1
|
White D, Smith MA, Chanda B, Goldsmith RH. Strategies for Overcoming the Single-Molecule Concentration Barrier. ACS MEASUREMENT SCIENCE AU 2023; 3:239-257. [PMID: 37600457 PMCID: PMC10436376 DOI: 10.1021/acsmeasuresciau.3c00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 08/22/2023]
Abstract
Fluorescence-based single-molecule approaches have helped revolutionize our understanding of chemical and biological mechanisms. Unfortunately, these methods are only suitable at low concentrations of fluorescent molecules so that single fluorescent species of interest can be successfully resolved beyond background signal. The application of these techniques has therefore been limited to high-affinity interactions despite most biological and chemical processes occurring at much higher reactant concentrations. Fortunately, recent methodological advances have demonstrated that this concentration barrier can indeed be broken, with techniques reaching concentrations as high as 1 mM. The goal of this Review is to discuss the challenges in performing single-molecule fluorescence techniques at high-concentration, offer applications in both biology and chemistry, and highlight the major milestones that shatter the concentration barrier. We also hope to inspire the widespread use of these techniques so we can begin exploring the new physical phenomena lying beyond this barrier.
Collapse
Affiliation(s)
- David
S. White
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Mackinsey A. Smith
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Baron Chanda
- Center
for
Investigation of Membrane Excitability Diseases, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Randall H. Goldsmith
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Nguyen D, Yan G, Chen TY, Do LH. Variations in Intracellular Organometallic Reaction Frequency Captured by Single-Molecule Fluorescence Microscopy. Angew Chem Int Ed Engl 2023; 62:e202300467. [PMID: 37285476 PMCID: PMC10526727 DOI: 10.1002/anie.202300467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/09/2023]
Abstract
Studies of organometallic reactions in living cells commonly rely on ensemble-averaged measurements, which can obscure the detection of reaction dynamics or location-specific behavior. This information is necessary to guide the design of bioorthogonal catalysts with improved biocompatibility, activity, and selectivity. By leveraging the high spatial and temporal resolution of single-molecule fluorescence microscopy, we have successfully captured single-molecule events promoted by Ru complexes inside live A549 human lung cells. By observing individual allylcarbamate cleavage reactions in real-time, our results revealed that they occur with greater frequency inside the mitochondria than in the non-mitochondria regions. The estimated turnover frequency of the Ru complexes was at least 3-fold higher in the former than the latter. These results suggest that organelle specificity is a critical factor to consider in intracellular catalyst design, such as in developing metallodrugs for therapeutic applications.
Collapse
Affiliation(s)
- Dat Nguyen
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Guangjie Yan
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., TX 77004, Houston, USA
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., TX 77004, Houston, USA
| | - Loi H Do
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., TX 77004, Houston, USA
| |
Collapse
|
3
|
Dery S, Friedman B, Shema H, Gross E. Mechanistic Insights Gained by High Spatial Resolution Reactivity Mapping of Homogeneous and Heterogeneous (Electro)Catalysts. Chem Rev 2023; 123:6003-6038. [PMID: 37037476 PMCID: PMC10176474 DOI: 10.1021/acs.chemrev.2c00867] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The recent development of high spatial resolution microscopy and spectroscopy tools enabled reactivity analysis of homogeneous and heterogeneous (electro)catalysts at previously unattainable resolution and sensitivity. These techniques revealed that catalytic entities are more heterogeneous than expected and local variations in reaction mechanism due to divergences in the nature of active sites, such as their atomic properties, distribution, and accessibility, occur both in homogeneous and heterogeneous (electro)catalysts. In this review, we highlight recent insights in catalysis research that were attained by conducting high spatial resolution studies. The discussed case studies range from reactivity detection of single particles or single molecular catalysts, inter- and intraparticle communication analysis, and probing the influence of catalysts distribution and accessibility on the resulting reactivity. It is demonstrated that multiparticle and multisite reactivity analyses provide unique knowledge about reaction mechanism that could not have been attained by conducting ensemble-based, averaging, spectroscopy measurements. It is highlighted that the integration of spectroscopy and microscopy measurements under realistic reaction conditions will be essential to bridge the gap between model-system studies and real-world high spatial resolution reactivity analysis.
