1
|
Xu Y, Wang J, Deng GJ, Shao W. Recent advances in the synthesis of chiral α-tertiary amines via transition-metal catalysis. Chem Commun (Camb) 2023; 59:4099-4114. [PMID: 36919669 DOI: 10.1039/d3cc00439b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The significance of chiral α-tertiary amines in medicinal chemistry and drug development has been unquestionably established in the last few decades. α-Tertiary amines are attractive structural motifs for natural products, bioactive molecules and pharmaceuticals and are preclinical candidates. Their syntheses have been the focus of intensive research, and the development of new methods has continued to attract more and more attention. In this review, we present the progress in the last decade in the development of synthetic methods for the assembly of chiral ATAs via transition-metal catalysis. To date, the effective approaches in this area could be categorized into three strategies: enantioselective direct and indirect Mannich addition to ketimines; umpolung asymmetric alkylation of imine derivatives; and asymmetric C-N cross-coupling of tertiary alkyl electrophiles. Several related developing strategies for the synthesis of ATAs, such as hydroamination of alkenes, HAT amination approaches and the C-C coupling of α-aminoalkyl fragments, are also described in this article. These strategies have emerged as attractive C-C and C-N bond-forming protocols for enantioselective construction of chiral α-tertiary amines, and to some extent are complementary to each other, showing the prospect of application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Yongzhuo Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Jiajia Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Wen Shao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| |
Collapse
|
2
|
Rezazadeh S, Martin MI, Kim RS, Yap GPA, Rosenthal J, Watson DA. Photoredox-Nickel Dual-Catalyzed C-Alkylation of Secondary Nitroalkanes: Access to Sterically Hindered α-Tertiary Amines. J Am Chem Soc 2023; 145:4707-4715. [PMID: 36795911 PMCID: PMC9992296 DOI: 10.1021/jacs.2c13174] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The preparation of tertiary nitroalkanes via the nickel-catalyzed alkylation of secondary nitroalkanes using aliphatic iodides is reported. Previously, catalytic access to this important class of nitroalkanes via alkylation has not been possible due to the inability of catalysts to overcome the steric demands of the products. However, we have now found that the use of a nickel catalyst in combination with a photoredox catalyst and light leads to much more active alkylation catalysts. These can now access tertiary nitroalkanes. The conditions are scalable as well as air and moisture tolerant. Importantly, reduction of the tertiary nitroalkane products allows rapid access to α-tertiary amines.
Collapse
Affiliation(s)
- Sina Rezazadeh
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Maxwell I Martin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Raphael S Kim
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Donald A Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
3
|
Goswami P, Cho SY, Park JH, Kim WH, Kim HJ, Shin MH, Bae HY. Efficient access to general α-tertiary amines via water-accelerated organocatalytic multicomponent allylation. Nat Commun 2022; 13:2702. [PMID: 35577799 PMCID: PMC9110412 DOI: 10.1038/s41467-022-30281-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/20/2022] [Indexed: 12/17/2022] Open
Abstract
A tetrasubstituted carbon atom connected by three sp3 or sp2-carbons with single nitrogen, i.e., the α-tertiary amine (ATA) functional group, is an essential structure of diverse naturally occurring alkaloids and pharmaceuticals. The synthetic approach toward ATA structures is intricate, therefore, a straightforward catalytic method has remained a substantial challenge. Here we show an efficient water-accelerated organocatalytic method to directly access ATA incorporating homoallylic amine structures by exploiting readily accessible general ketones as useful starting material. The synergistic action of a hydrophobic Brønsted acid in combination with a squaramide hydrogen-bonding donor under aqueous condition enabled the facile formation of the desired moiety. The developed exceptionally mild but powerful system facilitated a broad substrate scope, and enabled efficient multi-gram scalability. The α-tertiary amine functional group is an essential structure of diverse naturally occurring alkaloids and pharmaceuticals. Here the authors show an efficient water-accelerated organocatalytic method to access α-tertiary amines incorporating homoallylic amine structures by exploiting ketones as useful starting material.
