1
|
Zhao J, Wang H, Cai Y, Zhao J, Gao Z, Song YY. The Challenges and Opportunities for TiO 2 Nanostructures in Gas Sensing. ACS Sens 2024; 9:1644-1655. [PMID: 38503265 DOI: 10.1021/acssensors.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Chemiresistive gas sensors based on metal oxides have been widely applied in industrial monitoring, medical diagnosis, environmental pollutant detection, and food safety. To further enhance the gas sensing performance, researchers have worked to modify the structure and function of the material so that it can adapt to different gas types and environmental conditions. Among the numerous gas-sensitive materials, n-type TiO2 semiconductors are a focus of attention for their high stability, excellent biosafety, controllable carrier concentration, and low manufacturing cost. This Perspective first introduces the sensing mechanism of TiO2 nanostructures and composite TiO2-based nanomaterials and then analyzes the relationship between their gas-sensitive properties and their structure and composition, focusing also on technical issues such as doping, heterojunctions, and functional applications. The applications and challenges of TiO2-based nanostructured gas sensors in food safety, medical diagnosis, environmental detection, and other fields are also summarized in detail. Finally, in the context of their practical application challenges, future development technologies and new sensing concepts are explored, providing new ideas and directions for the development of multifunctional intelligent gas sensors in various application fields.
Collapse
Affiliation(s)
- Jiahui Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Haiquan Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yahui Cai
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junjin Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
2
|
Lu Y, Ma T, Lan Q, Liu B, Liang X. Single entity collision for inorganic water pollutants measurements: Insights and prospects. WATER RESEARCH 2024; 248:120874. [PMID: 37979571 DOI: 10.1016/j.watres.2023.120874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
In the context of aquatic environmental issues, dynamic analysis of nano-sized inorganic water pollutants has been one of the key topics concerning their seriously amplified threat to natural ecosystems and life health. Its ultimate challenge is to reach a single-entity level of identification especially towards substantial amount of inorganic pollutants formed as natural or manufactured nanoparticles (NPs), which enter the water environments along with the potential release of constituents or other contaminating species that may have coprecipitated or adsorbed on the particles' surface. Here, we introduced a 'nano-impacts' approach-single entity collision electrochemistry (SECE) promising for in-situ characterization and quantification of nano-sized inorganic pollutants at single-entity level based on confinement-controlled electrochemistry. In comparison with ensemble analytical tools, advantages and features of SECE point at understanding 'individual' specific fate and effect under its free-motion condition, contributing to obtain more precise information for 'ensemble' nano-sized pollutants on assessing their mixture exposure and toxicity in the environment. This review gives a unique insight about the single-entity collision measurements of various inorganic water pollutants based on recent trends and directions of state-of-the-art single entity electrochemistry, the prospects for exploring nano-impacts in the field of inorganic water pollutants measurements were also put forward.
Collapse
Affiliation(s)
- Yuanyuan Lu
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingting Ma
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingwen Lan
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Boyi Liu
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinqiang Liang
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Zhang J, Li C, Wang H, Yang Z, Hu C, Wu K, Hao J, Liu Z. Machine Learning-Assisted Automatically Electrochemical Addressable Cytosensing Arrays for Anticancer Drug Screening. Anal Chem 2023; 95:18907-18916. [PMID: 38088810 DOI: 10.1021/acs.analchem.3c05178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The high-throughput and accurate screening of anticancer drugs is crucial to the preclinical assessment of candidate drugs and remains challenging. Herein, an automatically electrochemical addressable cytosensor (AEAC) for the efficient screening of anticancer drugs is reported. This sensor consists of sectionalized laser-induced graphene arrays decorated by the rhombohedral TiO2 and spherical Pt nanoparticles (LIG-TiO2-Pt) with high electrocatalytic activity for H2O2 and a homemade Ag/Pt electrode couple fixed onto the robot arm. The immobilization of laminin on the surface of LIG-TiO2-Pt can promote its biocompatibility for the growth and proliferation of various tumor cells, which empowers the in situ monitoring of H2O2 directly released from these live cells for drug screening. A machine learning (ML) algorithm is employed to eliminate the possible random or systematic errors of AEAC, realizing rapid, high-throughput, and accurate prediction of different types of anticancer drugs. This ML-assisted AEAC provides a powerful approach to accelerate the evolution of sensing-served tumor therapy.
Collapse
Affiliation(s)
- Jingwei Zhang
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Caoling Li
- Equine Science Research and Doping Control Center, Wuhan Business University, Wuhan 430056, China
| | - Han Wang
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Zhao Yang
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Chengguo Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Kangbing Wu
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Junxing Hao
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| |
Collapse
|
4
|
Lu SM, Chen JF, Wang HF, Hu P, Long YT. Mass Transport and Electron Transfer at the Electrochemical-Confined Interface. J Phys Chem Lett 2023; 14:1113-1123. [PMID: 36705310 DOI: 10.1021/acs.jpclett.2c03479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single entity measurements based on the stochastic collision electrochemistry provide a promising and versatile means to study single molecules, single particles, single droplets, etc. Conceptually, mass transport and electron transfer are the two main processes at the electrochemically confined interface that underpin the most transient electrochemical responses resulting from the stochastic and discrete behaviors of single entities at the microscopic scale. This perspective demonstrates how to achieve controllable stochastic collision electrochemistry by effectively altering the two processes. Future challenges and opportunities for stochastic collision electrochemistry are also highlighted.