Collapse
Affiliation(s)
- Shahar Dery
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Barak Friedman
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Hadar Shema
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Elad Gross
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
4
|
Shinozaki Y, Popov S, Plenio H. Fluorescent organometallic dyads and triads: establishing spatial relationships. Chem Sci 2023; 14:350-361. [PMID: 36687348 PMCID: PMC9811503 DOI: 10.1039/d2sc04869h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
FRET pairs involving up to three different Bodipy dyes are utilized to provide information on the assembly/disassembly of organometallic complexes. Azolium salts tagged with chemically robust and photostable blue or green or red fluorescent Bodipy, respectively, were synthesized and the azolium salts used to prepare metal complexes [(NHC_blue)ML], [(NHC_green)ML] and [(NHC_red)ML] (ML = Pd(allyl)Cl, IrCl(cod), RhCl(cod), AuCl, Au(NTf2), CuBr). The blue and the green Bodipy and the green and the red Bodipy, respectively, were designed to allow the formation of efficient FRET pairs with minimal cross-talk. Organometallic dyads formed from two subunits enable the transfer of excitation energy from the donor dye to the acceptor dye. The blue, green and red emission provide three information channels on the formation of complexes, which is demonstrated for alkyne or sulfur bridged digold species and for ion pairing of a red fluorescent cation and a green fluorescent anion. This approach is extended to probe an assembly of three different subunits. In such a triad, each component is tagged with either a blue, a green or a red Bodipy and the energy transfer blue →green → red proves the formation of the triad. The tagging of molecular components with robust fluorophores can be a general strategy in (organometallic) chemistry to establish connectivities for binuclear catalyst resting states and binuclear catalyst decomposition products in homogeneous catalysis.
Collapse
Affiliation(s)
- Yoshinao Shinozaki
- Organometallic Chemistry, Technical University of DarmstadtAlarich-Weiss-Str. 1264287 DarmstadtGermany
| | - Stepan Popov
- Organometallic Chemistry, Technical University of DarmstadtAlarich-Weiss-Str. 1264287 DarmstadtGermany
| | - Herbert Plenio
- Organometallic Chemistry, Technical University of DarmstadtAlarich-Weiss-Str. 1264287 DarmstadtGermany
| |
Collapse
|
5
|
Yu D, Garcia A, Blum SA, Welsher KD. Growth Kinetics of Single Polymer Particles in Solution via Active-Feedback 3D Tracking. J Am Chem Soc 2022; 144:14698-14705. [PMID: 35867381 DOI: 10.1021/jacs.2c04990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The ability to directly observe chemical reactions at the single-molecule and single-particle level has enabled the discovery of behaviors otherwise obscured by ensemble averaging in bulk measurements. However powerful, a common restriction of these studies to date has been the absolute requirement to surface tether or otherwise immobilize the chemical reagent/reaction of interest. This constraint arose from a fundamental limitation of conventional microscopy techniques, which could not track molecules or particles rapidly diffusing in three dimensions, as occurs in solution. However, many chemical processes occur entirely in the solution phase, leaving single-particle/-molecule analysis of this critical area of science beyond the scope of available technology. Here, we report the first kinetics studies of freely diffusing and actively growing single polymer-particles at the single-particle level freely diffusing in solution. Active-feedback single-particle tracking was used to capture three-dimensional (3D) trajectories and real-time volumetric images of freely diffusing polymer particles (D ≈ 10-12 m2/s) and extract the growth rates of individual particles in the solution phase. The observed growth rates show that the average growth rate is a poor representation of the true underlying variability in polymer-particle growth behavior. These data revealed statistically significant populations of faster- and slower-growing particles at different depths in the sample, showing emergent heterogeneity while particles are still freely diffusing in solution. These results go against the prevailing premise that chemical processes in freely diffusing solution will exhibit uniform kinetics. We anticipate that these studies will launch new directions of solution-phase, nonensemble-averaged measurements of chemical processes.
