1
|
Zhang Y, Zhang JJ, Lou L, Lin R, Cramer N, Wang SG, Chen Z. Recent advances in Rh(I)-catalyzed enantioselective C-H functionalization. Chem Soc Rev 2024; 53:3457-3484. [PMID: 38411467 DOI: 10.1039/d3cs00762f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Chiral carbon-carbon (C-C) and carbon-heteroatom (C-X) bonds are pervasive and very essential in natural products, bioactive molecules, and functional materials, and their catalytic construction has emerged as one of the hottest research fields in synthetic organic chemistry. The last decade has witnessed vigorous progress in Rh(I)-catalyzed asymmetric C-H functionalization as a complement to Rh(II) and Rh(III) catalysis. This review aims to provide the most comprehensive and up-to-date summary covering the recent advances in Rh(I)-catalyzed C-H activation for asymmetric functionalization. In addition to the development of diverse reactions, chiral ligand design and mechanistic investigation (inner-sphere mechanism, outer-sphere mechanism, and 1,4-Rh migration) will also be highlighted.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, Jiangsu, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Lujun Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Nicolai Cramer
- Institute of Chemical Sciences and Engineering (ISIC), EPFL SB ISIC LCSA, BCH 4305, 1015 Lausanne, Switzerland.
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
2
|
Deng YQ, Yan QQ, Zhang TT, Zhou Y, He CY, Liu QZ. Copper-Catalyzed Asymmetric Allylation of N-Aryl Aldimines. J Org Chem 2024; 89:313-320. [PMID: 38079214 DOI: 10.1021/acs.joc.3c02035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The copper-catalyzed enantioselective allylation reaction of N-aryl aldimines has been developed using a combination of Cu(OAc)2 and SPINOL-based phosphonamidite. This protocol significantly broadens the substrate scope, such that imines bearing various ortho-substituents on the N-aryl were converted smoothly into homoallylic amines in up to 99% yield and 98% ee. Taking advantage of the diversity of the N-aryl motif, three kinds of N-heterocyclic compounds were constructed, respectively, from the corresponding homoallylic amines in merely one step.
Collapse
Affiliation(s)
- Yu-Qin Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| | - Qi-Qi Yan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| | - Ting-Ting Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| | - Yi Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| |
Collapse
|
3
|
Zhan LW, Lu CJ, Feng J, Liu RR. Atroposelective Synthesis of C-N Vinylindole Atropisomers by Palladium-Catalyzed Asymmetric Hydroarylation of 1-Alkynylindoles. Angew Chem Int Ed Engl 2023; 62:e202312930. [PMID: 37747364 DOI: 10.1002/anie.202312930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
Transition-metal-catalyzed hydroarylation of unsymmetrical internal alkynes remains challenging because of the difficulty in controlling regioselectivity and stereoselectivity. Moreover, the enantioselective hydroarylation of alkynes using organoboron reagents has not been reported. Herein, we report for the first time that palladium compounds can catalyze the hydroarylation of 1-alkynylindoles with organoborons for the synthesis of chiral C-N atropisomers. A series of rarely reported vinylindole atropisomers was synthesized with excellent regio-, stereo- (Z-selectivity), and enantioselectivity under mild reaction conditions. The ready availability of organoborons and alkynes and the simplicity, high stereoselectivity, and good functional group tolerance of this catalytic system make it highly attractive.
Collapse
Affiliation(s)
- Li-Wen Zhan
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao, 266071, China
| |
Collapse
|
4
|
Moniwa H, Yamanaka M, Shintani R. Copper-Catalyzed Regio- and Stereoselective Formal Hydro(borylmethylsilyl)ation of Internal Alkynes via Alkenyl-to-Alkyl 1,4-Copper Migration. J Am Chem Soc 2023; 145:23470-23477. [PMID: 37852271 DOI: 10.1021/jacs.3c06187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Catalytic reactions involving 1,n-metal migration from carbon to carbon enable a nonclassical way of constructing organic molecular skeletons, rapidly providing complex molecules from relatively simple precursors. By utilization of this attractive feature, a new and efficient synthesis of alkenylsilylmethylboronates has been developed by formal hydro(borylmethylsilyl)ation of unsymmetric internal alkynes with silylboronates under copper catalysis. The reaction proceeds regioselectively and involves an unprecedented alkenyl-to-alkyl 1,4-copper migration. The reaction mechanism has been investigated by a series of kinetic, NMR, and deuterium-labeling experiments.