Collapse
|
4
|
Sheng C, Ling Z, Ahmad T, Xie F, Zhang W. Copper‐Catalyzed Regioselective [3+3] Annulations of Alkynyl Ketimines with
α
‐Cyano Ketones: the Synthesis of Polysubstituted 4
H
‐Pyran Derivatives with a CF
3
‐Containing Quaternary Center. Chemistry 2022; 28:e202200128. [DOI: 10.1002/chem.202200128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Cheng Sheng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zheng Ling
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Tanveer Ahmad
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fang Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- College of Chemistry Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|
5
|
Gu C, Tian G, Yin Q, Wu F, Li Z, Wu X. Amide phosphonium salt catalyzed enantioselective Mannich addition of isoxazole-based nucleophiles to β,γ-alkynyl-α-ketimino esters. Org Biomol Chem 2022; 20:3323-3334. [PMID: 35353110 DOI: 10.1039/d2ob00309k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An enantioselective Mannich addition of 3,5-disubstituted 4-nitroisoxazoles to β,γ-alkynyl-α-ketimino esters promoted by an amide phosphonium salt-based catalyst has been developed. N-Cbz-protected ketimino esters with various aryl substituents attached to the alkyne unit were reacted with a series of isoxazoles with different substitution patterns. Chiral tertiary propargylic amine products were obtained with moderate to good yields and enantioselectivities. TIPS- and cyclopropyl-substituted alkynyl ketimines were also examined in the current system and the desired products were obtained with moderate yields and enantioselectivities. The potential scalability and utility of the current protocol were demonstrated by carrying out a relatively larger scale reaction followed by further transformations.
Collapse
Affiliation(s)
- Congzheng Gu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Guangzheng Tian
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Qingyu Yin
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Fan Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Zhiming Li
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Xiaoyu Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| |
Collapse
|
6
|
Carret S, Poisson JF, Berthiol F, Achuenu C. 1,2-Additions on Chiral N-Sulfinylketimines: An Easy Access to Chiral α-Tertiary Amines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1737563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractChiral α-tertiary amines, a motif present in α,α-disubstituted α-amino acids, in a wide range of natural products, and many drugs and drug candidates, are important targets in organic chemistry. Among the possible strategies, 1,2-addition to chiral N-sulfinylketimines is one of the best routes to form chiral α-tertiary amines with a high level of stereoselectivity. In this review, we focus first on the addition of organometallic reagents or other nucleophiles as enols or ylides to chiral N-sulfinylketimines. Then secondly we cover a selection of applications of these additions in the synthesis of valuable biologically active compounds.1 Introduction2 1,2-Addition Reaction Methodologies2.1 Organolithium Reagent Additions2.2 Grignard Additions2.3 Organozinc Reagent Additions2.4 Organoindium Reagent Additions2.5 Organoboron Reagent Additions2.6 Strecker Reactions2.7 Palladium-Catalyzed Reactions2.8 Enols, Enolates, and Other Deprotonated Reagent Additions2.9 Ylide Additions2.10 Heteroatom Nucleophiles2.11 Miscellaneous Reactions3 Applications to the Synthesis of Biologically Active Molecules4 Conclusions
Collapse
|
7
|
Homma C, Kano T. Design and Synthesis of Phenylcyclopropane-based Chiral Amine Catalysts and Their Application in Asymmetric Reactions. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Taichi Kano
- Department of Applied Chemistry, Tokyo University of Agriculture and Technology
| |
Collapse
|
8
|
Chen J, Lim JW, Ong DY, Chiba S. Iterative addition of carbon nucleophiles to N, N-dialkyl carboxamides for synthesis of α-tertiary amines. Chem Sci 2021; 13:99-104. [PMID: 35059156 PMCID: PMC8694388 DOI: 10.1039/d1sc05876b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
A protocol for the synthesis of α-tertiary amines was developed by iterative addition of carbon nucleophiles to N,N-dialkyl carboxamides. Nucleophilic 1,2-addition of organolithium reagents to carboxamides forms anionic tetrahedral carbinolamine (hemiaminal) intermediates, which are subsequently treated with bromotrimethylsilane (Me3SiBr) followed by organomagnesium (Grignard) reagents, organolithium reagents or tetrabutylammonium cyanide, affording α-tertiary amines. Employment of (trimethylsilyl)methylmagnesium bromide as the 2nd nucleophile allowed for aza-Peterson olefination of the resulting α-tertiary (trimethylsilyl)methylamines with acidic work-up, resulting in the formation of 1,1-diarylethylenes.