Collapse
Affiliation(s)
- Donggeng Yu
- Department of Chemistry, Duke University; Durham, North Carolina 27708, United States
| | - Antonio Garcia
- Department of Chemistry, University of California, Irvine; Irvine, California 92697, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine; Irvine, California 92697, United States
| | - Kevin D Welsher
- Department of Chemistry, Duke University; Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Eivgi O, Blum SA. Real-Time Polymer Viscosity-Catalytic Activity Relationships on the Microscale. J Am Chem Soc 2022; 144:13574-13585. [PMID: 35866383 DOI: 10.1021/jacs.2c03711] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polymer growth induces physical changes to catalyst microenvironments. Here, these physical changes are quantified in real time and are found to influence microscale chemical catalysis and the polymerization rate. By developing a method to "peer into" optically transparent living-polymer particles, simultaneous imaging of both viscosity changes and chemical activity was achieved for the first time with high spatiotemporal resolution through a combination of fluorescence intensity microscopy and fluorescence lifetime imaging microscopy techniques. Specifically, an increase in microenvironment viscosity led to a corresponding local decrease in the catalytic molecular ruthenium ring-opening metathesis polymerization rate, plausibly by restricting diffusional access to active catalytic centers. Consistent with this diffusional-access model, these viscosity changes were found to be monomer-dependent, showing larger changes in microenvironment viscosity in cross-linked polydicyclopentadiene compared to non-crosslinked polynorbornene. The sensitivity and high spatial resolution of the imaging technique revealed significant variations in microviscosities between different particles and subparticle regions. These revealed spatial heterogeneities would not be observable through alternative ensemble analytical techniques that provide sample-averaged measurements. The observed spatial heterogeneities provide a physical mechanism for variation in catalytic chemical activity on the microscale that may accumulate and lead to nonhomogeneous polymer properties on the bulk scale.
Collapse
Affiliation(s)
- Or Eivgi
- Department of Chemistry, University of California, Irvine, Irvine California 92697-2025, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine, Irvine California 92697-2025, United States
| |
Collapse
|
7
|
Saluga SJ, Dibble DJ, Blum SA. Superresolved Motions of Single Molecular Catalysts during Polymerization Show Wide Distributions. J Am Chem Soc 2022; 144:10591-10598. [PMID: 35670469 DOI: 10.1021/jacs.2c03566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The motion of single molecular ruthenium catalysts during and after single turnover events of ring-opening metathesis polymerization is imaged through single-molecule superresolution tracking with a positional accuracy of ±32 nm. This tracking is achieved through the real-time incorporation of spectrally tagged monomer units into active polymer chain ends during living polymerization; thus, by design, only active-catalyst motion is detected and imaged, without convolution by inactive catalysts. The catalysts show diverse individualistic diffusive behaviors with respect to time that persist for up to 20 s. Catalysts occupy three mobility populations: quasi-stationary (23%), intermediate (53%, 65 nm), and large (24%, 145 nm) step sizes. Differences in catalyst mobility populations also exist between individual aggregates (p < 0.001). Such differential motion indicates widely different local catalyst microenvironments during the catalytic turnover. These mobility differences are uniquely observable through single-catalyst microscopy and are not measurable through traditional ensemble analytical techniques for characterizing the behavior of molecular catalysts, such as nuclear magnetic resonance spectroscopy. The measured distributions of active molecular catalyst motions would not be readily predictable through modeling or first-principles, and the range likely impacts individual catalyst turnover rate and selectivity. This range plausibly contributes to property distributions observable in bulk polymers, such as molecular weight polydispersity (e.g., 1.9 in this system), leading to a revised understanding of the mechanistic, microscale origins of macroscale polymer properties.
