1
|
Feng S, Su R. Synthetic Chemistry in Flow: From Photolysis & Homogeneous Photocatalysis to Heterogeneous Photocatalysis. CHEMSUSCHEM 2024; 17:e202400064. [PMID: 38608169 DOI: 10.1002/cssc.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Indexed: 04/14/2024]
Abstract
Photocatalytic synthesis of value-added chemicals has gained increasing attention in recent years owing to its versatility in driving many important reactions under ambient conditions. Selective hydrogenation, oxidation, coupling, and halogenation with a high conversion of the reactants have been realized using designed photocatalysts in batch reactors with small volumes at a laboratory scale; however, scaling-up remains a critical challenge due to inefficient utilization of incident light and active sites of the photocatalysts, resulting in poor catalytic performance that hinders its practical applications. Flow systems are considered one of the solutions for practical applications of light-driven reactions and have experienced great success in photolytic and homogeneous photocatalysis, yet their applications in heterogeneous photocatalysis are still under development. In this perspective, we have summarized recent progress in photolytic and photocatalytic synthetic chemistry performed in flow systems from the view of reactor design with a special focus on heterogeneous photocatalysis. The advantages and limitations of different flow systems, as well as some practical considerations of design strategies are discussed.
Collapse
Affiliation(s)
- Sitong Feng
- Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, 215006, Suzhou, China
| | - Ren Su
- Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, 215006, Suzhou, China
| |
Collapse
|
2
|
Petit G, Malherbe C, Bianchi P, Monbaliu JCM. An innovative chalcogenide transfer agent for improved aqueous quantum dot synthesis. Chem Sci 2024; 15:d4sc01135j. [PMID: 39129774 PMCID: PMC11309086 DOI: 10.1039/d4sc01135j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
An innovative approach to chalcogenide precursor synthesis and their subsequent use for the production of CdX (X = S, Se, Te) quantum dots (QDs) in water under scalable and intensified continuous flow conditions is introduced. Herein, tris(2-carboxyethyl)phosphine (TCEP) is identified as a novel, efficient and water-soluble vehicle for chalcogenide transfer to form CdX QDs under aqueous conditions. A comprehensive exploration of critical process parameters, including pH, chalcogen excess, and residence time, utilizing a Design of Experiments (DoE) approach is reported. Reaction kinetics are investigated in real-time using a combination of in situ Raman spectroscopy and in-line 31P NMR spectroscopy. The conversion of TCEP into TCEP[double bond, length as m-dash]X (X = S, Se, Te) species is seamlessly adapted to continuous flow conditions. TCEP[double bond, length as m-dash]X precursors are subsequently employed in the synthesis of CdX QDs. Scalability trials are successfully demonstrated, with experiments conducted at flow rates of up to 80 mL min-1 using a commercially available mesofluidic flow reactor with favorable metrics. Furthermore, biocompatible and aqueous CdSe/ZnS core-shell QDs are for the first time prepared in flow within a fully concatenated process. These results emphasize the potential for widespread biological or industrial applications of this novel protocol.
Collapse
Affiliation(s)
- Guillaume Petit
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège B-4000 Liège (Sart Tilman) Belgium https://www.citos.uliege.be/
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège B-4000 Liège (Sart Tilman) Belgium
| | - Pauline Bianchi
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège B-4000 Liège (Sart Tilman) Belgium https://www.citos.uliege.be/
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis (CiTOS), MolSys Research Unit, University of Liège B-4000 Liège (Sart Tilman) Belgium https://www.citos.uliege.be/
- WEL Research Institute Avenue Pasteur 6 B-1300 Wavre Belgium
| |
Collapse
|
3
|
Zhang Z, Wang W, Rao H, Pan Z, Zhong X. Improving the efficiency of quantum dot-sensitized solar cells by increasing the QD loading amount. Chem Sci 2024; 15:5482-5495. [PMID: 38638208 PMCID: PMC11023064 DOI: 10.1039/d3sc06911g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
In quantum dot-sensitized solar cells (QDSCs), optimized quantum dot (QD) loading mode and high QD loading amount are prerequisites for great device performance. Capping ligand-induced self-assembly (CLIS) mode represents the mainstream QD loading strategy in the fabrication of high-efficiency QDSCs. However, there remain limitations in CLIS that constrain further enhancement of QD loading levels. This review illustrates the development of various QD loading methods in QDSCs, with an emphasis on the outstanding merits and bottlenecks of CLIS. Subsequently, thermodynamic and kinetic factors dominating QD loading behaviors in CLIS are analyzed theoretically. Upon understanding driving forces, resistances, and energy effects in a QD assembly process, various novel strategies for improving the QD loading amount in CLIS are summarized, and the related functional mechanism is established. Finally, the article concludes and outlooks some remaining academic issues to be solved, so that higher QD loading amount and efficiencies of QDSCs can be anticipated in the future.