Collapse
Affiliation(s)
- Jiahua Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Jun Wei Lim
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Derek Yiren Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Shunsuke Chiba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
9
|
Sendra J, Reyes E, Prieto L, Fernández E, Vicario JL. Transannular Enantioselective (3 + 2) Cycloaddition of Cycloalkenone Hydrazones under Brønsted Acid Catalysis. Org Lett 2021; 23:8738-8743. [PMID: 34726408 PMCID: PMC8609578 DOI: 10.1021/acs.orglett.1c03190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydrazones derived from cycloalkenones undergo an enantioselective transannular formal (3 + 2) cycloaddition catalyzed by a chiral phosphoric acid. The reaction provides high yields and excellent stereocontrol in the formation of complex adducts with one or two α-tertiary amine moieties at the ring fusion, and these can be converted into very versatile stereodefined decalin- or octahydro-1H-indene-derived 1,3-diamines through simple reductive N-N cleavage.
Collapse
Affiliation(s)
- Jana Sendra
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU). P.O. Box 644, 48080 Bilbao, Spain.,Departament Química Física i Inorgànica, Universidad Rovira i Virgilli, C/Marcel·lí Domingo s/n, 50009 Tarragona, Spain
| | - Efraim Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU). P.O. Box 644, 48080 Bilbao, Spain
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU). P.O. Box 644, 48080 Bilbao, Spain
| | - Elena Fernández
- Departament Química Física i Inorgànica, Universidad Rovira i Virgilli, C/Marcel·lí Domingo s/n, 50009 Tarragona, Spain
| | - Jose L Vicario
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU). P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|
10
|
Synthesis of alkynyl Z-ketimines and their application in amine-catalyzed asymmetric Mannich reactions and conjugate addition. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Pan Y, Wang D, Chen Y, Zhang D, Liu W, Yang X. Kinetic Resolution of α-Tertiary Propargylic Amines through Asymmetric Remote Aminations of Anilines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02331] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yongkai Pan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Donglei Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - DeKun Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
12
|
Xu C, Reep C, Jarvis J, Naumann B, Captain B, Takenaka N. Asymmetric Catalytic Ketimine Mannich Reactions and Related Transformations. Catalysts 2021; 11:712. [PMID: 34745653 PMCID: PMC8570560 DOI: 10.3390/catal11060712] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The catalytic enantioselective ketimine Mannich and its related reactions provide direct access to chiral building blocks bearing an α-tertiary amine stereogenic center, a ubiquitous structural motif in nature. Although ketimines are often viewed as challenging electrophiles, various approaches/strategies to circumvent or overcome the adverse properties of ketimines have been developed for these transformations. This review showcases the selected examples that highlight the benefits and utilities of various ketimines and remaining challenges associated with them in the context of Mannich, allylation, and aza-Morita-Baylis-Hillman reactions as well as their variants.