Collapse
Affiliation(s)
- Shannon J Saluga
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - David Josh Dibble
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
8
|
|
9
|
Garcia A, Saluga SJ, Dibble DJ, López PA, Saito N, Blum SA. Does Selectivity of Molecular Catalysts Change with Time? Polymerization Imaged by Single‐Molecule Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Antonio Garcia
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Shannon J. Saluga
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - David J. Dibble
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Pía A. López
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Nozomi Saito
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Suzanne A. Blum
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| |
Collapse
|
10
|
Garcia A, Saluga SJ, Dibble DJ, López PA, Saito N, Blum SA. Does Selectivity of Molecular Catalysts Change with Time? Polymerization Imaged by Single‐Molecule Spectroscopy. Angew Chem Int Ed Engl 2020; 60:1550-1555. [DOI: 10.1002/anie.202010101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/03/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Antonio Garcia
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Shannon J. Saluga
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - David J. Dibble
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Pía A. López
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Nozomi Saito
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Suzanne A. Blum
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| |
Collapse
|
11
|
Mai DJ, Schroeder CM. 100th Anniversary of Macromolecular Science Viewpoint: Single-Molecule Studies of Synthetic Polymers. ACS Macro Lett 2020; 9:1332-1341. [PMID: 35638639 DOI: 10.1021/acsmacrolett.0c00523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Single polymer studies have revealed unexpected and heterogeneous dynamics among identical or seemingly similar macromolecules. In recent years, direct observation of single polymers has uncovered broad distributions in molecular behavior that play a key role in determining bulk properties. Early single polymer experiments focused primarily on biological macromolecules such as DNA, but recent advances in synthesis, imaging, and force spectroscopy have enabled broad exploration of chemically diverse polymer systems. In this Viewpoint, we discuss the recent study of synthetic polymers using single-molecule methods. In terms of polymer synthesis, direct observation of single chain polymerization has revealed heterogeneity in monomer insertion events at catalytic centers and decoupling of local and global growth kinetics. In terms of single polymer visualization, recent advances in super-resolution imaging, atomic force microscopy (AFM), and liquid-cell transmission electron microscopy (LC-TEM) can resolve structure and dynamics in single synthetic chains. Moreover, single synthetic polymers can be probed in the context of bulk material environments, including hydrogels, nanostructured polymers, and crystalline polymers. In each area, we highlight key challenges and exciting opportunities in using single polymer techniques to enhance our understanding of polymer science. Overall, the expanding versatility of single polymer methods will enable the molecular-scale design and fundamental understanding of a broad range of chemically diverse and functional polymeric materials.
Collapse
Affiliation(s)
- Danielle J. Mai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Charles M. Schroeder
- Department of Materials Science and Engineering, Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Abstract
To date, single molecule studies have been reliant on tethering or confinement to achieve long duration and high temporal resolution measurements. Here, we present a 3D single-molecule active real-time tracking method (3D-SMART) which is capable of locking on to single fluorophores in solution for minutes at a time with photon limited temporal resolution. As a demonstration, 3D-SMART is applied to actively track single Atto 647 N fluorophores in 90% glycerol solution with an average duration of ~16 s at count rates of ~10 kHz. Active feedback tracking is further applied to single proteins and nucleic acids, directly measuring the diffusion of various lengths (99 to 1385 bp) of single DNA molecules at rates up to 10 µm2/s. In addition, 3D-SMART is able to quantify the occupancy of single Spinach2 RNA aptamers and capture active transcription on single freely diffusing DNA. 3D-SMART represents a critical step towards the untethering of single molecule spectroscopy. Single molecule observation has been limited to tethered molecules to ensure that the target remains in the field of view (FOV). Here, the authors develop a real-time tracking method that locks onto rapidly diffusing targets and tracks them in a 3D volume, enabling single molecules to remain in the FOV for minutes at a time.