Collapse
Affiliation(s)
- Si-Min Lu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023P. R. China
| | - Jian-Fu Chen
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Hai-Feng Wang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Peijun Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, BelfastBT9 5AG, U.K
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023P. R. China
| |
Collapse
|
5
|
Deng L, Du J, Hun X. Photoelectrochemical assay based on CRISPR/Cas12a coupled with AuNP/MoS2/WS2/g-C3N4 nanoprobe for determination of hepatitis B virus. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Liu C, Ma Y, Xu Z, You Y, Bai S, Nan J, Wang L. Galvani Potential-Dependent Single Collision/Fusion Impacts at Liquid/Liquid Interface: Faradic or Capacitive? J Phys Chem B 2022; 126:9705-9714. [PMID: 36356196 DOI: 10.1021/acs.jpcb.2c05741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A new subtype of nano-impacts by emulsion droplets via reorganization of the electric double layer (EDL) at the liquid/liquid interface (LLI) is reported. This subtype shows anodic, bipolar, and cathodic transient currents with a potential of zero charge (PZC) dependence, revealing the non-faradic characteristic of single fusion impacts. In addition, the absolute integrated mean charge is proportional to the Galvani potential at the ITIES, indicating that the EDL at the LLI may obey the discrete Helmholtz model. The exact PZC point is interpolated from the fitting curve, and the droplet size distribution is estimated from the integrated charge distribution. Moreover, the different values of Epzc between single fusion impacts of MgCl2 droplets and pure water droplets is due to the specific absorption between Mg2+ and antagonistic anion in the organic phase. The influence of the concentration of the supporting electrolyte is also investigated. The above work gives physicochemical insights into the EDL at the micropipette-supported LLI and provides potential application to measure micro/nanoscale heterogeneous media without catalytic, reactive, or charge-transfer activity via impact experiments at LLI.
Collapse
Affiliation(s)
- Cheng Liu
- School of Chemistry, South China Normal University, Guangzhou510006, China
| | - Yamin Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Zhidan Xu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Yongtao You
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Silan Bai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Junmin Nan
- School of Chemistry, South China Normal University, Guangzhou510006, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| |
Collapse
|
7
|
Sun F, Xu D, Xie Y, Liu F, Wang W, Shao H, Ma Q, Yu H, Yu W, Dong X. Tri-functional aerogel photocatalyst with an S-scheme heterojunction for the efficient removal of dyes and antibiotic and hydrogen generation. J Colloid Interface Sci 2022; 628:614-626. [PMID: 36027772 DOI: 10.1016/j.jcis.2022.08.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
Abstract
A novel three-dimensional (3D) S-scheme S-gC3N4/TiO2/SiO2/PAN aerogel heterojunction photocatalyst (denoted as S-gTAHP) is rationally devised and manufactured by combining electrospinning, calcination, hydrothermal and freeze-drying techniques. The synthesized S-gC3N4 molecule is different from traditional g-C3N4, which has a small molecular structure similar to melamine. S-gC3N4 is embedded in the interwoven network structure of TiO2/PAN short fibers, and the catalytic system of the S-scheme heterojunction is formed with SiO2 as a crosslinking agent. S-gTAHP achieves perfect tri-functional photocatalytic capability, including remarkable hydrogen release capacity (806.7 μmol∙h-1∙g-1), efficient removal of three colored dyes with removal efficiencies up to 99.43% (MB, 15 min), 96.13% (RhB, 30 min) and 91.32% (MO, 40 min), and a degradation rate of the colorless antibiotic TCH reaching 84.20% in 40 min driven by simulated sunlight. Meanwhile, the effects of pH values and concentrations of contaminant solutions on the removal rates are explored, and the S-scheme mechanism of S-gTAHP strengthening photocatalytic activity is elucidated. The apparently heightened photocatalytic activities of S-gTAHP can be ascribed to the fact that the 3D hierarchical porous structure of the aerogel endows more active centers and enhanced light-harvesting capacity, and the S-scheme heterojunction supplies effective charge migrating channels, thereby affording the carriers with strong redox capability. Furthermore, S-gTAHP holds prominent reusability and is light weight. Hence, efficient and recyclable 3D aerogel photocatalysts with S-scheme heterojunctions have broad application prospects in practical sewage treatment and energy conversion fields.
