+ detection. The chemosensor showed a wide linear range from 25 to 3000 nM and low detection limit of 9.03 nM, as well as good stability and excellent selectivity. More importantly, this result indicated that Ag+ can be used as a coreaction accelerator to develop a ternary self-enhanced CL system, BRuNPs/K2S2O8/Ag+.
Collapse
Affiliation(s)
- Mengxia Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing Ye
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qiuju Zhu
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liping Zhu
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ting Xiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
22
|
Wang G, Li J, He Y, Liu J, Yu M, Wang G. Establishment of a universal and sensitive plasmonic biosensor platform based on the hybridization chain reaction (HCR) amplification induced by a triple-helix molecular switch. Analyst 2020; 145:3864-3870. [PMID: 32270806 DOI: 10.1039/d0an00249f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, we established a universal and sensitive plasmonic sensing strategy for biomolecule assays by coupling the hybridization chain reaction (HCR) strategy and a triple-helix molecular switch. Upon the recognition of the target, a single-stranded DNA as a universal trigger (UT) was released from the triple-helix molecular switch (THMS). Thus, the HCR process can be triggered between two hairpins M1 and M2, resulting in the aggregation of gold nanoparticles (AuNPs) via the hybridization between the tail sequence on M1 (or M2) and a DNA-AuNP probe with a dramatic change in the absorbance at 521 nm. More specifically, the strategy, which was conducted by the introduction of target-specific recognition of THMS and universalized by virtue of altering the aptamer or DNA sequence without changing the triple-helix structure, enables simple design for multiple target detection. By taking advantage of THMS, this strategy could enable stable and sensitive detection of a variety of targets including nucleic acids, small molecules and proteins, which may possess great potential for practical applications.
Collapse
Affiliation(s)
- Ganglin Wang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | | | | | | | | | | |
Collapse
|
23
|
Chen K, Jia H, Liu Y, Yin P, Wei Y. Insulin‐Sensitizing Activity of Sub‐Nanoscaled Polyalkoxyvanadate Clusters. ACTA ACUST UNITED AC 2020; 4:e1900281. [DOI: 10.1002/adbi.201900281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/27/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Kun Chen
- South China Advanced Institute for Soft Matter Science and TechnologySouth China University of Technology Guangzhou 510641 China
- Department of ChemistryTsinghua University Beijing 100084 China
| | - Hongli Jia
- Department of ChemistryTsinghua University Beijing 100084 China
- State Key Laboratory of Natural and Biomimetic DrugsPeking University Beijing 100191 China
| | - Yuan Liu
- South China Advanced Institute for Soft Matter Science and TechnologySouth China University of Technology Guangzhou 510641 China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and TechnologySouth China University of Technology Guangzhou 510641 China
| | - Yongge Wei
- Department of ChemistryTsinghua University Beijing 100084 China
- State Key Laboratory of Natural and Biomimetic DrugsPeking University Beijing 100191 China
| |
Collapse
|
24
|
Yang M, Huang J, Fan J, Du J, Pu K, Peng X. Chemiluminescence for bioimaging and therapeutics: recent advances and challenges. Chem Soc Rev 2020; 49:6800-6815. [DOI: 10.1039/d0cs00348d] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current progress, design principles in bioimaging and therapeutic applications, and future perspectives of various chemiluminescent platforms are reviewed.