Collapse
Affiliation(s)
- Zhengyan Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Wenran Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Huashang Rao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Zhenxiao Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Xinhua Zhong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
4
|
Volk AA, Epps RW, Yonemoto DT, Masters BS, Castellano FN, Reyes KG, Abolhasani M. AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning. Nat Commun 2023; 14:1403. [PMID: 36918561 PMCID: PMC10015005 DOI: 10.1038/s41467-023-37139-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Closed-loop, autonomous experimentation enables accelerated and material-efficient exploration of large reaction spaces without the need for user intervention. However, autonomous exploration of advanced materials with complex, multi-step processes and data sparse environments remains a challenge. In this work, we present AlphaFlow, a self-driven fluidic lab capable of autonomous discovery of complex multi-step chemistries. AlphaFlow uses reinforcement learning integrated with a modular microdroplet reactor capable of performing reaction steps with variable sequence, phase separation, washing, and continuous in-situ spectral monitoring. To demonstrate the power of reinforcement learning toward high dimensionality multi-step chemistries, we use AlphaFlow to discover and optimize synthetic routes for shell-growth of core-shell semiconductor nanoparticles, inspired by colloidal atomic layer deposition (cALD). Without prior knowledge of conventional cALD parameters, AlphaFlow successfully identified and optimized a novel multi-step reaction route, with up to 40 parameters, that outperformed conventional sequences. Through this work, we demonstrate the capabilities of closed-loop, reinforcement learning-guided systems in exploring and solving challenges in multi-step nanoparticle syntheses, while relying solely on in-house generated data from a miniaturized microfluidic platform. Further application of AlphaFlow in multi-step chemistries beyond cALD can lead to accelerated fundamental knowledge generation as well as synthetic route discoveries and optimization.
Collapse
Affiliation(s)
- Amanda A Volk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695-7905, USA
| | - Robert W Epps
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695-7905, USA
| | - Daniel T Yonemoto
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Benjamin S Masters
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Kristofer G Reyes
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, 14260, USA
| | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695-7905, USA.
| |
Collapse
|
5
|
McNaughton AD, Joshi RP, Knutson CR, Fnu A, Luebke KJ, Malerich JP, Madrid PB, Kumar N. Machine Learning Models for Predicting Molecular UV-Vis Spectra with Quantum Mechanical Properties. J Chem Inf Model 2023; 63:1462-1471. [PMID: 36847578 DOI: 10.1021/acs.jcim.2c01662] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Accurate understanding of ultraviolet-visible (UV-vis) spectra is critical for the high-throughput synthesis of compounds for drug discovery. Experimentally determining UV-vis spectra can become expensive when dealing with a large quantity of novel compounds. This provides us an opportunity to drive computational advances in molecular property predictions using quantum mechanics and machine learning methods. In this work, we use both quantum mechanically (QM) predicted and experimentally measured UV-vis spectra as input to devise four different machine learning architectures, UVvis-SchNet, UVvis-DTNN, UVvis-Transformer, and UVvis-MPNN, and assess the performance of each method. We find that the UVvis-MPNN model outperforms the other models when using optimized 3D coordinates and QM predicted spectra as input features. This model has the highest performance for predicting UV-vis spectra with a training RMSE of 0.06 and validation RMSE of 0.08. Most importantly, our model can be used for the challenging task of predicting differences in the UV-vis spectral signatures of regioisomers.
