1
|
Wang L, Zhou PP, Xie D, Yue Q, Sun HZ, Yang SD, Wang GW. Dynamic Kinetic Activation of Aziridines Enables Radical-Polar Crossover (4 + 3) Cycloaddition with 1,3-Dienes. J Am Chem Soc 2025; 147:2675-2688. [PMID: 39791566 DOI: 10.1021/jacs.4c15003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The cycloaddition of aziridines with unsaturated compounds is a valuable method for synthesizing nitrogen heterocycles. However, this process is predominantly substrate-controlled, posing significant challenges in regulating the regioselectivity of the C-N bond cleavage. In this study, we report a nickel-catalyzed dynamic kinetic activation strategy that enables catalyst-controlled activation of aziridines. Various types of aziridines, including 2-phenyl, 2-carbonyl, 2-alkyl, and disubstituted aziridines, consistently cleave their more sterically hindered C-N bonds to generate 1,3-radical anion intermediates. These intermediates participate in a highly regioselective 1,4-Heck/allylic substitution cascade with aromatic branched 1,3-dienes, resulting in a radical-polar crossover (4 + 3) cycloaddition that produces seven-membered azepine products. This approach not only complements traditional dipolar cycloaddition, in which aziridines typically act as zwitterionic 1,3-dipoles, but also introduces an unusual cycloaddition mode for 1,3-dienes. Experimental investigations and density functional theory (DFT) calculations provide insight into the reaction mechanism.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Dong Xie
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qian Yue
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao-Zheng Sun
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Gang-Wei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Luo P, Li J, Deng YH, Yu P, Wang Y, Peng F, Shao Z. Switchable Chemo-, Regio- and Pseudo-Stereodivergence in Palladium-Catalyzed Cycloaddition of Allenes. Angew Chem Int Ed Engl 2024; 63:e202412179. [PMID: 38990010 DOI: 10.1002/anie.202412179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/12/2024]
Abstract
Here, we report a strategy enabling triple switchable chemo-, regio-, and stereodivergence in newly developed palladium-catalyzed cycloadditions of allenes. An asymmetric pseudo-stereodivergent cycloaddition of allenes bearing a primary leaving group at the α-position, where a dynamic kinetic asymmetric hydroalkoxylation of racemic unactivated allenes was the enantio-determining step, is realized, providing four stereoisomers [(Z,R), (Z,S), (E,S), and (E,R)] containing a di-substituted alkene scaffold and a stereogenic center. By tuning reaction conditions, a mechanistically distinctive cycloaddition is uncovered selectively with the same set of substrates. By switching the position of the leaving group of allenes, a cycloaddition involving an intermolecular O-attack is disclosed. Diverse mechanisms of the cycloaddition reactions of allenes enable rapid access to structurally and stereochemically diverse 3,4-dihydro-2H-1,4-benzoxazines in high efficiency and selectivity.
Collapse
Affiliation(s)
- Pengfei Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Jinxia Li
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yingcheng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Fangzhi Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
3
|
Wang W, Hong S, He W, Zhang X, Qian H, Ma S. Stereoselective rhodium-catalyzed reaction of allenes with organoboronic reagents for diversified branched 1,3-alkadienes. Nat Commun 2024; 15:8344. [PMID: 39333494 PMCID: PMC11437177 DOI: 10.1038/s41467-024-52209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/28/2024] [Indexed: 09/29/2024] Open
Abstract
The terminal isoprene unit, as the simplest branched 1,3-diene unit, exists in a wide range of natural products and bioactive molecules. Herein, we report a stereoselective rhodium-catalyzed reaction of allenes with readily available methyl pinacol boronic ester, providing a straightforward approach to isoprene derivatives with a very high E-stereoselectivity. Its synthetic potential has been illustrated by a concise synthesis of natural product schinitrienin. Such a protocol can be easily extended to aryl and alkenyl boronic reagents affording 2-aryl or -alkenyl substituted 1,3-dienes, which are also of high importance in organic synthesis but remain challenging for their selective synthesis, with a remarkable stereoselectivity. A series of deuterium-labeling experiments indicate a unique mechanism, which involves reversible β-H elimination as well as hydrometalation and isomerization of the allylic rhodium species.