Collapse
Affiliation(s)
- Feng Sun
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Da Xu
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Yunrui Xie
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Feng Liu
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Wenling Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Hong Shao
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Qianli Ma
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Hui Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Wensheng Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Xiangting Dong
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China.
| |
Collapse
|
8
|
Lu SM, Li MY, Long YT. Dynamic Chemistry Interactions: Controlled Single-Entity Electrochemistry. J Phys Chem Lett 2022; 13:4653-4659. [PMID: 35604854 DOI: 10.1021/acs.jpclett.2c00960] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-entity electrochemistry (SEE) provides powerful means to measure single cells, single particles, and even single molecules at the nanoscale by diverse well-defined interfaces. The nanoconfined electrode interface has significantly enhanced structural, electrical, and compositional characteristics that have great effects on the assay limitation and selectivity of single-entity measurement. In this Perspective, after introducing the dynamic chemistry interactions of the target and electrode interface, we present a fundamental understanding of how these dynamic interactions control the features of the electrode interface and thus the stochastic and discrete electrochemical responses of single entities under nanoconfinement. Both stochastic single-entity collision electrochemistry and nanopore electrochemistry as examples in this Perspective explore how these interactions alter the transient charge transfer and mass transport. Finally, we discuss the further challenges and opportunities in SEE, from the design of sensing interfaces to hybrid spectro-electrochemical methods, theoretical models, and advanced data processing.
Collapse
Affiliation(s)
- Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Meng-Yin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
9
|
Zhang W, Li J, Xia X, Zhou Y. Enhanced Electrochemistry of Single Plasmonic Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenmin Zhang
- Institute of Chemical Biology and Nanomedicine (ICBN) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Jian Li
- State Key Lab of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xing‐Hua Xia
- State Key Lab of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yi‐Ge Zhou
- Institute of Chemical Biology and Nanomedicine (ICBN) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
10
|
Zhou Y, Zhang W, Li J, Xia XH. Enhanced Electrochemistry of Single Plasmonic Nanoparticles. Angew Chem Int Ed Engl 2021; 61:e202115819. [PMID: 34890086 DOI: 10.1002/anie.202115819] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/10/2022]
Abstract
The structure-function relationship of plasmon enhanced electrochemistry (PEEC) is of great importance for the design of efficient PEEC catalyst, but is rarely investigated at single nanoparticle level for the lack of efficient nanoscale methodology. Herein, we report the utilization of nanoparticle impact electrochemistry to allow single nanoparticle PEEC, where the effect of incident light on the plasmonic Ag/Au nanoparticles for accelerating Co-MOFNs catalyzed hydrogen evolution reaction (HER) is systematically explored. It is found that the plasmon excited hot carrier injection can lower the reaction activation energy, resulting in a much promoted reaction probability and the integral charge generated from individual collisions. Besides, a plasmonic nanoparticle filtering method is established to effectively distinguish different plasmonic nanoparticles. This work provides a unique view in understanding the intrinsic physicochemical properties for PEEC at the nano-confined domains.
Collapse
Affiliation(s)
- Yige Zhou
- Hunan University, Institute of Chemical Biolology and Nanomedicine, 2 South Lushan Road, Yuelu District, 410082, Changsha, CHINA
| | - Wenmin Zhang
- Hunan University, College of Chemistry and Chemical Engineering, CHINA
| | - Jian Li
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| | - Xing-Hua Xia
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|
11
|
Hou C, Yu J, Ding J, Fan W, Bai H, Xu D, Shi W. An effective route for growth of WO3/BiVO4 heterojunction thin films with enhanced photoelectrochemical performance. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Hesari M, Ma H, Ding Z. Monitoring single Au 38 nanocluster reactions via electrochemiluminescence. Chem Sci 2021; 12:14540-14545. [PMID: 34881005 PMCID: PMC8580063 DOI: 10.1039/d1sc04018a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, we report for the first time single Au38 nanocluster reaction events of highly efficient electrochemiluminescence (ECL) with tri-n-propylamine radicals as a reductive co-reactant at the surface of an ultramicroelectrode (UME). The statistical analyses of individual reactions confirm stochastic single ones influenced by the applied potential.
Collapse
Affiliation(s)
- Mahdi Hesari
- Department of Chemistry, The University of Western Ontario London Ontario N6A 5B7 Canada
| | - Hui Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Zhifeng Ding
- Department of Chemistry, The University of Western Ontario London Ontario N6A 5B7 Canada
| |
Collapse
|
13
|
Subedi P, Parajuli S, Alpuche-Aviles MA. Single Entity Behavior of CdSe Quantum Dot Aggregates During Photoelectrochemical Detection. Front Chem 2021; 9:733642. [PMID: 34568283 PMCID: PMC8461012 DOI: 10.3389/fchem.2021.733642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
We demonstrate that colloidal quantum dots of CdSe and CdSe/ZnS are detected during the photooxidation of MeOH, under broad spectrum illumination (250 mW/cm2). The stepwise photocurrent vs. time response corresponds to single entities adsorbing to the Pt electrode surface irreversibly. The adsorption/desorption of the QDs and the nature of the single entities is discussed. In suspensions, the QDs behave differently depending on the solvent used to suspend the materials. For MeOH, CdSe is not as stable as CdSe/ZnS under constant illumination. The photocurrent expected for single QDs is discussed. The value of the observed photocurrents, > 1 pA is due to the formation of agglomerates consistent with the collision frequency and suspension stability. The observed frequency of collisions for the stepwise photocurrents is smaller than the diffusion-limited cases expected for single QDs colliding with the electrode surface. Dynamic light scattering and scanning electron microscopy studies support the detection of aggregates. The results indicate that the ZnS layer on the CdSe/ZnS material facilitates the detection of single entities by increasing the stability of the nanomaterial. The rate of hole transfer from the QD aggregates to MeOH outcompetes the dissolution of the CdSe core under certain conditions of electron injection to the Pt electrode and in colloidal suspensions of CdSe/ZnS.