Collapse
Affiliation(s)
- Andrew D McNaughton
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Rajendra P Joshi
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Carter R Knutson
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Anubhav Fnu
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kevin J Luebke
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Jeremiah P Malerich
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Peter B Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Neeraj Kumar
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
6
|
Lakhanpal VS, Zydlewski BZ, Gan XY, Celio H, Jhong HRM, Ofosu CK, Milliron DJ. Aqueous transfer of colloidal metal oxide nanocrystals via base-driven ligand exchange. Chem Commun (Camb) 2022; 58:9496-9499. [PMID: 35920348 DOI: 10.1039/d2cc02416k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general method is developed for removal of native nonpolar oleate ligands from colloidal metal oxide nanocrystals of varying morphologies and compositions. Ligand stripping occurs by phase transfer into potassium hydroxide solution, yielding stable aqueous dispersions with little nanocrystal aggregation and without significant changes to the nanomaterials' physical or chemical properties. This method enables facile fabrication of conductive films of ligand-free nanocrystals.
Collapse
Affiliation(s)
- Vikram S Lakhanpal
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Benjamin Z Zydlewski
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Xing Yee Gan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Hugo Celio
- Texas Materials Institute and Materials Science and Engineering Program, The University of Texas at Austin, Austin, TX 78712, USA
| | - Huei-Ru Molly Jhong
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Charles K Ofosu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | - Delia J Milliron
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA.,Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
7
|
Sebastian V. Toward continuous production of high-quality nanomaterials using microfluidics: nanoengineering the shape, structure and chemical composition. NANOSCALE 2022; 14:4411-4447. [PMID: 35274121 DOI: 10.1039/d1nr06342a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last decade, a multitude of synthesis strategies has been reported for the production of high-quality nanoparticles. Wet-chemical methods are generally the most efficient synthesis procedures since high control of crystallinity and physicochemical properties can be achieved. However, a number of challenges remain from inadequate reaction control during the nanocrystallization process; specifically variability, selectivity, scalability and safety. These shortcomings complicate the synthesis, make it difficult to obtain a uniform product with desired properties, and present serious limitations for scaling the production of colloidal nanocrystals from academic studies to industrial applications. Continuous flow reactors based on microfluidic principles offer potential solutions and advantages. The reproducibility of reaction conditions in microfluidics and therefore product quality have proved to exceed those obtained by batch processing. Considering that in nanoparticles' production not only is it crucial to control the particle size distribution, but also the shape and chemical composition, this review presents an overview of the current state-of-the-art in synthesis of anisotropic and faceted nanostructures by using microfluidics techniques. The review surveys the available tools that enable shape and chemical control, including secondary growth methods, active segmented flow, and photoinduced shape conversion. In addition, emphasis is placed on the available approaches developed to tune the structure and chemical composition of nanomaterials in order to produce complex heterostructures in a continuous and reproducible fashion.
Collapse
Affiliation(s)
- Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Department of Chemical Engineering and Environmental Technologies, University de Zaragoza, 50018, Zaragoza, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos, 3-5 Pabellón 11, 28029 Madrid, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
8
|
Wang W, Zhang M, Pan Z, Biesold GM, Liang S, Rao H, Lin Z, Zhong X. Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices. Chem Rev 2021; 122:4091-4162. [PMID: 34968050 DOI: 10.1021/acs.chemrev.1c00478] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Colloidal nanocrystals (NCs) are intriguing building blocks for assembling various functional thin films and devices. The electronic, optoelectronic, and thermoelectric applications of solution-processed, inorganic ligand (IL)-capped colloidal NCs are especially promising as the performance of related devices can substantially outperform their organic ligand-capped counterparts. This in turn highlights the significance of preparing IL-capped NC dispersions. The replacement of initial bulky and insulating ligands capped on NCs with short and conductive inorganic ones is a critical step in solution-phase ligand exchange for preparing IL-capped NCs. Solution-phase ligand exchange is extremely appealing due to the highly concentrated NC inks with completed ligand exchange and homogeneous ligand coverage on the NC surface. In this review, the state-of-the-art of IL-capped NCs derived from solution-phase inorganic ligand exchange (SPILE) reactions are comprehensively reviewed. First, a general overview of the development and recent advancements of the synthesis of IL-capped colloidal NCs, mechanisms of SPILE, elementary reaction principles, surface chemistry, and advanced characterizations is provided. Second, a series of important factors in the SPILE process are offered, followed by an illustration of how properties of NC dispersions evolve after ILE. Third, surface modifications of perovskite NCs with use of inorganic reagents are overviewed. They are necessary because perovskite NCs cannot withstand polar solvents or undergo SPILE due to their soft ionic nature. Fourth, an overview of the research progresses in utilizing IL-capped NCs for a wide range of applications is presented, including NC synthesis, NC solid and film fabrication techniques, field effect transistors, photodetectors, photovoltaic devices, thermoelectric, and photoelectrocatalytic materials. Finally, the review concludes by outlining the remaining challenges in this field and proposing promising directions to further promote the development of IL-capped NCs in practical application in the future.