Collapse
Affiliation(s)
- Weiyi Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, P. R. China
| | - Shichao Hong
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, P. R. China
| | - Wenxiang He
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, P. R. China
| | - Xue Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, P. R. China.
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, P. R. China.
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, P. R. China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, P. R. China.
| |
Collapse
|
4
|
DeCicco EM, Tlapale-Lara N, Paradine SM. Incorporating azaheterocycle functionality in intramolecular aerobic, copper-catalyzed aminooxygenation of alkenes. RSC Adv 2024; 14:28822-28826. [PMID: 39257658 PMCID: PMC11386206 DOI: 10.1039/d4ra06178k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Despite the maturity of alkene 1,2-difunctionalization reactions involving C-N bond formation, a key limitation across aminofunctionalization methods is incompatibility with substrates bearing medicinally relevant N-heterocycles. Using a cooperative ligand-substrate catalyst activation strategy, we have developed an aerobic, copper-catalyzed alkene aminooxygenation method that exhibits broad tolerance for β,γ-unsaturated carbamates bearing aromatic azaheterocycle substitution. The synthetic potential of this methodology was demonstrated by engaging a densely-functionalized vonoprazan analogue and elaborating an amino oxygenated product to synthesize a heteroarylated analogue precursor of the FDA-approved antibiotic chloramphenicol.
Collapse
Affiliation(s)
- Ethan M DeCicco
- Department of Chemistry, University of Rochester 120 Trustee Road Rochester NY 14627 USA
| | - Neively Tlapale-Lara
- Department of Chemistry, University of Rochester 120 Trustee Road Rochester NY 14627 USA
| | - Shauna M Paradine
- Department of Chemistry, University of Rochester 120 Trustee Road Rochester NY 14627 USA
| |
Collapse
|
5
|
Lu QT, Du YB, Xu MM, Xie PP, Cai Q. Catalytic Asymmetric Aza-Electrophilic Additions of 1,1-Disubstituted Styrenes. J Am Chem Soc 2024; 146:21535-21545. [PMID: 39056748 DOI: 10.1021/jacs.4c04852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Electrophilic addition of alkenes is a textbook reaction that plays a pivotal role in organic chemistry. In the past decades, catalytic asymmetric variants of this important type of reaction have witnessed great achievements by the development of novel catalytic systems. However, enantioselective aza-electrophilic additions of unactivated alkenes, which could provide a transformative strategy for the preparation of synthetically significant nitrogen-containing compounds, still remain a formidable challenge. Herein, we have developed unprecedented Au(I)/NHC-catalyzed asymmetric aza-electrophilic additions of unactivated 1,1-disubstituted styrenes by the utilization of readily available dialkyl azodicarboxylates as electrophilic nitrogen sources. Based on this approach, a series of transformations, including [2 + 2] cycloaddition, intermolecular 1,2-oxyamination, and several types of intramolecular hydrazination-induced cyclizations, have been realized. These transformations provide a previously unattainable platform for the divergent synthesis of hydrazine derivatives, which could also be converted to other nitrogen-containing chiral synthons. Experimental and computational studies support the idea that carbocation intermediates are involved in reaction pathways.
Collapse
Affiliation(s)
- Qi-Tao Lu
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Yuan-Bo Du
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Meng-Meng Xu
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Pei-Pei Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Quan Cai
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Wang H, Zhang R, Zi W. Synergistic Palladium/Copper-Catalyzed 1,4-Difunctionalization of 1,3-Dienes for Stereodivergent Construction of 1,5-Nonadjacent Stereocenters. Angew Chem Int Ed Engl 2024; 63:e202402843. [PMID: 38512004 DOI: 10.1002/anie.202402843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
The construction of two distal stereocenters through a single catalytic process is of great interest in organic synthesis. While there are some successful reports regarding stereodivergent preparation of 1,3- or 1,4-stereocenters, the more challenged 1,5-nonadjacent stereocenters have never been achieved in a stereodivergent fashion. Herein we describe a synergistic palladium/copper catalysis for 1,4-difunctionalization reactions of 1,3-dienes, providing access to 1,5-nonadjacent quaternary stereocenters. Because each of the two catalysts separately controlled one of the newly formed stereocenters, stereodivergent synthesis of all four diastereomers of the products could readily be achieved simply by choosing an appropriate combination of chiral catalysts. Experimental and computational studies supported a mechanism involving a Heck/Tsuji-Trost cascade reaction, and the origins of the stereoselectivity were elucidated.