Collapse
Affiliation(s)
- Pradeep Subedi
- Department of Chemistry, University of Nevada, Reno, NV, United States
| | - Suman Parajuli
- Department of Chemistry, University of Nevada, Reno, NV, United States
| | | |
Collapse
|
14
|
Chen M, Lu SM, Peng YY, Ding Z, Long YT. Tracking the Electrocatalytic Activity of a Single Palladium Nanoparticle for the Hydrogen Evolution Reaction. Chemistry 2021; 27:11799-11803. [PMID: 34101910 DOI: 10.1002/chem.202101263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 01/07/2023]
Abstract
The nanoparticle-based electrocatalysts' performance is directly related to their working conditions. In general, a number of nanoparticles are uncontrollably fixed on a millimetre-sized electrode for electrochemical measurements. However, it is hard to reveal the maximum electrocatalytic activity owing to the aggregation and detachment of nanoparticles on the electrode surface. To solve this problem, here, we take the hydrogen evolution reaction (HER) catalyzed by palladium nanoparticles (Pd NPs) as a model system to track the electrocatalytic activity of single Pd NPs by stochastic collision electrochemistry and ensemble electrochemistry, respectively. Compared with the nanoparticle fixed working condition, Pd NPs in the nanoparticle diffused working condition results in a 2-5 orders magnitude enhancement of electrocatalytic activity for HER at various bias potential. Stochastic collision electrochemistry with high temporal resolution gives further insights into the accurate study of NPs' electrocatalytic performance, enabling to dramatically enhance electrocatalytic efficiency.
Collapse
Affiliation(s)
- Mengjie Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue-Yi Peng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhifeng Ding
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
15
|
Ma H, Gosh UK, Ying Y, Long Y. Stochastic Collision Photoelectrochemistry for Light‐Induced Electron Transfer Dynamics. ChemElectroChem 2021. [DOI: 10.1002/celc.202100439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hui Ma
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Road Nanjing 210023 P. R. China
| | - Utpal Kumar Gosh
- School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Yi‐Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Road Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center Nanjing University 163 Xianlin Road Nanjing 210023 P. R. China
| | - Yi‐Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Road Nanjing 210023 P. R. China
- School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
16
|
Mathuri S, Zhu Y, Margoni MM, Li X. Semiconducting Nanoparticles: Single Entity Electrochemistry and Photoelectrochemistry. Front Chem 2021; 9:688320. [PMID: 34150719 PMCID: PMC8207509 DOI: 10.3389/fchem.2021.688320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Semiconducting nanoparticles (SC NPs) play vital roles in several emerging technological applications including optoelectronic devices, sensors and catalysts. Recent research focusing on the single entity electrochemistry and photoelectrochemistry of SC NPs is a fascinating field which has attained an increasing interest in recent years. The nano-impact method provides a new avenue of studying electron transfer processes at single particle level and enables the discoveries of intrinsic (photo) electrochemical activities of the SC NPs. Herein, we review the recent research work on the electrochemistry and photoelectrochemistry of single SC NPs via the nano-impact technique. The redox reactions and electrocatalysis of single metal oxide semiconductor (MOS) NPs and chalcogenide quantum dots (QDs) are first discussed. The photoelectrochemistry of single SC NPs such as TiO2 and ZnO NPs is then summarized. The key findings and challenges under each topic are highlighted and our perspectives on future research directions are provided.
Collapse
Affiliation(s)
- S Mathuri
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yuanhang Zhu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Mudaliar Mahesh Margoni
- Crystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kancheepuram, India
| | - Xiuting Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
17
|
Vikraman D, Hussain S, Patil SA, Truong L, Arbab AA, Jeong SH, Chun SH, Jung J, Kim HS. Engineering MoSe 2/WS 2 Hybrids to Replace the Scarce Platinum Electrode for Hydrogen Evolution Reactions and Dye-Sensitized Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5061-5072. [PMID: 33470112 DOI: 10.1021/acsami.0c19890] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In recent times, two-dimensional transition-metal dichalcogenides (TMDs) have become extremely attractive and proficient electrodes for dye-sensitized solar cells (DSSCs) and water electrolysis hydrogen evolution as alternatives to the scarce metal platinum (Pt). The active TMD molybdenum selenide (MoSe2) and tungsten disulfide (WS2) are inspiring systems owing to their abundance of active sulfur and selenium sites, but their outputs are lacking due to their inactive basal planes and ineffective transport behavior. In this work, van der Waals interrelated MoSe2/WS2 hybrid structures were constructed on conducting glass substrates by chemicophysical methodologies. For the first time, the constructed MoSe2/WS2 structures were effectively used as a counter electrode for DSSCs and an active electrode for hydrogen evolution to replace the nonabundant Pt. The assembled DSSCs using the designed MoSe2/WS2 heterostructure counter electrode provided a superior power-conversion efficiency of 9.92% and a photocurrent density of 23.10 mA·cm-2, unmatchable by most of the TMD-based structures. The MoSe2/WS2 heterostructure displayed excellent electrocatalytic hydrogen evolution behavior with a 75 mV overpotential to drive a 10 mA·cm-2 current density, a 60 mV·dec-1 Tafel slope, and an over 20 h durable process in an acidic medium. The results demonstrated the advantages of the MoSe2/WS2 hybrid development for generating interfacial transport and active facet distribution and enriching the electrocatalytic activity for DSSCs and the water-splitting hydrogen evolution process.