Collapse
Affiliation(s)
- Hirokazu Moniwa
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka560-8531, Japan
| | - Masahiro Yamanaka
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
5
|
Halimehjani AZ, Breit B. Rhodium-catalyzed diastereoselective synthesis of highly substituted morpholines from nitrogen-tethered allenols. Chem Commun (Camb) 2023; 59:4376-4379. [PMID: 36946522 DOI: 10.1039/d3cc00151b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Rhodium-catalyzed intramolecular cyclization of nitrogen-tethered allenols was investigated for the synthesis of functionalized morpholines. By using this strategy, various N-protected 2,5- and 2,6-disubstituted as well as 2,3,5- and 2,5,6-trisubstituted morpholines were obtained via an atom-economic pathway with high to excellent yields, diastereo- and enantioselectivities (up to 99% yield, up to >99 : 1 dr and up to >99.9 ee). The utilities of the synthesized morpholines in ozonolysis, hydration, metathesis and epoxidation reactions were also investigated.
Collapse
Affiliation(s)
- A Ziyaei Halimehjani
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-9516, Tehran, Iran.
- Faculty of Chemistry, Kharazmi University, 49 Mofateh Street, P. O. Box 15719-14911, Tehran, Iran.
| | - B Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albert strasse 21, Freiburg im Breisgau, 79104, Germany.
| |
Collapse
|
6
|
Abstract
Asymmetric catalysis has emerged as a general and powerful approach for constructing chiral compounds in an enantioselective manner. Hence, developing novel chiral ligands and catalysts that can effectively induce asymmetry in reactions is crucial in modern chemical synthesis. Among such chiral ligands and catalysts, chiral dienes and their metal complexes have received increased attention, and a great progress has been made over the past two decades. This review provides comprehensive and critical information on the essential aspects of chiral diene ligands and their importance in asymmetric catalysis. The literature covered ranges from August 2003 (when the first effective chiral diene ligand for asymmetric catalysis was reported) to October 2021. This review is divided into two parts. In the first part, the chiral diene ligands are categorized according to their structures, and their preparation methods are summarized. In the second part, their applications in asymmetric transformations are presented according to the reaction types.
Collapse
Affiliation(s)
- Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Tamio Hayashi
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
7
|
Rhodium-catalyzed synthesis of 1-silabenzonorbornenes via 1,4-rhodium migration. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Wang F, Huang D, Zhao P, Yang M, Han T, Wang K, Wang J, Su Y, Hu Y. Study on the Allylation of Benzol[ e][1,2,3]oxathiazine-2,2-dioxides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Saito T, Caner J, Toriumi N, Iwasawa N. Rhodium‐Catalyzed
meta
‐Selective C−H Carboxylation Reaction of 1,1‐Diarylethylenes via Hydrorhodation‐Rhodium Migration. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Takanobu Saito
- Department of Chemistry Tokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Joaquim Caner
- Department of Chemistry Tokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Naoyuki Toriumi
- Department of Chemistry Tokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Nobuharu Iwasawa
- Department of Chemistry Tokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
10
|
Saito T, Caner J, Toriumi N, Iwasawa N. Rhodium-Catalyzed meta-Selective C-H Carboxylation Reaction of 1,1-Diarylethylenes via Hydrorhodation-Rhodium Migration. Angew Chem Int Ed Engl 2021; 60:23349-23356. [PMID: 34402148 DOI: 10.1002/anie.202109470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 11/10/2022]
Abstract
A meta-selective C-H carboxylation reaction of 1,1-diarylethylene derivatives with CO2 by using a rhodium catalyst with NaOi Pr as a stoichiometric reductant has been achieved. Together with hydrogenation of the ethylene moiety, a carboxyl group was introduced to the meta-position of the aryl ring with high selectivity over the ortho-positions. Experimental and computational mechanistic studies indicate that this carboxylation reaction proceeds via hydrorhodation on the ethylene moiety, followed by 1,4-rhodium migration and successive 1,2-rhodium migration on the aryl ring. The use of a bulky phosphine ligand seems to be the key to this unusual aryl-to-aryl 1,2-rhodium shift.