Collapse
Affiliation(s)
- Hongfa Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Ruiyuan Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China
| |
Collapse
|
7
|
Madiu R, Dellosso B, Doran EL, Doran JM, Pinarci AA, TenHoeve TM, Howard AM, Stroud JL, Rivera DA, Moskovitz DA, Finneran SJ, Singer AN, Rossi ME, Moura-Letts G. Synthesis of aminoalcohols from substituted alkenes via tungstenooxaziridine catalysis. Org Biomol Chem 2024; 22:2300-2306. [PMID: 38410027 DOI: 10.1039/d4ob00022f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Herein we report the WO2Dipic(H2O) promoted oxyamination of alkenes using sulfonamides as the quantitative source of N. The reaction works for activated and unactivated alkenes in high yields, diastereoselectivities, and stereospecificity. A catalytic cycle involving the formation of tungstenooxaziridine complex 1 as the active catalyst and hydrolysis of tungstenooxazolidine intermediate A as the rate-determining-step has been proposed. Initial kinetic and competition experiments provide evidence for the proposed mechanism.
Collapse
Affiliation(s)
- Rufai Madiu
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Brandon Dellosso
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Erin L Doran
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Jenna M Doran
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Ali A Pinarci
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Tyler M TenHoeve
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Amari M Howard
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - James L Stroud
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Dominic A Rivera
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Dylan A Moskovitz
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Steven J Finneran
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Alyssa N Singer
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Morgan E Rossi
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Gustavo Moura-Letts
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| |
Collapse
|
8
|
Jiao RQ, Li M, Chen X, Zhang Z, Gong XP, Yue H, Liu XY, Liang YM. Copper-Catalyzed Selective Three-Component 1,2-Phosphonoazidation of 1,3-Dienes. Org Lett 2024; 26:1387-1392. [PMID: 38341862 DOI: 10.1021/acs.orglett.3c04308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
We report a copper-catalyzed selective 1,2-phosphonoazidation of conjugated dienes. This three-component reaction is achieved by using readily available P(O)-H compounds and bench-stable NaN3. Salient features of this strategy include its mild reaction conditions, broad functional group tolerance, and high chemoselectivity and regioselectivity. Moreover, the compatibility with the late-stage functionalization of drug molecules, the potential for scalable production, and the feasibility of further modifications of the products underscore the practical utility of this protocol in synthetic applications.
Collapse
Affiliation(s)
- Rui-Qiang Jiao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ping Gong
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Heng Yue
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Su S, Zhang Y, Liu P, Wink DJ, Lee D. Intramolecular Carboxyamidation of Alkyne-Tethered O-Acylhydroxamates through Formation of Fe(III)-Nitrenoids. Chemistry 2024; 30:e202303428. [PMID: 38050744 DOI: 10.1002/chem.202303428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
We developed intramolecular carboxyamidations of alkyne-tethered O-acylhydroxamates followed by either thermally induced spontaneous or 4-(dimethylamino)pyridine-catalyzed O→O or O→N acyl group migration. Under iron-catalyzed conditions, the carboxyamidation products were generated in high yield from both Z-alkene and arene-tethered substrates. DFT calculations indicate that the iron-catalyzed carboxyamidation proceeds via a stepwise mechanism involving iron-imidyl radical cyclization followed by intramolecular acyloxy transfer from the iron center to the alkenyl radical center to furnish the cis-carboxyamidation product. Upon treatment with 4-(dimethylamino)pyridine, the Z-alkene-tethered carboxyamidation products underwent selective O→O acyl migration to generate 2-acyloxy-5-acyl pyrroles. Thermal O→N acyl migration occurs during carboxyamidation if the Z-alkene linker contains an alkyl or an aryl substituent at the β-position of the carbonyl group. On the other hand, the arene linker-containing compounds selectively undergo O→N acyl migration to generate N-acyl-3-acylisoindolinones, and the corresponding O→O acyl migration forming isoindole derivatives was not observed.