Collapse
Affiliation(s)
- Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Sajjad Hussain
- Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Republic of Korea
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Supriya A Patil
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Linh Truong
- Department of Physics, Sejong University, Seoul 05006, Republic of Korea
| | - Alvira Ayoub Arbab
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sung Hoon Jeong
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung-Hyun Chun
- Department of Physics, Sejong University, Seoul 05006, Republic of Korea
| | - Jongwan Jung
- Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Republic of Korea
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| |
Collapse
|
18
|
Affiliation(s)
- Honghui Ou
- Department of Chemistry Tsinghua University Beijing China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing China
| |
Collapse
|
19
|
Li Z, Zhang H, Zha Q, Zhai C, Li W, Zeng L, Zhu M. Photo-electrochemical detection of dopamine in human urine and calf serum based on MIL-101 (Cr)/carbon black. Mikrochim Acta 2020; 187:526. [PMID: 32860113 DOI: 10.1007/s00604-020-04524-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022]
Abstract
A new photo-electrochemical sensor based on MIL-101(Cr) MOF/carbon black (CB) is fabricated and characterized. By using differential pulse voltammetry, dopamine (DA) can be effectively detected using a photo-electrochemical MIL-101(Cr)/CB sensor under visible light. The CB acts as the electron bridge to combine with the large specific surface area and photo-catalytic feature of MOF, which contribute to the improvements of sensitivity of DA detection. The concentration of the catalyst, pH value, accumulation potential, and accumulation time were also optimized. Furthermore, the electrochemical performances of MIL-101(Cr)/CB sensor was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scan rate, electrochemically active surface area (ECSA), and amperometric responses. A detection limit of 0.38 nM (LOD = 3 sb/S, sb = 0.028) and a working range of 1 nM to 2.22 μM has been achieved. The MIL-101(Cr)/CB sensor exhibits excellent reproducibility, stability, and selectivity and also has satisfactory recovery rate for the analysis of real samples including calf serum and human urine. Graphical abstract.
Collapse
Affiliation(s)
- Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, People's Republic of China
| | - Hongmin Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Qingbing Zha
- Department of Fetal Medicine, First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China
| | - Chunyang Zhai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, People's Republic of China. .,School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Wanbin Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, People's Republic of China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, People's Republic of China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, People's Republic of China.
| |
Collapse
|
20
|
Cui W, Bai H, Shang J, Wang F, Xu D, Ding J, Fan W, Shi W. Organic-inorganic hybrid-photoanode built from NiFe-MOF and TiO2 for efficient PEC water splitting. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136383] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Karunathilake N, Gutierrez‐Portocarrero S, Subedi P, Alpuche‐Aviles MA. Reduction Kinetics and Mass Transport of ZnO Single Entities on a Hg Ultramicroelectrode. ChemElectroChem 2020. [DOI: 10.1002/celc.202000031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Pradeep Subedi
- Department of Chemistry University of Nevada Reno Nevada 89557 USA
| | | |
Collapse
|
22
|
Wang Q, Bae JH, Nepomnyashchii AB, Jia R, Zhang S, Mirkin MV. Light-Controlled Nanoparticle Collision Experiments. J Phys Chem Lett 2020; 11:2972-2976. [PMID: 32216279 DOI: 10.1021/acs.jpclett.0c00585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemical monitoring of catalytically amplified collisions of individual metal nanoparticles (NP) with ultramicroelectrodes (UME) has been extensively used to study electrocatalysis, mass-transport, and charge-transfer processes at the single NP level. More recently, photoelectrochemical collision experiments were carried out with semiconductive NPs. Here, we introduce two new types of light-controlled nanoimpact experiments. The first experiment involves localized photodeposition of catalyst (Pt) on TiO2 NPs with a glass-sheathed carbon fiber simultaneously serving as the light guide and collector UME. The collisions of in situ prepared Pt@TiO2 NPs with the carbon surface produced blips of water oxidation current, while the activity of pristine TiO2 NPs was too low to yield measurable signal. In another experiment, collisions of catalytic (Ir oxide) NPs with the semiconductor (Nb doped n-type TiO2 rutile single crystal) electrode are monitored by measuring the photocurrent of water oxidation.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Je Hyun Bae
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | | | - Rui Jia
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center, CUNY, New York, New York 10016, United States
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center, CUNY, New York, New York 10016, United States
| |
Collapse
|
23
|
Ying YL, Wang J, Leach AR, Jiang Y, Gao R, Xu C, Edwards MA, Pendergast AD, Ren H, Weatherly CKT, Wang W, Actis P, Mao L, White HS, Long YT. Single-entity electrochemistry at confined sensing interfaces. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9716-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Affiliation(s)
- Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yue-Yi Peng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
25
|