Collapse
|
13
|
Menges JA, Grandjean A, Clasen A, Jung G. Kinetics of Palladium(0)‐Allyl Interactions in the Tsuji‐Trost Reaction, derived from Single‐Molecule Fluorescence Microscopy. ChemCatChem 2020. [DOI: 10.1002/cctc.202000032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Johannes A. Menges
- Department of Biophysical Chemistry Saarland University Building B2 2 66123 Saarbrücken Germany
| | - Alexander Grandjean
- Department of Biophysical Chemistry Saarland University Building B2 2 66123 Saarbrücken Germany
| | - Anne Clasen
- Department of Biophysical Chemistry Saarland University Building B2 2 66123 Saarbrücken Germany
| | - Gregor Jung
- Department of Biophysical Chemistry Saarland University Building B2 2 66123 Saarbrücken Germany
| |
Collapse
|
14
|
Cavell AC, Krasecki VK, Li G, Sharma A, Sun H, Thompson MP, Forman CJ, Guo SY, Hickman RJ, Parrish KA, Aspuru-Guzik A, Cronin L, Gianneschi NC, Goldsmith RH. Optical monitoring of polymerizations in droplets with high temporal dynamic range. Chem Sci 2020; 11:2647-2656. [PMID: 34084323 PMCID: PMC8157680 DOI: 10.1039/c9sc05559b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/02/2020] [Indexed: 12/23/2022] Open
Abstract
The ability to optically monitor a chemical reaction and generate an in situ readout is an important enabling technology, with applications ranging from the monitoring of reactions in flow, to the critical assessment step for combinatorial screening, to mechanistic studies on single reactant and catalyst molecules. Ideally, such a method would be applicable to many polymers and not require only a specific monomer for readout. It should also be applicable if the reactions are carried out in microdroplet chemical reactors, which offer a route to massive scalability in combinatorial searches. We describe a convenient optical method for monitoring polymerization reactions, fluorescence polarization anisotropy monitoring, and show that it can be applied in a robotically generated microdroplet. Further, we compare our method to an established optical reaction monitoring scheme, the use of Aggregation-Induced Emission (AIE) dyes, and find the two monitoring schemes offer sensitivity to different temporal regimes of the polymerization, meaning that the combination of the two provides an increased temporal dynamic range. Anisotropy is sensitive at early times, suggesting it will be useful for detecting new polymerization "hits" in searches for new reactivity, while the AIE dye responds at longer times, suggesting it will be useful for detecting reactions capable of reaching higher molecular weights.
Collapse
Affiliation(s)
- Andrew C Cavell
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Veronica K Krasecki
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Guoping Li
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Abhishek Sharma
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow Scotland G12 8QQ UK
| | - Hao Sun
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Matthew P Thompson
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Christopher J Forman
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Si Yue Guo
- Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George Street Toronto Ontario M5S 2E4 Canada
| | - Riley J Hickman
- Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George Street Toronto Ontario M5S 2E4 Canada
| | - Katherine A Parrish
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George Street Toronto Ontario M5S 2E4 Canada
- Canadian Institute for Advanced Research (CIFAR) Senior Fellow Toronto Ontario M5S 1M1 Canada
- CIFAR Artificial Intelligence Chair, Vector Institute Toronto Ontario M5S 1M1 Canada
| | - Leroy Cronin
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow Scotland G12 8QQ UK
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
15
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Choi HK, Lee KS, Shin HH, Koo JJ, Yeon GJ, Kim ZH. Single-Molecule Surface-Enhanced Raman Scattering as a Probe of Single-Molecule Surface Reactions: Promises and Current Challenges. Acc Chem Res 2019; 52:3008-3017. [PMID: 31609583 DOI: 10.1021/acs.accounts.9b00358] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The initial observations of surface-enhanced Raman scattering (SERS) from individual molecules (single-molecule SERS, SMSERS) have triggered ever more detailed mechanistic studies on the SERS process. The studies not only reveal the existence of extremely enhanced and confined fields at the gaps of Ag or Au nanoparticles but also reveal that the spatial, spectral, and temporal behaviors of the SMSERS signal critically depend on many factors, including plasmon resonances of nanostructures, diffusion (lateral and orientational) of molecules, molecular electronic resonances, and metal-molecule charge transfers. SMSERS spectra, with their molecular vibrational fingerprints, should in principle provide molecule-specific information on individual molecules in a