Collapse
Affiliation(s)
- Siyuan Su
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Yu Zhang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Donald J Wink
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| |
Collapse
|
10
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
11
|
Liu J, Du YY, He YS, Liang Y, Liu SZ, Li YY, Cao YM. Parallel kinetic resolution of aziridines via chiral phosphoric acid-catalyzed apparent hydrolytic ring-opening. Chem Sci 2023; 14:12152-12159. [PMID: 37969581 PMCID: PMC10631200 DOI: 10.1039/d3sc03899h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023] Open
Abstract
We report a chiral phosphoric acid catalyzed apparent hydrolytic ring-opening reaction of racemic aziridines in a regiodivergent parallel kinetic resolution manner. Harnessing the acyloxy-assisted strategy, the highly stereocontrolled nucleophilic ring-opening of aziridines with water is achieved. Different kinds of aziridines are applicable in the process, giving a variety of enantioenriched aromatic or aliphatic amino alcohols with up to 99% yields and up to >99.5 : 0.5 enantiomeric ratio. Preliminary mechanistic study as well as product elaborations were inducted as well.
Collapse
Affiliation(s)
- Juan Liu
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yi-Ying Du
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yu-Shi He
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yan Liang
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Shang-Zhong Liu
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yi-Yi Li
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yi-Ming Cao
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| |
Collapse
|
12
|
Zhang WS, Ji DW, Yang Y, Song TT, Zhang G, Wang XY, Chen QA. Nucleophilic aromatization of monoterpenes from isoprene under nickel/iodine cascade catalysis. Nat Commun 2023; 14:7087. [PMID: 37925506 PMCID: PMC10625535 DOI: 10.1038/s41467-023-42847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
As a large number of organic compounds possessing two isoprene units, monoterpenes and monoterpenoids play important roles in pharmaceutical, cosmetic, agricultural, and food industries. In nature, monoterpenes are constructed from geranyl pyrophosphate (C10) via various transformations. Herein, the bulk C5 chemical-isoprene, is used for the creation of various monoterpenoids via a nucleophilic aromatization of monoterpenes under cascade catalysis of nickel and iodine. Drugs and oil mixtures from conifer and lemon can be convergently transformed to the desired monoterpenoid. Preliminary mechanistic studies are conducted to get insights about reaction pathway. Two types of cyclic monoterpenes can be respectively introduced onto two similar heterocycles via orthogonal C-H functionalization. And various hybrid terpenyl indoles are programmatically assembled from abundant C5 or C10 blocks. This work not only contributes a high chemo-, regio-, and redox-selective transformation of isoprene, but also provides a complementary approach for the creation of unnatural monoterpenoids.
Collapse
Affiliation(s)
- Wei-Song Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yang Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Gong Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiao-Yu Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
13
|
Nanda SK. Asymmetric cascades of the π-allyl complex: a journey from transition-metal catalysis to metallaphotocatalysis. Chem Commun (Camb) 2023; 59:11298-11319. [PMID: 37670574 DOI: 10.1039/d3cc03010e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The enantioselective catalytic cascade involving Tsuji-Trost allylation has provided a viable strategy for the construction of multiple asymmetric C-C and C-X centres and numerous methods have been developed around it for the synthesis of various vital scaffolds. The synthetic utility of this strategy was enhanced by replacing the customary allyl acetates with ethylene diacetates/dicarbonates, vinyl epoxides, vinyl oxetanes, vinyl ethylene carbonates, vinyl cyclopropanes, enynes, and dienes using transition-metal catalysis. One more milestone was achieved when metallaphotocatalysis provided the necessary platform for these cascades by using a cheaper metal. This review will provide a summary of these enantioselective catalytic cascades from 2015.