Giant single molecule chemistry events observed from a tetrachloroaurate(III) embedded Mycobacterium smegmatis porin A nanopore. Nat Commun 2019; 10:5668. [PMID: 31827098 PMCID: PMC6906327 DOI: 10.1038/s41467-019-13677-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Biological nanopores are capable of resolving small analytes down to a monoatomic ion. In this research, tetrachloroaurate(III), a polyatomic ion, is discovered to bind to the methionine residue (M113) of a wild-type α-hemolysin by reversible Au(III)-thioether coordination. However, the cylindrical pore geometry of α-hemolysin generates shallow ionic binding events (~5–6 pA) and may have introduced other undesired interactions. Inspired by nanopore sequencing, a Mycobacterium smegmatis porin A (MspA) nanopore, which possesses a conical pore geometry, is mutated to bind tetrachloroaurate(III). Subsequently, further amplified blockage events (up to ~55 pA) are observed, which report the largest single ion binding event from a nanopore measurement. By taking the embedded Au(III) as an atomic bridge, the MspA nanopore is enabled to discriminate between different biothiols from single molecule readouts. These phenomena suggest that MspA is advantageous for single molecule chemistry investigations and has applications as a hybrid biological nanopore with atomic adaptors. Engineered biological nanopores enable observation of single molecule chemistry events; however a cylindrical pore geometry can have undesired effects. The authors report a conical biological pore which was embedded with tetrachloroaurate(III) to allow for discrimination between different biothiols.
Collapse
|
26
|
Wang L, Schmid M, Sambur JB. Single nanoparticle photoelectrochemistry: What is next? J Chem Phys 2019; 151:180901. [PMID: 31731844 DOI: 10.1063/1.5124710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Semiconductor photoelectrochemistry is a fascinating field that deals with the chemistry and physics of photodriven reactions at solid/liquid interfaces. The interdisciplinary field attracts (electro)chemists, materials scientists, spectroscopists, and theorists to study fundamental and applied problems such as carrier dynamics at illuminated electrode/electrolyte interfaces and solar energy conversion to electricity or chemical fuels. In the pursuit of practical photoelectrochemical energy conversion systems, researchers are exploring inexpensive, solution-processed semiconductor nanomaterials as light absorbers. Harnessing the enormous potential of nanomaterials for energy conversion applications requires a fundamental understanding of charge carrier generation, separation, transport, and interfacial charge transfer at heterogeneous nanoscale interfaces. Our current understanding of these processes is derived mainly from ensemble-average measurements of nanoparticle electrodes that report on the average behavior of trillions of nanoparticles. Ensemble-average measurements conceal how nanoparticle heterogeneity (e.g., differences in particle size, shape, and surface structure) contributes to the overall photoelectrochemical response. This perspective article focuses on the emerging area of single particle photoelectrochemistry, which has opened up an exciting new frontier: direct investigations of photodriven reactions on individual nanomaterials, with the ability to elucidate the role of particle-dependent properties on the photoelectrochemical behavior. Here, we (1) review the basic principles of photoelectrochemical cells, (2) point out the potential advantages and differences between bulk and nanoelectrodes, (3) introduce approaches to single nanoparticle photoelectrochemistry and highlight key findings, and (4) provide our perspective on future research directions.
Collapse
Affiliation(s)
- Li Wang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Merranda Schmid
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Justin B Sambur
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
27
|
|
28
|
An ultrasensitive photoelectrochemical platform for quantifying photoinduced electron-transfer properties of a single entity. Nat Protoc 2019; 14:2672-2690. [PMID: 31391579 DOI: 10.1038/s41596-019-0197-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 05/15/2019] [Indexed: 02/06/2023]
Abstract
Understanding the photoinduced electron-transfer process is of paramount importance for realizing efficient solar energy conversion. It is rather difficult to clarify the link between the specific properties and the photoelectrochemical performance of an individual component in an ensemble system because data are usually presented as averages because of interplay of the heterogeneity of the bulk system. Here, we report a step-by-step protocol to fabricate an ultrasensitive photoelectrochemical platform for real-time detection of the intrinsic photoelectrochemical behaviors of a single entity with picoampere and sub-millisecond sensitivity. Using a micron-thickness nanoparticulate TiO2-filmed Au ultramicroelectrode (UME) as the electron-transport electrode, photocurrent transients can be observed for each individual dye-tagged oxide semiconductor nanoparticle collision associated with a single-entity photoelectrochemical reaction. This protocol allows researchers to obtain high-resolution photocurrent signals to quantify the photoinduced electron-transfer properties of an individual entity, as well as to precisely process the data obtained. We also include procedures for dynamic light scattering (DLS) analysis, transmission electron microscopy (TEM) imaging and collision frequency-concentration correlation to confirm that the photoelectrochemical collision events occur at an unambiguously single-entity level. The time required for the entire protocol is ~36 h, with a single-entity photoelectrochemical measurement taking <1 h to complete for each independent experiment. This protocol requires basic nanoelectrochemistry and nanotechnology skills, as well as an intermediate-level understanding of photoelectrochemistry.