way that any other existing single-molecule detection method (such as the ones based on fluorescence, mechanical forces, or electrical currents) cannot. Therefore, by following the spectro-temporal evolution of SMSERS signals of reacting molecules, one should be able to follow chemical reaction events of individual molecules without any additional labels. Despite such potential, however, real applications of SMSERS for single-molecule chemistry and analytical chemistry are scarce. In this Account, we discuss whether and how we can use SMSERS to monitor single-molecule chemical kinetics. The central problem lies in the experimental challenges of separately characterizing and controlling various sources of fluctuations and spatial variations in such a way that we can extract only the chemically relevant information from time-varying SMSERS signals. This Account is organized as follows. First, we outline the standard theory of SMSERS, providing an essential guide for identifying sources of spatial heterogeneity and temporal fluctuations in SMSERS signals. Second, we show how single-molecule reaction events of surface-immobilized reactants manifest themselves in experimental SMSERS trajectories. Comparison of the reactive SMSERS data (magnitudes and frequencies of discrete transitions) and the predictions of SMSERS models also allow us to assess how faithfully the SMSERS models represent reality. Third, we show how SMSERS spectral features can be used to discover new reaction intermediates and to interrogate metal-molecule electronic interactions. Finally, we propose possible improvements in experimental design (including nanogap structures and molecular systems) to make SMSERS applicable to a broader range of chemical reactions occurring under ambient conditions. The specific examples discussed in this Account are centered around the single-molecule photochemistry of 4-nitrobenzenethiol on metals, but the conclusions drawn from each example are generally applicable to any reaction system involving small organic molecules.
Collapse
Affiliation(s)
- Han-Kyu Choi
- Department of Chemistry, Kunsan National University, Gunsan, Jeonbuk 54150, Korea
| | - Kang Sup Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyun-Hang Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Ja-Jung Koo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Gyu Jin Yeon
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Zee Hwan Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
17
|
Easter QT, Blum SA. Organic and Organometallic Chemistry at the Single-Molecule, -Particle, and -Molecular-Catalyst-Turnover Level by Fluorescence Microscopy. Acc Chem Res 2019; 52:2244-2255. [PMID: 31310095 DOI: 10.1021/acs.accounts.9b00219] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mechanistic studies have historically played a key role in the discovery and optimization of reactions in organic and organometallic chemistry. However, even apparently simple organic and organometallic transformations may have surprisingly complicated multistep mechanisms, increasing the difficulty of extracting this mechanistic information. The resulting reaction intermediates often constitute a small fraction of the total reaction mixture, for example, creating a long-term analytical challenge of detection. This challenge is particularly pronounced in cases where the positions of intermediates on the reaction energy surface mean that they do not "build up" to the quantities needed for observation by traditional ensemble analytical tools. Thus, their existence and single-step elementary reactivity cannot be studied directly. New approaches for obtaining this otherwise-missing mechanistic information are therefore needed. Single-turnover, single-molecule, single-particle, and other subensemble fluorescence microscopy techniques are ideally suited for this role because of their sensitivity and spatiotemporal resolution. Inspired by the robust development of single-molecule fluorescence microscopy tools for studying enzyme catalysis, our laboratory has developed analogous fluorescence microscopy techniques to overcome mechanistic challenges in synthetic chemistry, with sensitivity as high as the single-complex, single-turnover, and single-molecule level. These techniques free the experimenter from the previous restriction that intermediates must "build up" to quantities needed for detection by ensemble analytical tools and are suited to systems where synchronization through flash photolysis or stopped flow would be inconvenient or inaccessible. In this process, the techniques transform certain previously "unobservable" intermediates and their elementary single-step reactivities into "observable" ones through sensitive and selective spectral handles. Our program has focused on imaging reactions in small-molecule, organic, and polymer synthetic chemistry with an accent on the reactivity of molecular transition metal complexes and catalysts. Our laboratory