Collapse
Affiliation(s)
- Takanobu Saito
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Joaquim Caner
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Naoyuki Toriumi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
11
|
Cooze CJC, McNutt W, Schoetz MD, Sosunovych B, Grigoryan S, Lundgren RJ. Diastereo-, Enantio-, and Z-Selective α,δ-Difunctionalization of Electron-Deficient Dienes Initiated by Rh-Catalyzed Conjugate Addition. J Am Chem Soc 2021; 143:10770-10777. [PMID: 34253021 DOI: 10.1021/jacs.1c05427] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metal-catalyzed enantioselective conjugate additions are highly reliable methods for stereoselective synthesis; however, multicomponent reactions that are initiated by conjugate arylation of acyclic π-systems are rare. These reactions generally proceed with poor diastereoselectivity while requiring basic, moisture sensitive organometallic nucleophiles. Here, we show that Rh-catalysts supported by a tetrafluorobenzobarrelene ligand (Ph-tfb) enable the enantio-, diastereo-, and Z-selective α,δ-difunctionalization of electron-deficient 1,3-dienes with organoboronic acid nucleophiles and aldehyde electrophiles to generate Z-homoallylic alcohols with three stereocenters. The reaction accommodates diene substrates activated by ester, amide, ketone, or aromatic groups and can be used to couple aryl, alkenyl, or alkyl aldehydes. Diastereoselective functionalization of the Z-olefin unit in the addition products allows for the generation of compounds with five stereocenters in high dr and ee. Mechanistic studies suggest aldehyde allylrhodation is the rate-determining step, and unlike reactions of analogous Rh-enolates, the Rh-allyl species generated by δ-arylation undergoes aldehyde trapping rather than protonolysis, even when water is present as a cosolvent. These findings should have broader implications in the use of privileged metal-catalyzed conjugate addition reactions as entry points toward the preparation of acyclic molecules containing nonadjacent stereocenters.
Collapse
Affiliation(s)
| | - Wesley McNutt
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Markus D Schoetz
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Bohdan Sosunovych
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Svetlana Grigoryan
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
12
|
Corpas J, Mauleón P, Arrayás RG, Carretero JC. Transition-Metal-Catalyzed Functionalization of Alkynes with Organoboron Reagents: New Trends, Mechanistic Insights, and Applications. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01421] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Pablo Mauleón
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Juan C. Carretero
- Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
13
|
Wang L, Zhu H, Peng T, Yang D. Conjugated ynones in catalytic enantioselective reactions. Org Biomol Chem 2021; 19:2110-2145. [PMID: 33625439 DOI: 10.1039/d0ob02521f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conjugated ynones are easily accessible feedstock and the existence of an alkyne bond endows ynones with different attractive reactivities, thus making them unique substrates for catalytic asymmetric reactions. Their compatibility under organocatalytic, metal-catalyzed as well as cooperative catalytic conditions has resulted in numerous enantioselective transformations. Importantly, conjugated ynones can act as nucleophiles or electrophiles, and serve as easily accessed synthons for different cyclization pathways. This review summarizes the recent literature examples of the catalytic reactions of conjugated ynones and related compounds such as alkyne conjugated α-ketoesters, and classifies these reaction types alongside mechanistic insights whenever possible. We aim to trigger more intensive research in the future to render the asymmetric transformation of ynones as a common and reliable tool for asymmetric synthesis.
Collapse
Affiliation(s)
- Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Haiyong Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Tianyu Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
14
|
Kanti Das K, Manna S, Panda S. Transition metal catalyzed asymmetric multicomponent reactions of unsaturated compounds using organoboron reagents. Chem Commun (Camb) 2021; 57:441-459. [PMID: 33350405 DOI: 10.1039/d0cc06460b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asymmetric multicomponent reactions allow stitching several functional groups in an enantioselective and atom economical manner. The introduction of boron-based reagents as a multicomponent coupling partner has its own merits. In addition to being non-toxic and highly stable, organoboron compounds can be easily converted to other functional groups in a stereoselective manner. In the last decade several transition metal catalyzed asymmetric multicomponent strategies have been evolved using boron based reagents. This review will discuss the merits and scope of multicomponent strategies based on their difference in the reaction mechanism and transition metals involved.