Collapse
Affiliation(s)
- Wenran Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Meng Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhenxiao Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shuang Liang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huashang Rao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xinhua Zhong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
9
|
Urbina F, Batra K, Luebke KJ, White JD, Matsiev D, Olson LL, Malerich JP, Hupcey MAZ, Madrid PB, Ekins S. UV-adVISor: Attention-Based Recurrent Neural Networks to Predict UV-Vis Spectra. Anal Chem 2021; 93:16076-16085. [PMID: 34812602 DOI: 10.1021/acs.analchem.1c03741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultraviolet-visible (UV-Vis) absorption spectra are routinely collected as part of high-performance liquid chromatography (HPLC) analysis systems and can be used to identify chemical reaction products by comparison to the reference spectra. Here, we present UV-adVISor as a new computational tool for predicting the UV-Vis spectra from a molecule's structure alone. UV-Vis prediction was approached as a sequence-to-sequence problem. We utilized Long-Short Term Memory and attention-based neural networks with Extended Connectivity Fingerprint Diameter 6 or molecule SMILES to generate predictive models for the UV spectra. We have produced two spectrum datasets (dataset I, N = 949, and dataset II, N = 2222) using different compound collections and spectrum acquisition methods to train, validate, and test our models. We evaluated the prediction accuracy of the complete spectra by the correspondence of wavelengths of absorbance maxima and with a series of statistical measures (the best test set median model parameters are in parentheses for model II), including RMSE (0.064), R2 (0.71), and dynamic time warping (DTW, 0.194) of the entire spectrum curve. Scrambling molecule structures with the experimental spectra during training resulted in a degraded R2, confirming the utility of the approaches for prediction. UV-adVISor is able to provide fast and accurate predictions for libraries of compounds.
Collapse
Affiliation(s)
- Fabio Urbina
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Kushal Batra
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States.,Computer Science, NC State University, Raleigh, North Carolina 27606, United States
| | - Kevin J Luebke
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Jason D White
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Daniel Matsiev
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Lori L Olson
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Jeremiah P Malerich
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Maggie A Z Hupcey
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Peter B Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
10
|
Volk AA, Epps RW, Abolhasani M. Accelerated Development of Colloidal Nanomaterials Enabled by Modular Microfluidic Reactors: Toward Autonomous Robotic Experimentation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004495. [PMID: 33289177 DOI: 10.1002/adma.202004495] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Indexed: 05/09/2023]
Abstract
In recent years, microfluidic technologies have emerged as a powerful approach for the advanced synthesis and rapid optimization of various solution-processed nanomaterials, including semiconductor quantum dots and nanoplatelets, and metal plasmonic and reticular framework nanoparticles. These fluidic systems offer access to previously unattainable measurements and synthesis conditions at unparalleled efficiencies and sampling rates. Despite these advantages, microfluidic systems have yet to be extensively adopted by the colloidal nanomaterial community. To help bridge the gap, this progress report details the basic principles of microfluidic reactor design and performance, as well as the current state of online diagnostics and autonomous robotic experimentation strategies, toward the size, shape, and composition-controlled synthesis of various colloidal nanomaterials. By discussing the application of fluidic platforms in recent high-priority colloidal nanomaterial studies and their potential for integration with rapidly emerging artificial intelligence-based decision-making strategies, this report seeks to encourage interdisciplinary collaborations between microfluidic reactor engineers and colloidal nanomaterial chemists. Full convergence of these two research efforts offers significantly expedited and enhanced nanomaterial discovery, optimization, and manufacturing.