initiated studies in this area in 2008 with the imaging of individual palladium complexes that were tagged with spectator fluorophores. To enable imaging, we started with fluorophore selection and development, overcame challenges with imaging in organic solvents, and developed strategies compatible with air-sensitive chemistry and concentrations of reagents generally used in small-molecule synthesis. These studies grew to include characterization of previously unknown organometallic intermediates in the synthesis of organozinc reagents and the direct study of their elementary-step reactivity. The ability to directly observe this behavior generated predictive power for selecting salts that accelerated organozinc reagent formation in synthesis, including salts that had not yet been reported synthetically. In 2017 we also developed the first single-turnover imaging of molecular (chemo)catalysts, which through the technique's spatiotemporal resolution revealed abruptly time-variable polymerization kinetics wherein molecular ruthenium ring-opening metathesis polymerization (ROMP) catalysts changed rates independently from other catalysts less than 1 μm away. Individual catalytic turnovers, each corresponding to one single-chain-elongation reaction arising from insertion of single ROMP or enyne monomers at individual Grubbs II molecular ruthenium catalysts, were spatiotemporally resolved as green flashes in growing polymers. In this Account, we discuss the development of this technique from idea to application, including challenges overcome and strategies created to image synthetic organic and organometallic molecular chemistry at the highest levels of detection sensitivity. We also describe challenges not yet solved and provide an outlook for this growing field at the intersection of microscopy and synthetic/molecular chemistry.
Collapse
Affiliation(s)
- Quinn T. Easter
- Department of Chemistry, University of California, Irvine, California 92697−2025, United States
| | - Suzanne A. Blum
- Department of Chemistry, University of California, Irvine, California 92697−2025, United States
| |
Collapse
|
18
|
Halter O, Spielmann J, Kanai Y, Plenio H. Monitoring Ligand Substitution in (Catalytically Active) Metal Complexes with Bodipy-Tagged Diimines and NHC Ligands. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oliver Halter
- Organometallic Chemistry, TU Darmstadt, Alarich-Weiss-Str. 12, 64287 Darmstadt, Germany
| | - Jonas Spielmann
- Organometallic Chemistry, TU Darmstadt, Alarich-Weiss-Str. 12, 64287 Darmstadt, Germany
| | - Yuki Kanai
- Organometallic Chemistry, TU Darmstadt, Alarich-Weiss-Str. 12, 64287 Darmstadt, Germany
| | - Herbert Plenio
- Organometallic Chemistry, TU Darmstadt, Alarich-Weiss-Str. 12, 64287 Darmstadt, Germany
| |
Collapse
|
19
|
Easter QT, Garcia A, Blum SA. Single-Polymer–Particle Growth Kinetics with Molecular Catalyst Speciation and Single-Turnover Imaging. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Quinn T. Easter
- Department of Chemistry, University of California, Irvine, Irvine, California 92697−2925, United States
| | - Antonio Garcia
- Department of Chemistry, University of California, Irvine, Irvine, California 92697−2925, United States
| | - Suzanne A. Blum
- Department of Chemistry, University of California, Irvine, Irvine, California 92697−2925, United States
| |
Collapse
|
20
|
Menges JA, Clasen A, Jourdain M, Beckmann J, Hoffmann C, König J, Jung G. Surface Preparation for Single-Molecule Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2506-2516. [PMID: 30664351 DOI: 10.1021/acs.langmuir.8b03603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Immobilization procedures, intended to enable prolonged observation of single molecules by fluorescence microscopy, may generate heterogeneous microenvironments, thus inducing heterogeneity in the molecular behavior. On that account, we propose a straightforward surface preparation procedure for studying chemical reactions on the single-molecule level. Sensor fluorophores were developed, which exhibit dual-emissive characteristics in a homogeneously catalyzed showcase reaction. These molecules undergo a shift of fluorescence wavelength of about 100 nm upon Pd(0)-induced deallylation in the Tsuji-Trost reaction, allowing for separate visualization of the starting material and product. Whereas a simultaneous immobilization of dye and inert silane leads to strongly polydisperse reaction kinetics, a consecutive immobilization routine with deposition of dye molecules as the last step provides substrates underlying the kinetics of ensemble experiments. Also, the found kinetics are unaffected by the chemical variation of inert silanes, nearly uniform, and therefore well reproducible. Additional parameters like photostability, signal-to-noise ratio, dye-molecule density, and spatial distribution of dye molecules are, as well, hardly affected by surface modification in the successive immobilization scheme.