Collapse
Affiliation(s)
- Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | | | | |
Collapse
|
15
|
Tsuda T, Choi SM, Shintani R. Palladium-Catalyzed Synthesis of Dibenzosilepin Derivatives via 1,n-Palladium Migration Coupled with anti-Carbopalladation of Alkyne. J Am Chem Soc 2021; 143:1641-1650. [DOI: 10.1021/jacs.0c12453] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomohiro Tsuda
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Seung-Min Choi
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
16
|
Park J, Ahn H, Cho H, Xuan Z, Kim JH. Asymmetric Synthesis of N‐Fused 1,3‐Oxazolidines via Pd‐Catalyzed Decarboxylative (3+2) Cycloaddition. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901497] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jong‐Un Park
- Department of Chemistry (BK21 Plus), Research Institute of Natural ScienceGyeongsang National University 52828 Jinju Korea
| | - Hye‐In Ahn
- Department of Chemistry (BK21 Plus), Research Institute of Natural ScienceGyeongsang National University 52828 Jinju Korea
| | - Ho‐Jun Cho
- Department of Chemistry (BK21 Plus), Research Institute of Natural ScienceGyeongsang National University 52828 Jinju Korea
| | - Zi Xuan
- Department of Chemistry (BK21 Plus), Research Institute of Natural ScienceGyeongsang National University 52828 Jinju Korea
| | - Ju Hyun Kim
- Department of Chemistry (BK21 Plus), Research Institute of Natural ScienceGyeongsang National University 52828 Jinju Korea
| |
Collapse
|
17
|
Manna S, Dherbassy Q, Perry GJP, Procter DJ. Enantio- and Diastereoselective Synthesis of Homopropargyl Amines by Copper-Catalyzed Coupling of Imines, 1,3-Enynes, and Diborons. Angew Chem Int Ed Engl 2020; 59:4879-4882. [PMID: 31917893 PMCID: PMC7383811 DOI: 10.1002/anie.201915191] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 12/16/2022]
Abstract
An efficient, enantio- and diastereoselective, copper-catalyzed coupling of imines, 1,3-enynes, and diborons is reported. The process shows broad substrate scope and delivers complex, chiral homopropargyl amines; useful building blocks on the way to biologically-relevant compounds. In particular, functionalized homopropargyl amines bearing up to three contiguous stereocenters can be prepared in a single step.
Collapse
Affiliation(s)
- Srimanta Manna
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Quentin Dherbassy
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Gregory J. P. Perry
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - David J. Procter
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
18
|
Han J, Qin Y, Ju C, Zhao D. Divergent Synthesis of Vinyl‐, Benzyl‐, and Borylsilanes: Aryl to Alkyl 1,5‐Palladium Migration/Coupling Sequences. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie‐Lian Han
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of ChemistryNankai University 94 Weijin Road Tianjin 300071 China
| | - Ying Qin
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of ChemistryNankai University 94 Weijin Road Tianjin 300071 China
| | - Cheng‐Wei Ju
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of ChemistryNankai University 94 Weijin Road Tianjin 300071 China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of ChemistryNankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
19
|
Han JL, Qin Y, Ju CW, Zhao D. Divergent Synthesis of Vinyl-, Benzyl-, and Borylsilanes: Aryl to Alkyl 1,5-Palladium Migration/Coupling Sequences. Angew Chem Int Ed Engl 2020; 59:6555-6560. [PMID: 31981459 DOI: 10.1002/anie.201914740] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/19/2019] [Indexed: 12/31/2022]
Abstract
Organosilicon compounds have been extensively utilized both in industry and academia. Studies on the syntheses of diverse organosilanes is highly appealing. Through-space metal/hydrogen shifts allow functionalization of C-H bonds at a remote site, which are otherwise difficult to achieve. However, until now, an aryl to alkyl 1,5-palladium migration process seems to have not been presented. Reported herein is the remote olefination, arylation, and borylation of a methyl group on silicon to access diverse vinyl-, benzyl-, and borylsilanes, constituting a unique C(sp3 )-H transformation based on a 1,5-palladium migration process.