Collapse
Affiliation(s)
- Changgong Xu
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Carlyn Reep
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Jamielyn Jarvis
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Brandon Naumann
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Burjor Captain
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| | - Norito Takenaka
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| |
Collapse
|
13
|
Homma C, Kano T, Maruoka K. Bifunctional amino sulfonamide-catalyzed asymmetric conjugate addition to alkenyl alkynyl ketimines as enone surrogates. Chem Commun (Camb) 2021; 57:2808-2811. [PMID: 33600542 DOI: 10.1039/d0cc07842e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A bifunctional amino sulfonamide-catalyzed asymmetric conjugate addition of aldehydes to alkenyl alkynyl ketimines as reactive surrogates for enones has been developed. Use of a phenylcyclopropane-based amino sulfonamide catalyst, which can activate and orient the ketimines through hydrogen bonding, affords the desired conjugate adducts with high chemo-, diastereo- and enantioselectivity.
Collapse
Affiliation(s)
- Chihiro Homma
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
14
|
Homma C, Takeshima A, Kano T, Maruoka K. Construction of chiral α- tert-amine scaffolds via amine-catalyzed asymmetric Mannich reactions of alkyl-substituted ketimines. Chem Sci 2020; 12:1445-1450. [PMID: 34163907 PMCID: PMC8179053 DOI: 10.1039/d0sc05269h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stereoselective Mannich reactions of aldehydes with ketimines provide chiral β-amino aldehydes that bear an α-tert-amine moiety. However, the structural variation of the ketimines is limited due to the formation of inseparable E/Z isomers, low reactivity, and other synthetic difficulties. In this study, a highly diastereodivergent synthesis of hitherto difficult-to-access β-amino aldehydes that bear a chiral α-tert-amine moiety was achieved using the amine-catalyzed Mannich reactions of aldehydes with less-activated Z-ketimines that bear both alkyl and alkynyl groups.
Collapse
Affiliation(s)
- Chihiro Homma
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo Kyoto 606-8502 Japan
| | - Aika Takeshima
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo Kyoto 606-8502 Japan
| | - Taichi Kano
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo Kyoto 606-8502 Japan
| | - Keiji Maruoka
- Graduate School of Science, Graduate School of Pharmaceutical Sciences, Kyoto University Kyoto 606-8502 Japan .,School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| |
Collapse
|
15
|
Mizuno S, Tsuji H, Uozumi Y, Kawatsura M. Synthesis of α-Tertiary Amines by the Ruthenium-catalyzed Regioselective Allylic Amination of Tertiary Allylic Esters. CHEM LETT 2020. [DOI: 10.1246/cl.200107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Shota Mizuno
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Hiroaki Tsuji
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Yasuhiro Uozumi
- Institute for Molecular Science (IMS), Myodaiji, Okazaki 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki 444-8787, Japan
| | - Motoi Kawatsura
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| |
Collapse
|
16
|
Wang MX, Liu J, Liu Z, Wang Y, Yang QQ, Shan W, Deng YH, Shao Z. Enantioselective synthesis of chiral α-alkynylated thiazolidones by tandem S-addition/acetalization of alkynyl imines. Org Biomol Chem 2020; 18:3117-3124. [PMID: 32253417 DOI: 10.1039/d0ob00365d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A SPINOL-derived chiral phosphoric acid catalyzed asymmetric formal [2 + 3]-annulation of in situ generated alkynyl imines and 1,4-dithiane-2,5-diol has been developed to afford enantiopure α-alkynylated thiazolidones with up to 72% yield and 98.5 : 1.5 er. This tandem annulation involved a tandem S-addition of alkynyl imines/intramolecular acetalization, followed by PDC-mediated oxidation. The α-alkynylated thiazolidones could facilely afford the corresponding chiral α-alkynylated or α-alkenylated cyclic sulfoxides via further elaboration.