Collapse
Affiliation(s)
- Mingwang Yang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- 116024 Dalian
- China
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- 116024 Dalian
- China
- Ningbo Institute of Dalian University of Technology
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- 116024 Dalian
- China
- Ningbo Institute of Dalian University of Technology
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- 116024 Dalian
- China
| |
Collapse
|
25
|
Delafresnaye L, Bloesser FR, Kockler KB, Schmitt CW, Irshadeen IM, Barner‐Kowollik C. All Eyes on Visible‐Light Peroxyoxalate Chemiluminescence Read‐Out Systems. Chemistry 2019; 26:114-127. [DOI: 10.1002/chem.201904054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/24/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Laura Delafresnaye
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
| | - Fabian R. Bloesser
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
| | - Katrin B. Kockler
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
| | - Christian W. Schmitt
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
| | - Ishrath M. Irshadeen
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
| | - Christopher Barner‐Kowollik
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Germany
| |
Collapse
|
26
|
Shah SN, Shah AH, Dou X, Khan M, Lin L, Lin JM. Radical-Triggered Chemiluminescence of Phenanthroline Derivatives: An Insight into Radical-Aromatic Interaction. ACS OMEGA 2019; 4:15004-15011. [PMID: 31552342 PMCID: PMC6751721 DOI: 10.1021/acsomega.9b01785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The hitherto unknown influence of 1,10-phenonthroline (1,10-phen) and its derivatives on the weak chemiluminescence (CL) of periodate-peroxide has been investigated, and a novel method for CL catalysis is described. Herein, we have deconvoluted the variation in CL intensity arising from the addition of various derivatives of 1,10-phen. Interestingly, similar derivatives of 1,10-phen show interesting differences in their reactivity toward CL. Electron-withdrawing substituents on 1,10-phen boosted the CL signals, indicating a negative charge buildup on 1,10-phen in the rate-determining step. The 1,10-phen derivatives having substitution at the C5=C6 position resulted in no CL signals due to the blockage of the reactive site. Mechanistic investigations are interpreted in terms of free radical (H2O2 reaction), followed by the oxygen atom transfer via an electrophilic attack of IO4 - (IO4 - reaction) on 1,10-phen resulting in dioxetane with enhanced CL emission. Additionally, the relationship between electronic structures and photophysical properties was investigated using density functional theory. Our results are expected to open up promising application of 1,10-phen as a molecular catalyst, providing a new strategy for metal-free catalytic CL enhancement reaction. We believe that this would foster in gleaning more detailed information on the nature of these reactions, thereby leading to a deeper understanding of the CL mechanism.
Collapse
Affiliation(s)
- Syed Niaz
Ali Shah
- Beijing
Key Laboratory of Microanalytical Methods and Instrumentation, MOE
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology,
Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Aamir Hassan Shah
- The
National Center for Nanoscience and Technology (NCNST) of China, No. 11 ZhongGuanCun, 100190 Beijing, China
| | - Xiangnan Dou
- Beijing
Key Laboratory of Microanalytical Methods and Instrumentation, MOE
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology,
Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mashooq Khan
- Beijing
Key Laboratory of Microanalytical Methods and Instrumentation, MOE
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology,
Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ling Lin
- The
National Center for Nanoscience and Technology (NCNST) of China, No. 11 ZhongGuanCun, 100190 Beijing, China
| | - Jin-Ming Lin
- Beijing
Key Laboratory of Microanalytical Methods and Instrumentation, MOE
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology,
Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Yan Y, Shi P, Song W, Bi S. Chemiluminescence and Bioluminescence Imaging for Biosensing and Therapy: In Vitro and In Vivo Perspectives. Theranostics 2019; 9:4047-4065. [PMID: 31281531 PMCID: PMC6592176 DOI: 10.7150/thno.33228] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
Chemiluminescence (CL) and bioluminescence (BL) imaging technologies, which require no external light source so as to avoid the photobleaching, background interference and autoluminescence, have become powerful tools in biochemical analysis and biomedical science with the development of advanced imaging equipment. CL imaging technology has been widely applied to high-throughput detection of a variety of analytes because of its high sensitivity, high efficiency and high signal-to-noise ratio (SNR). Using luciferase and fluorescent proteins as reporters, various BL imaging systems have been developed innovatively for real-time monitoring of diverse molecules in vivo based on the reaction between luciferin and the substrate. Meanwhile, the kinetics of protein interactions even in deep tissues has been studied by BL imaging. In this review, we summarize in vitro and in vivo applications of CL and BL imaging for biosensing and therapy. We first focus on in vitro CL imaging from the view of improving the sensitivity. Then, in vivo CL applications in cells and tissues based on different CL systems are demonstrated. Subsequently, the recent in vitro and in vivo applications of BL imaging are summarized. Finally, we provide the insight into the development trends and future perspectives of CL and BL imaging technologies.