Collapse
Affiliation(s)
- Amanda A Volk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Robert W Epps
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| |
Collapse
|
11
|
Volk AA, Epps RW, Yonemoto D, Castellano FN, Abolhasani M. Continuous biphasic chemical processes in a four-phase segmented flow reactor. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00247c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A four-phase segmented flow regime for continuous biphasic reaction processes is introduced, characterized over 1500 automatically conducted experiments, and used for biphasic ligand exchange of CdSe quantum dots.
Collapse
Affiliation(s)
- Amanda A. Volk
- Department of Chemical and Biomolecular Engineering
- North Carolina State University
- Raleigh
- USA
| | - Robert W. Epps
- Department of Chemical and Biomolecular Engineering
- North Carolina State University
- Raleigh
- USA
| | - Daniel Yonemoto
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering
- North Carolina State University
- Raleigh
- USA
| |
Collapse
|
12
|
Sheng X, Zheng Y, Li W, Gao R, Du L, Wang Y. Scale-up potential of photochemical microfluidic synthesis by selective dimension enlarging with agitation of microbubbles. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Elimelech O, Aviv O, Oded M, Banin U. A Tale of Tails: Thermodynamics of CdSe Nanocrystal Surface Ligand Exchange. NANO LETTERS 2020; 20:6396-6403. [PMID: 32787157 DOI: 10.1021/acs.nanolett.0c01913] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The surface ligands of semiconductor nanocrystals (NCs) are central for determining their properties and for their flexible implementation in diverse applications. Thus far, the thermodynamic characteristics of ligand exchange reactions were attained by indirect methods. Isothermal titration calorimetry is utilized to directly and independently measure both the equilibrium constant and the reaction enthalpy of a model ligand exchange reaction from oleate-capped CdSe NCs to a series of alkylthiols. Increased reaction exothermicity for longer chains, accompanied by a decrease in reaction entropy with an overall enthalpy-entropy compensation behavior is observed, explained by the length-dependent interchain interactions and the organization of the bound ligands on the NCs' surface. An increase in the spontaneity of the reaction with decreasing NC size is also revealed, due to their enhanced surface reactivity. This work provides a fundamental understanding of the physicochemical properties of the NC surface with implications for NC surface ligand design.
Collapse
Affiliation(s)
- Orian Elimelech
- The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Omer Aviv
- The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Meirav Oded
- The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Uri Banin
- The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
14
|
Abstract
AbstractOscillatory flow reactors (OFRs) superimpose an oscillatory flow to the net movement through a flow reactor. OFRs have been engineered to enable improved mixing, excellent heat- and mass transfer and good plug flow character under a broad range of operating conditions. Such features render these reactors appealing, since they are suitable for reactions that require long residence times, improved mass transfer (such as in biphasic liquid-liquid systems) or to homogeneously suspend solid particles. Various OFR configurations, offering specific features, have been developed over the past two decades, with significant progress still being made. This review outlines the principles and recent advances in OFR technology and overviews the synthetic applications of OFRs for liquid-liquid and solid-liquid biphasic systems.
Collapse
|
15
|
Lignos I, Utzat H, Bawendi MG, Jensen KF. Nanocrystal synthesis, μfluidic sample dilution and direct extraction of single emission linewidths in continuous flow. LAB ON A CHIP 2020; 20:1975-1980. [PMID: 32352465 DOI: 10.1039/d0lc00213e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rational design of semiconductor nanocrystal populations requires control of their emission linewidths, which are dictated by interparticle inhomogeneities and single-nanocrystal spectral linewidths. To date, research efforts have concentrated on minimizing the ensemble emission linewidths, however there is little knowledge about the synthetic parameters dictating single-nanocrystal linewidths. In this direction, we present a flow-based system coupled with an optical interferometry setup for the extraction of single nanocrystal properties. The platform has the ability to synthesize nanocrystals at high temperature <300 °C, adjust the particle concentration after synthesis and extract ensemble-averaged single nanocrystal emission linewidths using flow photon-correlation Fourier spectroscopy.