Collapse
Affiliation(s)
- Jie-Lian Han
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ying Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Cheng-Wei Ju
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
20
|
Manna S, Dherbassy Q, Perry GJP, Procter DJ. Enantio‐ and Diastereoselective Synthesis of Homopropargyl Amines by Copper‐Catalyzed Coupling of Imines, 1,3‐Enynes, and Diborons. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Srimanta Manna
- Department of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Quentin Dherbassy
- Department of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gregory J. P. Perry
- Department of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - David J. Procter
- Department of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
21
|
Groves A, Sun J, Parke HRI, Callingham M, Argent SP, Taylor LJ, Lam HW. Catalytic enantioselective arylative cyclizations of alkynyl 1,3-diketones by 1,4-rhodium(i) migration. Chem Sci 2020; 11:2759-2764. [PMID: 34084335 PMCID: PMC8157494 DOI: 10.1039/c9sc06309a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The enantioselective synthesis of densely functionalized polycarbocycles by the rhodium(i)-catalyzed reaction of arylboronic acids with 1,3-diketones is described. The key step in these desymmetrizing domino addition–cyclization reactions is an alkenyl-to-aryl 1,4-Rh(i) migration, which enables arylboronic acids to function effectively as 1,2-dimetalloarene surrogates. The enantioselective synthesis of densely functionalized polycarbocycles by the rhodium(i)-catalyzed reaction of arylboronic acids with alkynyl 1,3-diketones is described. The key step in these reactions is an alkenyl-to-aryl 1,4-Rh(i) migration..![]()
Collapse
Affiliation(s)
- Alistair Groves
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road Nottingham NG7 2TU UK .,School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Jinwei Sun
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road Nottingham NG7 2TU UK .,School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK.,Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology Nanjing Jiangsu 210044 China
| | - Hal R I Parke
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road Nottingham NG7 2TU UK .,School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Michael Callingham
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road Nottingham NG7 2TU UK .,School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Stephen P Argent
- School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Laurence J Taylor
- School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road Nottingham NG7 2TU UK .,School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| |
Collapse
|
22
|
Matsuda T, Izutsu T, Hashimoto M. Rhodium(I)-Catalyzed Arylative Annulation of β-Alkynyl Ketones for Preparation of Fused Aromatics. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Takanori Matsuda
- Department of Applied Chemistry; Tokyo University of Science; 1-3 Kagurazaka, Shinjuku-ku 162-8601 Tokyo Japan
| | - Takashi Izutsu
- Department of Applied Chemistry; Tokyo University of Science; 1-3 Kagurazaka, Shinjuku-ku 162-8601 Tokyo Japan
| | - Masaru Hashimoto
- Department of Applied Chemistry; Tokyo University of Science; 1-3 Kagurazaka, Shinjuku-ku 162-8601 Tokyo Japan
| |
Collapse
|
23
|
Singam MKR, Nagireddy A, Rajesh M, Ganesh V, Reddy MS. Ni-Catalyzed electrophile driven regioselective arylative cyclization of ortho-functional diaryl acetylenes for the synthesis of pyridine and indene derivatives. Org Chem Front 2020. [DOI: 10.1039/c9qo01266d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A regioselective arylative cyclization of ortho functional diaryl acetylenes for the synthesis of selectively substituted diaryl pyridine and indene derivatives is accomplished through an electrophile driven alkyne polarization.
Collapse
Affiliation(s)
- Maneesh Kumar Reddy Singam
- Department of OSPC
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research
| | - Attunuri Nagireddy
- Department of OSPC
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research
| | - Manda Rajesh
- Department of OSPC
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research
| | - Veeramalla Ganesh
- Department of OSPC
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research
| | - Maddi Sridhar Reddy
- Department of OSPC
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
24
|
Cooze C, Dada R, Lundgren RJ. Direct Formic Acid Mediated
Z
‐Selective Reductive Coupling of Dienes and Aldehydes. Angew Chem Int Ed Engl 2019; 58:12246-12251. [DOI: 10.1002/anie.201905540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/12/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Christopher Cooze
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Raphael Dada
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Rylan J. Lundgren
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
25
|
Affiliation(s)
- Abdur Rahim
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China, 96 Jinzhai Road Hefei Anhui 230026 China
| | - Jia Feng
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China, 96 Jinzhai Road Hefei Anhui 230026 China
| | - Zhenhua Gu
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China, 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
26
|
Cooze C, Dada R, Lundgren RJ. Direct Formic Acid Mediated
Z
‐Selective Reductive Coupling of Dienes and Aldehydes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Christopher Cooze
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Raphael Dada
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Rylan J. Lundgren
- Department of ChemistryUniversity of Alberta Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
27
|
Liu N, Yao J, Yin L, Lu T, Tian Z, Dou X. Rhodium-Catalyzed Expeditious Synthesis of Indenes from Propargyl Alcohols and Organoboronic Acids by Selective 1,4-Rhodium Migration over β-Oxygen Elimination. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Na Liu
- Department of Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jian Yao
- Department of Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Long Yin
- Department of Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Tao Lu
- Department of Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaowei Dou
- Department of Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