Collapse
|
29
|
Karimi A, Andreescu S, Andreescu D. Single-Particle Investigation of Environmental Redox Processes of Arsenic on Cerium Oxide Nanoparticles by Collision Electrochemistry. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24725-24734. [PMID: 31190542 DOI: 10.1021/acsami.9b05234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Quantification of chemical reactions of nanoparticles (NPs) and their interaction with contaminants is a fundamental need to the understanding of chemical reactivity and surface chemistry of NPs released into the environment. Herein, we propose a novel strategy employing single-particle electrochemistry showing that it is possible to measure reactivity, speciation, and loading of As3+ on individual NPs, using cerium oxide (CeO2) as a model system. We demonstrate that redox reactions and adsorption processes can be electrochemically quantified with high sensitivity via the oxidation of As3+ to As5+ at 0.8 V versus Ag/AgCl or the reduction of As3+ to As0 at -0.3 V (vs Ag/AgCl) generated by collisions of single particles at an ultramicroelectrode. Using collision electrochemistry, As3+ concentrations were determined in basic conditions showing a maximum adsorption capacity at pH 8. In acidic environments (pH < 4), a small fraction of As3+ was oxidized to As5+ by surface Ce4+ and further adsorbed onto the CeO2 surface as a As5+ bidentate complex. The frequency of current spikes (oxidative or reductive) was proportional to the concentration of As3+ accumulated onto the NPs and was found to be representative of the As3+ concentration in solution. Given its sensitivity and speciation capability, the method can find many applications in the analytical, materials, and environmental chemistry fields where there is a need to quantify the reactivity and surface interactions of NPs. This is the first study demonstrating the capability of single-particle collision electrochemistry to monitor the interaction of heavy metal ions with metal oxide NPs. This knowledge is critical to the fundamental understanding of the risks associated with the release of NPs into the environment for their safe implementation and practical use.
Collapse
Affiliation(s)
- Anahita Karimi
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| | - Daniel Andreescu
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| |
Collapse
|
30
|
Patrice FT, Qiu K, Ying YL, Long YT. Single Nanoparticle Electrochemistry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:347-370. [PMID: 31018101 DOI: 10.1146/annurev-anchem-061318-114902] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Experimental techniques to monitor and visualize the behaviors of single nanoparticles have not only revealed the significant spatial and temporal heterogeneity of those individuals, which are hidden in ensemble methods, but more importantly, they have also enabled researchers to elucidate the origin of such heterogeneity. In pursuing the intrinsic structure-function relations of single nanoparticles, the recently developed stochastic collision approach demonstrated some early promise. However, it was later realized that the appropriate sizing of a single nanoparticle by an electrochemical method could be far more challenging than initially expected owing to the dynamic motion of nanoparticles in electrolytes and complex charge-transfer characteristics at electrode surfaces. This clearly indicates a strong necessity to integrate single nanoparticle electrochemistry with high-resolution optical microscopy. Hence, this review aims to give a timely update of the latest progress for both electrochemically sensing and seeing single nanoparticles. A major focus is on collision-based measurements, where nanoparticles or single entities in solution impact on a collector electrode and the electrochemical response is recorded. These measurements are further enhanced with optical measurements in parallel. For completeness, advances in other related methods for single nanoparticle electrochemistry are also included.
Collapse
Affiliation(s)
- Fato Tano Patrice
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; ;
| | - Kaipei Qiu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; ;
| | - Yi-Lun Ying
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; ;
| | - Yi-Tao Long
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; ;
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
31
|
Zhou Y, Wang D, Li C, Hu P, Jin Y. Resistive-Pulse Sensing and Surface Charge Analysis of a Single Nanoparticle Collision at a Conical Glass Nanopore. Anal Chem 2019; 91:7648-7653. [DOI: 10.1021/acs.analchem.9b00553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ya Zhou
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dandan Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chuanping Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Hu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yongdong Jin
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
32
|
Liu C, Wang B, Han T, Shi D, Wang G. Fe Foil-Guided Fabrication of Uniform Ag@AgX Nanowires for Sensitive Detection of Leukemia DNA. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4820-4825. [PMID: 30620168 DOI: 10.1021/acsami.8b18700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, we report a novel Fe foil-guided, in situ etching strategy for the preparation of highly uniform Ag@AgX (X = Cl, Br) nanowires (NWs) and applied the photoelectric-responsive materials for sensitive photoelectrochemical (PEC) detection of leukemia DNA. The Ag@AgX NW formation process was discussed from the redox potential and Ksp value. The fabricated PEC platform for sensing leukemia DNA showed good assay performance with a wide linear range (0.1 pM to 50 nM) and low detection limit of 0.033 pM. We envision that our Fe foil-guided synthetic method could be applied to synthesize more photoactive materials for sensitive PEC detections.