Collapse
|
28
|
Wu M, Wu L, Li J, Zhang D, Lan S, Zhang X, Lin X, Liu G, Liu X, Liu J. Self-Luminescing Theranostic Nanoreactors with Intraparticle Relayed Energy Transfer for Tumor Microenvironment Activated Imaging and Photodynamic Therapy. Am J Cancer Res 2019; 9:20-33. [PMID: 30662551 PMCID: PMC6332793 DOI: 10.7150/thno.28857] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
The low tissue penetration depth of external excitation light severely hinders the sensitivity of fluorescence imaging (FL) and the efficacy of photodynamic therapy (PDT) in vivo; thus, rational theranostic platforms that overcome the light penetration depth limit are urgently needed. To overcome this crucial problem, we designed a self-luminescing nanosystem (denoted POCL) with near-infrared (NIR) light emission and singlet oxygen (1O2) generation abilities utilizing an intraparticle relayed resonance energy transfer strategy. Methods: Bis[3,4,6-trichloro-2-(pentyloxycarbonyl) phenyl] oxalate (CPPO) as a chemical energy source with high reactivity toward H2O2, poly[(9,9'-dioctyl-2,7-divinylene-fluorenylene)-alt-2-methoxy- 5-(2-ethyl-hexyloxy)-1,4-phenylene] (PFPV) as a highly efficient chemiluminescence converter, and tetraphenylporphyrin (TPP) as a photosensitizer with NIR emission and 1O2 generation abilities were coencapsulated by self-assembly with poly(ethyleneglycol)-co-poly(caprolactone) (PEG-PCL) and folate-PEG-cholesterol to form the POCL nanoreactor, with folate as the targeting group. A series of in vitro and in vivo analyses, including physical and chemical characterizations, tumor targeting ability, tumor microenvironment activated imaging and photodynamic therapy, as well as biosafety, were systematically investigated to characterize the POCL. Results: The POCL displayed excellent NIR luminescence and 1O2 generation abilities in response to H2O2. Therefore, it could serve as a specific H2O2 probe to identify tumors through chemiluminescence imaging and as a chemiluminescence-driven PDT agent for inducing tumor cell apoptosis to inhibit tumor growth due to the abnormal overproduction of H2O2 in the tumor microenvironment. Moreover, the folate ligand on the POCL surface can further improve the accumulation at the tumor site via a receptor-mediated mechanism, thus enhancing tumor imaging and the therapeutic effects both in vitro and in vivo but without any observable systemic toxicity. Conclusion: The nanosystem reported here might serve as a targeted, smart, precise, and noninvasive strategy triggered by the tumor microenvironment rather than by an outside light source for cancer NIR imaging and PDT treatment without limitations on penetration depth.
Collapse
|
29
|
Mao S, Zhang Q, Li H, Zhang W, Huang Q, Khan M, Lin JM. Adhesion analysis of single circulating tumor cells on a base layer of endothelial cells using open microfluidics. Chem Sci 2018; 9:7694-7699. [PMID: 30393530 PMCID: PMC6182569 DOI: 10.1039/c8sc03027h] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/11/2018] [Indexed: 12/25/2022] Open
Abstract
Circulating Tumor Cell (CTC) adhesion is essential in understanding the mechanism of metastasis. Although conventional methods for measuring adhesion strength have performed well on cell populations, a deeper insight into cell behavior demands new approaches for realizing non-destructive, high-resolution, in situ analysis of single cell adhesion. Here, we present a microfluidic method for adhesion strength analysis of single CTCs on a base layer of endothelial cells (ECs) to clarify cell-to-cell adhesion at single cell resolution. A confined flow in open space formed by a microfluidic device supplied a trypsin zone for the analysis of single cell adhesion. Tumor cell lines were used to model CTCs. This method was proved successful for extracting different types of CTCs from an endothelial cell layer to measure their adhesion strength by the time required for detachment. Moreover, we successfully uncovered the drug influence on the adhesion strength of single CTCs on ECs, which is promising in drug screening for tumor therapy. The current work reports a general strategy for cell-to-cell adhesion analysis for single cells.
Collapse
Affiliation(s)
- Sifeng Mao
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| | - Qiang Zhang
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| | - Haifang Li
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| | - Wanling Zhang
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| | - Qiushi Huang
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| | - Mashooq Khan
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| | - Jin-Ming Lin
- Department of Chemistry , Beijing Key Laboratory of Microanalytical Methods and Instrumentation , MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China .