28
|
Selmani A, Serpier F, Darses S. Chiral Bicyclo[2.2.2]octa-2,5-dienyltrifluoroborate Derivative as a Useful and Stable Precursor of C1-Symmetric Chiral Dienes. Org Lett 2019; 21:4378-4382. [DOI: 10.1021/acs.orglett.9b01609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aymane Selmani
- PSL Université Paris, Chimie ParisTech - CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), 11 rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabien Serpier
- PSL Université Paris, Chimie ParisTech - CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), 11 rue Pierre et Marie Curie, 75005, Paris, France
| | - Sylvain Darses
- PSL Université Paris, Chimie ParisTech - CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), 11 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
29
|
Bai D, Xia J, Song F, Li X, Liu B, Liu L, Zheng G, Yang X, Sun J, Li X. Rhodium(iii)-catalyzed diverse [4 + 1] annulation of arenes with 1,3-enynes via sp 3/sp 2 C-H activation and 1,4-rhodium migration. Chem Sci 2019; 10:3987-3993. [PMID: 31015939 PMCID: PMC6457175 DOI: 10.1039/c9sc00545e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 01/24/2023] Open
Abstract
Nitrogen-rich heterocyclic compounds have a profound impact on human health. Despite the numerous synthetic methods, diversified, step-economic, and general synthesis of heterocycles remains limited. C-H bond functionalization catalyzed by rhodium(iii) cyclopentadienyls has proven to be a powerful strategy in the synthesis of diversified heterocycles. Herein we describe rhodium(iii)-catalyzed sp2 and sp3 C-H activation-oxidative annulations between aromatic substrates and 1,3-enynes, where alkenyl-to-allyl 1,4-rhodium(iii) migration enabled the generation of electrophilic rhodium(iii) π-allyls via remote C-H functionalization. Subsequent nucleophilic trapping of these species by various sp2-hybridized N-nucleophiles delivered three classes (external salts, inner salts, and neutral azacycles) of five-membered azacycles bearing a tetrasubstituted saturated carbon center, as a result of [4 + 1] annulation with the alkyne being a one-carbon synthon. All the reactions proceeded under relatively mild conditions with broad substrate scope, high efficiency, and excellent regioselectivity. The synthetic applications of this protocol have also been demonstrated, and experimental studies have been performed to support the proposed mechanism.
Collapse
Affiliation(s)
- Dachang Bai
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
| | - Jintao Xia
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China .
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Fangfang Song
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
| | - Xueyan Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
| | - Bingxian Liu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
| | - Lihong Liu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
| | - Guangfan Zheng
- School of Chemistry and Chemical Engineering , Shaanxi Normal University (SNNU) , Xi'an 710062 , China .
| | - Xifa Yang
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China .
| | - Jiaqiong Sun
- School of Chemistry and Chemical Engineering , Shaanxi Normal University (SNNU) , Xi'an 710062 , China .
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China .
- School of Chemistry and Chemical Engineering , Shaanxi Normal University (SNNU) , Xi'an 710062 , China .
| |
Collapse
|
30
|
Miwa T, Shintani R. Rhodium-Catalyzed Synthesis of Silicon-Bridged 1,2-Dialkenylbenzenes via 1,4-Rhodium Migration. Org Lett 2019; 21:1627-1631. [DOI: 10.1021/acs.orglett.9b00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takuya Miwa
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
31
|
Sun J, Bai D, Wang P, Wang K, Zheng G, Li X. Chemodivergent Oxidative Annulation of Benzamides and Enynes via 1,4-Rhodium Migration. Org Lett 2019; 21:1789-1793. [DOI: 10.1021/acs.orglett.9b00363] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jiaqiong Sun
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Dachang Bai
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Peiyuan Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Kuan Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Guangfan Zheng
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
32
|
Zhang SS, Hu TJ, Li MY, Song YK, Yang XD, Feng CG, Lin GQ. Asymmetric Alkenylation of Enones and Imines Enabled by A Highly Efficient Aryl to Vinyl 1,4-Rhodium Migration. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shu-Sheng Zhang
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Tian-Jiao Hu
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Meng-Yao Li
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Yi-Kang Song
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Xiao-Di Yang
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Chen-Guo Feng
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Guo-Qiang Lin
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
33
|
Zhang SS, Hu TJ, Li MY, Song YK, Yang XD, Feng CG, Lin GQ. Asymmetric Alkenylation of Enones and Imines Enabled by A Highly Efficient Aryl to Vinyl 1,4-Rhodium Migration. Angew Chem Int Ed Engl 2019; 58:3387-3391. [PMID: 30644152 DOI: 10.1002/anie.201813585] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Shu-Sheng Zhang
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Tian-Jiao Hu
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Meng-Yao Li
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Yi-Kang Song
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Xiao-Di Yang
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Chen-Guo Feng
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Guo-Qiang Lin
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
34
|
Li R, Ju CW, Zhao D. Rhodium(iii) vs. cobalt(iii): a mechanistically distinct three-component C-H bond addition cascade using a Cp*Rh III catalyst. Chem Commun (Camb) 2019; 55:695-698. [PMID: 30565600 DOI: 10.1039/c8cc08792j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Three-component C-H bond additions across two different coupling partners remain underdeveloped. Herein, we report the first three-component RhIII-catalyzed C-H bond additions to a wide range of dienes and aldehydes. Our method constitutes a complementary access with Ellman's CoIII-catalytic system to homoallylic alcohols.