Collapse
|
33
|
Sun H, Li P, Liu D, Wang T, Li W, Hu W, Wang L, Zhou X. Tuning photophysical properties via alkoxyl groups in charge-separated triphenylamine sensitizers for dye-sensitized solar cells. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Peng Y, Guo D, Ma W, Long Y. Intrinsic Electrocatalytic Activity of Gold Nanoparticles Measured by Single Entity Electrochemistry. ChemElectroChem 2018. [DOI: 10.1002/celc.201801065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yue‐Yi Peng
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Dan Guo
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Wei Ma
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Yi‐Tao Long
- Key Laboratory for Advanced MaterialsSchool of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
35
|
Li M, Ge Z, Zhang S, He P, Gu Y, Qi L, Shao Y. Electrocatalytic Reduction of Hydrogen Peroxide by Pd−Ag Nanoparticles Based on the Collisional Approach. ChemElectroChem 2018. [DOI: 10.1002/celc.201801249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mingzhi Li
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| | - Zhiqiang Ge
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| | - Shudong Zhang
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| | - Peng He
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| | - Yaxiong Gu
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| | - Limin Qi
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| | - Yuanhua Shao
- College of Chemistry and Molecular EngineeringBeijing National Research Center for Molecular SciencesPeking University 202 Chengfu Road Beijing 100871 P.R. China
| |
Collapse
|
36
|
Guan P, Bai H, Wang F, Yu H, Xu D, Chen B, Xia T, Fan W, Shi W. Boosting Water Splitting Performance of BiVO
4
Photoanode through Selective Surface Decoration of Ag
2
S. ChemCatChem 2018. [DOI: 10.1002/cctc.201801199] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peng Guan
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Hongye Bai
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Fagen Wang
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Hao Yu
- College of Chemical and Environmental EngineeringShandong University of Science and Technology Qingdao 266590 P. R. China
| | - Dongbo Xu
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Biyi Chen
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Teng Xia
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Weiqiang Fan
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Weidong Shi
- School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang 212013 P. R. China
| |
Collapse
|
37
|
Kanokkanchana K, Saw EN, Tschulik K. Nano Impact Electrochemistry: Effects of Electronic Filtering on Peak Height, Duration and Area. ChemElectroChem 2018. [DOI: 10.1002/celc.201800738] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kannasoot Kanokkanchana
- Chair of Analytical Chemistry IIDepartment of Chemistry and BiochemistryRuhr University Bochum Bochum Germany
| | - En N. Saw
- Chair of Analytical Chemistry IIDepartment of Chemistry and BiochemistryRuhr University Bochum Bochum Germany
| | - Kristina Tschulik
- Chair of Analytical Chemistry IIDepartment of Chemistry and BiochemistryRuhr University Bochum Bochum Germany
| |
Collapse
|
38
|
Li P, He Q, Liu H, Liu Y, Su J, Tian N, Zhan D. Collision Incidents of Single Tetrahexahedral Platinum Nanocrystals Recorded by a Carbon Nanoelectrode. ChemElectroChem 2018. [DOI: 10.1002/celc.201800650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pei Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Centre of Chemistry for Energy Materials College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Quanfeng He
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Centre of Chemistry for Energy Materials College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Hai‐Xia Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Centre of Chemistry for Energy Materials College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
- Key Laboratory of Mesoscopic Chemistry of MOE Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 China
| | - Yunhua Liu
- National CAD Support Software Engineering Research CenterHuazhong University of Science and Technology Wuhan 430074 China
| | - Jian‐Jia Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Centre of Chemistry for Energy Materials College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Na Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Centre of Chemistry for Energy Materials College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Dongping Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Centre of Chemistry for Energy Materials College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| |
Collapse
|
39
|
Sun L, Wang W, Chen H. Dynamic Nanoparticle‐Substrate Contacts Regulate Multi‐Peak Behavior of Single Silver Nanoparticle Collisions. ChemElectroChem 2018. [DOI: 10.1002/celc.201800640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Linlin Sun
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
40
|
Ma H, Ma W, Chen JF, Liu XY, Peng YY, Yang ZY, Tian H, Long YT. Quantifying Visible-Light-Induced Electron Transfer Properties of Single Dye-Sensitized ZnO Entity for Water Splitting. J Am Chem Soc 2018; 140:5272-5279. [DOI: 10.1021/jacs.8b01623] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hui Ma
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Wei Ma
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Jian-Fu Chen
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Xiao-Yuan Liu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Yue-Yi Peng
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Zhe-Yao Yang
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - He Tian
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|