Collapse
Affiliation(s)
- Ioannis Lignos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
16
|
Le TH, Oh Y, Kim H, Yoon H. Exfoliation of 2D Materials for Energy and Environmental Applications. Chemistry 2020; 26:6360-6401. [PMID: 32162404 DOI: 10.1002/chem.202000223] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/20/2022]
Abstract
The fascinating properties of single-layer graphene isolated by mechanical exfoliation have inspired extensive research efforts toward two-dimensional (2D) materials. Layered compounds serve as precursors for atomically thin 2D materials (briefly, 2D nanomaterials) owing to their strong intraplane chemical bonding but weak interplane van der Waals interactions. There are newly emerging 2D materials beyond graphene, and it is becoming increasingly important to develop cost-effective, scalable methods for producing 2D nanomaterials with controlled microstructures and properties. The variety of developed synthetic techniques can be categorized into two classes: bottom-up and top-down approaches. Of top-down approaches, the exfoliation of bulk 2D materials into single or few layers is the most common. This review highlights chemical and physical exfoliation methods that allow for the production of 2D nanomaterials in large quantities. In addition, remarkable examples of utilizing exfoliated 2D nanomaterials in energy and environmental applications are introduced.
Collapse
Affiliation(s)
- Thanh-Hai Le
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Yuree Oh
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyungwoo Kim
- Alan G. MacDiarmid Energy Research &, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.,Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyeonseok Yoon
- Alan G. MacDiarmid Energy Research &, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.,Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| |
Collapse
|
17
|
Sui J, Yan J, Liu D, Wang K, Luo G. Continuous Synthesis of Nanocrystals via Flow Chemistry Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902828. [PMID: 31755221 DOI: 10.1002/smll.201902828] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/11/2019] [Indexed: 05/28/2023]
Abstract
Modern nanotechnologies bring humanity to a new age, and advanced methods for preparing functional nanocrystals are cornerstones. A considerable variety of nanomaterials has been created over the past decades, but few were prepared on the macro scale, even fewer making it to the stage of industrial production. The gap between academic research and engineering production is expected to be filled by flow chemistry technology, which relies on microreactors. Microreaction devices and technologies for synthesizing different kinds of nanocrystals are discussed from an engineering point of view. The advantages of microreactors, the important features of flow chemistry systems, and methods to apply them in the syntheses of salt, oxide, metal, alloy, and quantum dot nanomaterials are summarized. To further exhibit the scaling-up of nanocrystal synthesis, recent reports on using microreactors with gram per hour and larger production rates are highlighted. Finally, an industrial example for preparing 10 tons of CaCO3 nanoparticles per day is introduced, which shows the great potential for flow chemistry processes to transfer lab research to industry.
Collapse
Affiliation(s)
- Jinsong Sui
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Junyu Yan
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Di Liu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Kai Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Guangsheng Luo
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Yang B, Kong J, Fang X. Bandage-like wearable flexible microfluidic recombinase polymerase amplification sensor for the rapid visual detection of nucleic acids. Talanta 2019; 204:685-692. [PMID: 31357353 DOI: 10.1016/j.talanta.2019.06.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 12/21/2022]
Abstract
With the development of flexible advanced materials and microfluidic technology, wearable biosensors provide a new strategy for the continuous monitoring of health. In this study, a novel bandage-like wearable flexible microfluidic recombinase polymerase amplification (RPA) sensor was constructed for the rapid and visual detection of nucleic acids. This wearable sensor is triggered by human body heat (30°C-37 °C) and allows for visual nucleic acid (a conserved nucleic acid fragments of zika virus) detection within 10 min. The sensor displays good sensitivity and selectivity, with a detection limit of 10 copies/μL. The wearable sensor has exhibited well-defined accuracy when applied to testing clinical serum samples. In addition, the wearable RPA sensor was proved to be feasible by human trials under different daily activities. This wearable sensor of nucleic acids will probably be of great significance in the field of online pathogen detection for wounds, for tumour biomarker diagnosis, and for the detection of epidermal cell molecular lesions.
Collapse
Affiliation(s)
- Bin Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China.
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
19
|
Abstract
This minireview offers an up-to-date overview of enabling tools for biphasic liquid–liquid reactions in flow.