Collapse
Affiliation(s)
- Mei-Xin Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Juan Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China. and Yunnan Baiyao Group CO., Ltd, Kunming, 650500, China
| | - Zhen Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Yingcheng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Qi-Qiong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Wenyu Shan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
17
|
Aota Y, Maeda Y, Kano T, Maruoka K. Efficient Synthesis of Cyclic Sulfoximines from N‐Propargylsulfinamides through Sulfur–Carbon Bond Formation. Chemistry 2019; 25:15755-15758. [DOI: 10.1002/chem.201904501] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Yusuke Aota
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo Kyoto 606-8502 Japan
| | - Yoshiaki Maeda
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo Kyoto 606-8502 Japan
| | - Taichi Kano
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo Kyoto 606-8502 Japan
| | - Keiji Maruoka
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo Kyoto 606-8502 Japan
- Laboratory of Organocatalytic ChemistryGraduate School of PharmaceuticalSciencesKyoto University Sakyo, Kyoto 606-8501 Japan
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|
18
|
Yoshida Y, Hiroshige T, Omori K, Mino T, Sakamoto M. Chemo- and Regioselective Asymmetric Synthesis of Cyclic Enamides through the Catalytic Umpolung Organocascade Reaction of α-Imino Amides. J Org Chem 2019; 84:7362-7371. [DOI: 10.1021/acs.joc.9b01036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yasushi Yoshida
- Soft Molecular Activation Research Center (SMARC), Molecular Chirality Research Center (MCRC), and Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Tomohiko Hiroshige
- Soft Molecular Activation Research Center (SMARC), Molecular Chirality Research Center (MCRC), and Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Kazuki Omori
- Soft Molecular Activation Research Center (SMARC), Molecular Chirality Research Center (MCRC), and Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Takashi Mino
- Soft Molecular Activation Research Center (SMARC), Molecular Chirality Research Center (MCRC), and Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Masami Sakamoto
- Soft Molecular Activation Research Center (SMARC), Molecular Chirality Research Center (MCRC), and Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| |
Collapse
|
19
|
Fernández-Sánchez L, Fernández-Salas JA, Maestro MC, García Ruano JL. Reformatsky Reaction to Alkynyl N-tert-Butanesulfinyl Imines: Lewis Acid Controlled Stereodivergent Synthesis of β-Alkynyl-β-Amino Acids. J Org Chem 2018; 83:12903-12910. [DOI: 10.1021/acs.joc.8b01918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Luis Fernández-Sánchez
- Departamento de Química Orgánica (módulo-1), Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid, Spain
| | - José A. Fernández-Salas
- Departamento de Química Orgánica (módulo-1), Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid, Spain
| | - M. Carmen Maestro
- Departamento de Química Orgánica (módulo-1), Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid, Spain
| | - Jose L. García Ruano
- Departamento de Química Orgánica (módulo-1), Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid, Spain
| |
Collapse
|
20
|
Trost BM, Hung C(J, Scharf MJ. Direct Catalytic Asymmetric Vinylogous Additions of α,β‐ and β,γ‐Butenolides to Polyfluorinated Alkynyl Ketimines. Angew Chem Int Ed Engl 2018; 57:11408-11412. [DOI: 10.1002/anie.201806249] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry Stanford University Stanford CA 94305-5080 USA
| | | | - Manuel J. Scharf
- Department of Chemistry Stanford University Stanford CA 94305-5080 USA
| |
Collapse
|
21
|
Trost BM, Hung C(J, Scharf MJ. Direct Catalytic Asymmetric Vinylogous Additions of α,β‐ and β,γ‐Butenolides to Polyfluorinated Alkynyl Ketimines. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry Stanford University Stanford CA 94305-5080 USA
| | | | - Manuel J. Scharf
- Department of Chemistry Stanford University Stanford CA 94305-5080 USA
| |
Collapse
|
22
|
Jackl MK, Schuhmacher A, Shiro T, Bode JW. Synthesis of N,N-Alkylated α-Tertiary Amines by Coupling of α-Aminoalkyltrifluoroborates and Grignard Reagents. Org Lett 2018; 20:4044-4047. [DOI: 10.1021/acs.orglett.8b01613] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Moritz K. Jackl
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Anne Schuhmacher
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Tomoya Shiro
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jeffrey W. Bode
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|