Collapse
Affiliation(s)
- Johannes A Menges
- Biophysical Chemistry , Saarland University , Building B2.2 , 66123 Saarbrücken , Germany
| | - Anne Clasen
- Biophysical Chemistry , Saarland University , Building B2.2 , 66123 Saarbrücken , Germany
| | - Matthias Jourdain
- Biophysical Chemistry , Saarland University , Building B2.2 , 66123 Saarbrücken , Germany
| | - Julian Beckmann
- Biophysical Chemistry , Saarland University , Building B2.2 , 66123 Saarbrücken , Germany
| | - Caroline Hoffmann
- Biophysical Chemistry , Saarland University , Building B2.2 , 66123 Saarbrücken , Germany
| | - Julien König
- Biophysical Chemistry , Saarland University , Building B2.2 , 66123 Saarbrücken , Germany
| | - Gregor Jung
- Biophysical Chemistry , Saarland University , Building B2.2 , 66123 Saarbrücken , Germany
| |
Collapse
|
21
|
Coceancigh H, Higgins DA, Ito T. Optical Microscopic Techniques for Synthetic Polymer Characterization. Anal Chem 2018; 91:405-424. [PMID: 30350610 DOI: 10.1021/acs.analchem.8b04694] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Herman Coceancigh
- Department of Chemistry , Kansas State University , 213 CBC Building , Manhattan , Kansas 66506-0401 , United States
| | - Daniel A Higgins
- Department of Chemistry , Kansas State University , 213 CBC Building , Manhattan , Kansas 66506-0401 , United States
| | - Takashi Ito
- Department of Chemistry , Kansas State University , 213 CBC Building , Manhattan , Kansas 66506-0401 , United States
| |
Collapse
|
22
|
Easter QT, Blum SA. Kinetics of the Same Reaction Monitored over Nine Orders of Magnitude in Concentration: When Are Unique Subensemble and Single‐Turnover Reactivity Displayed? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Quinn T. Easter
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | - Suzanne A. Blum
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| |
Collapse
|
23
|
Easter QT, Blum SA. Kinetics of the Same Reaction Monitored over Nine Orders of Magnitude in Concentration: When Are Unique Subensemble and Single‐Turnover Reactivity Displayed? Angew Chem Int Ed Engl 2018; 57:12027-12032. [DOI: 10.1002/anie.201807317] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Quinn T. Easter
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | - Suzanne A. Blum
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| |
Collapse
|
24
|
Halter O, Plenio H. Fluorescent Dyes in Organometallic Chemistry: Coumarin‐Tagged NHC–Metal Complexes. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800395] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Oliver Halter
- Organometallic Chemistry TU Darmstadt Alarich‐Weiss‐Str.12 64287 Darmstadt Germany
| | - Herbert Plenio
- Organometallic Chemistry TU Darmstadt Alarich‐Weiss‐Str.12 64287 Darmstadt Germany
| |
Collapse
|