| |
Collapse
|
30
|
Li J, Yang C, Wang WL, Yan XP. Functionalized gold and persistent luminescence nanoparticle-based ratiometric absorption and TR-FRET nanoplatform for high-throughput sequential detection of l-cysteine and insulin. NANOSCALE 2018; 10:14931-14937. [PMID: 30046773 DOI: 10.1039/c8nr04414g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In vitro diagnostic is a crucial component of healthcare systems for early diagnosis of diseases and follow-up therapy, which generally makes clinical diagnosis faster, easier, and painless for patients. Herein, we report a dual-signaling nanoplatform for ratiometric absorption and time-resolved fluorescence resonance energy transfer based on l-cysteine-mediated aggregated gold nanoparticles and long afterglow nature of persistent luminescence nanoparticles. With this nanoplatform, we have achieved high-throughput sequential detection of l-cysteine and insulin in human serum without matrix interference. The proposed nanoplatform shows excellent linearity and precision for the determination of l-cysteine in the range of 10 nM to 5.5 μM with the limit of detection (LOD) of 2.2 nM and for the detection of insulin in the range of 12 pM to 3.44 nM with LOD of 2.06 pM. The developed dual-signaling nanoplatform has been successfully applied for the sequential determination of l-cysteine and insulin in human serum.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | | | | | |
Collapse
|
31
|
Li W, Khan M, Mao S, Feng S, Lin JM. Advances in tumor-endothelial cells co-culture and interaction on microfluidics. J Pharm Anal 2018; 8:210-218. [PMID: 30140484 PMCID: PMC6104288 DOI: 10.1016/j.jpha.2018.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 01/10/2023] Open
Abstract
The metastasis in which the cancer cells degrade the extracellular matrix (ECM) and invade to the surrounding and far tissues of the body is the leading cause of mortality in cancer patients. With a lot of advancement in the field, yet the biological cause of metastasis are poorly understood. The microfluidic system provides advanced technology to reconstruct a variety of in vivo-like environment for studying the interactions between tumor cells (TCs) and endothelial cells (ECs). This review gives a brief account of both two-dimensional models and three-dimensional microfluidic systems for the analysis of TCs-ECs co-culture as well as their applications to anti-cancer drug screening. Furthermore, the advanced methods for analyzing cell-to-cell interactions at single-cell level were also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Mao S, Zhang W, Huang Q, Khan M, Li H, Uchiyama K, Lin JM. In Situ Scatheless Cell Detachment Reveals Correlation between Adhesion Strength and Viability at Single-Cell Resolution. Angew Chem Int Ed Engl 2017; 57:236-240. [PMID: 29136313 DOI: 10.1002/anie.201710273] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/29/2017] [Indexed: 12/20/2022]
Abstract
Single-cell biology provides insights into some of the most fundamental processes in biology and promotes the understanding of life's mysteries. As the technologies to study single-cells expand, they will require sophisticated analytical tools to make sense of various behaviors and components of single-cells as well as their relations in the adherent tissue culture. In this paper, we revealed cell heterogeneity and uncovered the connections between cell adhesion strength and cell viability at single-cell resolution by extracting single adherent cells of interest from a standard tissue culture by using a microfluidic chip-based live single-cell extractor (LSCE). We believe that this method will provide a valuable new tool for single-cell biology.
Collapse
Affiliation(s)
- Sifeng Mao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Wanling Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Qiushi Huang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Mashooq Khan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Haifang Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Katsumi Uchiyama
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
33
|
Mao S, Zhang W, Huang Q, Khan M, Li H, Uchiyama K, Lin JM. In Situ Scatheless Cell Detachment Reveals Correlation between Adhesion Strength and Viability at Single-Cell Resolution. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sifeng Mao
- Department of Chemistry; Beijing Key Laboratory of Microanalytical Methods and Instrumentation; The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Wanling Zhang
- Department of Chemistry; Beijing Key Laboratory of Microanalytical Methods and Instrumentation; The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Qiushi Huang
- Department of Chemistry; Beijing Key Laboratory of Microanalytical Methods and Instrumentation; The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Mashooq Khan
- Department of Chemistry; Beijing Key Laboratory of Microanalytical Methods and Instrumentation; The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Haifang Li
- Department of Chemistry; Beijing Key Laboratory of Microanalytical Methods and Instrumentation; The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Katsumi Uchiyama
- Department of Applied Chemistry; Graduate School of Urban Environmental Sciences; Tokyo Metropolitan University; Minamiohsawa Hachioji Tokyo 192-0397 Japan
| | - Jin-Ming Lin
- Department of Chemistry; Beijing Key Laboratory of Microanalytical Methods and Instrumentation; The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology; Tsinghua University; Beijing 100084 China
| |
Collapse
|