Collapse
Affiliation(s)
- Ruirui Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | | | | |
Collapse
|
35
|
Zhang Y, Yu B, Gao B, Zhang T, Huang H. Triple-Bond Insertion Triggers Highly Regioselective 1,4-Aminomethylamination of 1,3-Enynes with Aminals Enabled by Pd-Catalyzed C–N Bond Activation. Org Lett 2019; 21:535-539. [DOI: 10.1021/acs.orglett.8b03847] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanchen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| | - Bangkui Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| | - Binjian Gao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| | - Tianze Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
36
|
O’Brien L, Karad SN, Lewis W, Lam HW. Rhodium-catalyzed arylative cyclization of alkynyl malonates by 1,4-rhodium(i) migration. Chem Commun (Camb) 2019; 55:11366-11369. [DOI: 10.1039/c9cc05205d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The synthesis of functionalized 1-tetralones by the rhodium(i)-catalyzed reaction of alkynyl malonates with arylboronic acids is described.
Collapse
Affiliation(s)
- Luke O’Brien
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry
- University of Nottingham
- Jubilee Campus
- Nottingham
- UK
| | - Somnath Narayan Karad
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry
- University of Nottingham
- Jubilee Campus
- Nottingham
- UK
| | - William Lewis
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry
- University of Nottingham
- Jubilee Campus
- Nottingham
- UK
| |
Collapse
|
37
|
Ruscoe RE, Callingham M, Baker JA, Korkis SE, Lam HW. Iridium-catalyzed 1,5-(aryl)aminomethylation of 1,3-enynes by alkenyl-to-allyl 1,4-iridium(i) migration. Chem Commun (Camb) 2019; 55:838-841. [DOI: 10.1039/c8cc09238a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel multicomponent coupling reaction involving the iridium-catalyzed 1,5-difunctionalization of 1,3-enynes with arylboronic acids and triazinanes is described.
Collapse
Affiliation(s)
- Rebecca E. Ruscoe
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry
- University of Nottingham
- Nottingham
- UK
- School of Chemistry
| | - Michael Callingham
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry
- University of Nottingham
- Nottingham
- UK
- School of Chemistry
| | - Joshua A. Baker
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry
- University of Nottingham
- Nottingham
- UK
- School of Chemistry
| | - Stamatis E. Korkis
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry
- University of Nottingham
- Nottingham
- UK
- School of Chemistry
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry
- University of Nottingham
- Nottingham
- UK
- School of Chemistry
| |
Collapse
|
38
|
Shan H, Zhou Q, Yu J, Zhang S, Hong X, Lin X. Rhodium-Catalyzed Asymmetric Addition of Organoboronic Acids to Aldimines Using Chiral Spiro Monophosphite-Olefin Ligands: Method Development and Mechanistic Studies. J Org Chem 2018; 83:11873-11885. [PMID: 30153022 DOI: 10.1021/acs.joc.8b01764] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The synthesis of a novel type of chiral spiro monophosphite-olefin (SMPO) ligands based on a hexamethyl-1,1'-spirobiindane scaffold was accomplished starting from Bisphenol C. The optimal ligand could serve as an elegant chiral bidentate ligand in the Rh-catalyzed asymmetric 1,2-addition of organoboronic acids to various acyclic/cyclic aldimines, leading to chiral amines with high yields and excellent enantioselectivities. Detailed stereochemical models for enantioselective induction were elucidated through DFT calculations and postulated the origins of the higher enantioselectivity of phosphite-olefin ligands.