Collapse
|
20
|
Size and shape control of metal nanoparticles in millifluidic reactors. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Engineered metal nanoparticles (metal NPs) possess unique size -dependent optical and electronic properties that could enable new applications in biomedicine, energy generation, microelectronics, micro-optics, and catalysis. For metal NPs to make a mark in these fields, however, new synthetic strategies must be developed that permit NP synthesis on the kilogram scale, while maintaining precise control over NP physiochemical properties (size, shape, composition, and surface chemistry). Currently, NP batch syntheses produce product on the milligram scale and rely on synthetic strategies that are not readily amenable to scale-up. Flow reactor systems (including lab-on-a-chip devices) provide a synthesis platform that can circumvent many of the traditional limitations of batch-scale NP syntheses. These reactors provide more uniform reagent mixing, more uniform heat transfer, opportunities to interface in situ monitoring technology, and allow product yield to be scaled up simply by running multiple reactors in parallel. While many NP syntheses have been successfully transferred to microfluidic reactor systems, microfluidic reactor fabrication is time intensive and typically requires sophisticated lithography facilities. Consequently, millifluidic flow reactors (reactors with channel dimensions of 0.5–10.0 mm) are gaining popularity in NP synthesis. These millifluidic reactors provide many of the same synthetic advantages as microfluidic devices, but are simpler to construct, easier to reconfigure, and more straightforward to interface with in situ monitoring techniques. In this chapter, we will discuss the progress that has been made in developing millifluidic reactors for functionalized metal NP synthesis. First, we will review the basic wet-chemical strategies used to control metal NP size and shape in batch reactors. We will then survey some of the basic principles of millifluidic device design, construction, and operation. We will also discuss the potential for incorporating in situ monitoring for quality control during synthesis. We will conclude by highlighting some particularly relevant examples of millifluidic metal NP synthesis that have set new standards for metal NP size, shape, and surface chemistry control.
Graphical Abstract: Credit: Sam Lohse
Collapse
|
21
|
Baek J, Shen Y, Lignos I, Bawendi MG, Jensen KF. Multistage Microfluidic Platform for the Continuous Synthesis of III–V Core/Shell Quantum Dots. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805264] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jinyoung Baek
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
- The Boston Consulting Group Seoul 04539 Korea
| | - Yi Shen
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
| | - Ioannis Lignos
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
| | - Moungi G. Bawendi
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
| | - Klavs F. Jensen
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
| |
Collapse
|
22
|
Baek J, Shen Y, Lignos I, Bawendi MG, Jensen KF. Multistage Microfluidic Platform for the Continuous Synthesis of III–V Core/Shell Quantum Dots. Angew Chem Int Ed Engl 2018; 57:10915-10918. [DOI: 10.1002/anie.201805264] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Jinyoung Baek
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
- The Boston Consulting Group Seoul 04539 Korea
| | - Yi Shen
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
| | - Ioannis Lignos
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
| | - Moungi G. Bawendi
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
| | - Klavs F. Jensen
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
| |
Collapse
|
23
|
Lazzari S, Theiler PM, Shen Y, Coley CW, Stemmer A, Jensen KF. Ligand-Mediated Nanocrystal Growth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3307-3315. [PMID: 29429346 DOI: 10.1021/acs.langmuir.8b00076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A microfluidic platform combined with a deterministic model accounting for surface ligands reveals precious insights into the nanocrystal formation process. The comparison of on-line kinetic information with model predictions enables the derivation of temperature-dependent kinetic parameters for the CdSe model system. This fully generalizable approach represents a step forward toward a quantitative prediction of the nanocrystal size distribution, enabling the control and optimization of process performance and material properties.
Collapse
Affiliation(s)
- Stefano Lazzari
- Department of Chemical Engineering , MIT , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Pius M Theiler
- Department of Chemical Engineering , MIT , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
- Nanotechnology Group , ETH Zurich , Säumerstrasse 4 , Rüschlikon 8803 , Switzerland
| | - Yi Shen
- Department of Chemical Engineering , MIT , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Connor W Coley
- Department of Chemical Engineering , MIT , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Andreas Stemmer
- Nanotechnology Group , ETH Zurich , Säumerstrasse 4 , Rüschlikon 8803 , Switzerland
| | - Klavs F Jensen
- Department of Chemical Engineering , MIT , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|