Collapse
Affiliation(s)
- Huanyu Shan
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , People's Republic of China
| | - Qiaoxia Zhou
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , People's Republic of China
| | - Jinglu Yu
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , People's Republic of China
| | - Shuoqing Zhang
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , People's Republic of China
| | - Xin Hong
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , People's Republic of China
| | - Xufeng Lin
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , People's Republic of China
| |
Collapse
|
39
|
Groves A, Martínez JI, Smith JJ, Lam HW. Remote Nucleophilic Allylation by Allylrhodium Chain Walking. Chemistry 2018; 24:13432-13436. [PMID: 30006953 DOI: 10.1002/chem.201803574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 12/12/2022]
Abstract
Metal migration through a carbon chain is a versatile method for achieving remote functionalization. However, almost all known examples involve the overall net migration of alkylmetal species. Here, we report that allylrhodium species obtained from hydrorhodation of 1,3-dienes undergo chain walking toward esters, amides, or (hetero)arenes over distances of up to eight methylene units. The final, more highly conjugated allylrhodium species undergo nucleophilic allylation with aldehydes and with an imine to give Z-homoallylic alcohols and amines, respectively.
Collapse
Affiliation(s)
- Alistair Groves
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable, Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, UK.,School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Jose I Martínez
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Joshua J Smith
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable, Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, UK.,School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
40
|
Gorgas N, Stöger B, Veiros LF, Kirchner K. Iron(II) Bis(acetylide) Complexes as Key Intermediates in the Catalytic Hydrofunctionalization of Terminal Alkynes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01942] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | - Luis F. Veiros
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais No. 1, 1049-001 Lisboa, Portugal
| | | |
Collapse
|
41
|
Mo J, Müller T, Oliveira JCA, Ackermann L. 1,4-Iron Migration for Expedient Allene Annulations through Iron-Catalyzed C−H/N−H/C−O/C−H Functionalizations. Angew Chem Int Ed Engl 2018; 57:7719-7723. [DOI: 10.1002/anie.201801324] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/29/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Jiayu Mo
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
42
|
Mo J, Müller T, Oliveira JCA, Ackermann L. 1,4-Iron Migration for Expedient Allene Annulations through Iron-Catalyzed C−H/N−H/C−O/C−H Functionalizations. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiayu Mo
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
43
|
Dooley JD, Lam HW. One-Carbon Oxidative Annulations of 1,3-Enynes by Catalytic C−H Functionalization and 1,4-Rhodium(III) Migration. Chemistry 2018; 24:4050-4054. [DOI: 10.1002/chem.201706043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Johnathon D. Dooley
- EaStCHEM, School of Chemistry; University of Edinburgh, Joseph Black Building, The King's Buildings; David Brewster Road Edinburgh EH9 3FJ UK
| | - Hon Wai Lam
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road Nottingham, NG7 2TU (UK) and School of Chemistry; University of Nottingham; University Park Nottingham NG7 2RD UK
| |
Collapse
|
44
|
Callingham M, Partridge BM, Lewis W, Lam HW. Enantioselective Rhodium-Catalyzed Coupling of Arylboronic Acids, 1,3-Enynes, and Imines by Alkenyl-to-Allyl 1,4-Rhodium(I) Migration. Angew Chem Int Ed Engl 2017; 56:16352-16356. [PMID: 28980437 PMCID: PMC5765452 DOI: 10.1002/anie.201709334] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Indexed: 01/04/2023]
Abstract
A chiral rhodium complex catalyzes the highly enantioselective coupling of arylboronic acids, 1,3-enynes, and imines to give homoallylic sulfamates. The key step is the generation of allylrhodium(I) species by alkenyl-to-allyl 1,4-rhodium(I) migration.
Collapse
Affiliation(s)
- Michael Callingham
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- The GSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee Campus, Triumph RoadNottinghamNG7 2TUUK
| | - Benjamin M. Partridge
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - William Lewis
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Hon Wai Lam
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- The GSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee Campus, Triumph RoadNottinghamNG7 2TUUK
| |
Collapse
|