Collapse
Affiliation(s)
- Santosh Kumar Nanda
- Department of Chemistry, School of Applied Science, Centurion University, Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
14
|
Li X, Song H, Yu S, Mi R, Li XX. Rhodium-Catalyzed Enantioselective 1,4-Oxyamination of Conjugated gem-Difluorodienes via Coupling with Carboxylic Acids and Dioxazolones. Angew Chem Int Ed Engl 2023; 62:e202305669. [PMID: 37357836 DOI: 10.1002/anie.202305669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
The incorporation of fluorine atoms in organics improves their bioactivity and lipophilicity. Catalytic functionalization of gem-difluorodienes represents one of the most straightforward approaches to access fluorinated alkenes. In contrast to the regular 1,3-dienes that undergo diverse asymmetric di/hydrofunctionalizations, the regio- and enantioselective oxyamination of gem-difluorodienes remains untouched. Herein, we report asymmetric 1,4-oxyamination of gem-difluorodiene by chiral rhodium-catalyzed three-component coupling with readily available carboxylic acid and dioxazolone, affording gem-difluorinated 1,4-amino alcohol derivatives. Our asymmetric protocol exhibits high 1,4-regio- and enantioselectivity with utility in the late-stage modification of pharmaceuticals and natural products. Stoichiometric experiments provide evidences for the π-allylrhodium pathway. Related oxyamination was also realized when trifluoroethanol was used as an oxygen nucleophile.
Collapse
Affiliation(s)
- Xingwei Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Heng Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Songjie Yu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Ruijie Mi
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Xiao-Xi Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
15
|
Liu Y, Yan H, Chen Y, Hao E, Shi L. Photoinduced copper-catalyzed selective three-component 1,2-amino oxygenation of 1,3-dienes. Chem Commun (Camb) 2023; 59:10388-10391. [PMID: 37551551 DOI: 10.1039/d3cc02769d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
This study presents a highly effective method for the photoinduced copper-catalyzed 1,2-amino oxygenation of 1,3-dienes. This synthetic strategy involves the dual roles of a single copper catalyst, which can act as a photosensitizer to generate nitrogen radicals and can also react with allyl radicals via single electron transfer (SET) processes. The method produces a range of quaternary carbon-centered allyl carboxylic esters and tertiary ethers with high yields and excellent regioselectivity under mild reaction conditions.
Collapse
Affiliation(s)
- Yonghong Liu
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China.
| | - Huaipu Yan
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China.
| | - Yuqing Chen
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China.
| | - Erjun Hao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| | - Lei Shi
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| |
Collapse
|
16
|
Yang Z, Bao Y, Huang J, Han Z, Sun J, Huang H. Tandem Allylic Amination/oxa-Michael Addition of Vinyl Methylene Cyclic Carbonates via Palladium-Organo Relay Catalysis. Org Lett 2023. [PMID: 37486245 DOI: 10.1021/acs.orglett.3c02014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
A tandem allylic amination/oxa-Michael addition of vinyl methylene cyclic carbonates (VMCCs) has been developed to construct heterocycles by single palladium catalysis or palladium-organo relay catalysis. In this process, the bisnucleophiles first underwent regioselective allylic amination, and then the second nucleophilic group further completed the hetero-Michael addition reaction to form a series of heterocycles. Among them, the chiral 3,4-dihydro-2H-benzo[b][1,4]oxazines could be produced in medium to high yield with good enantioselectivity under a palladium-organo relay catalysis.
Collapse
Affiliation(s)
- Zhenkun Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yu Bao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiaxin Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
17
|
Zhou H, Pan R, Xu M, Ma J, Lin A, Yao H. Construction of oxygenated 2-azabicyclo[2.2.1]heptanes via palladium-catalyzed 1,2-aminoacyloxylation of cyclopentenes. Chem Commun (Camb) 2023; 59:3574-3577. [PMID: 36880405 DOI: 10.1039/d2cc06581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Herein, we describe a palladium-catalyzed 1,2-aminoacyloxylation of cyclopentenes to synthesize oxygenated 2-azabicyclo[2.2.1]heptanes. This reaction proceeds efficiently with a broad array of substrates. The products could be further functionalized to build up a library of bridged aza-bicyclic structures.
Collapse
Affiliation(s)
- Haipin Zhou
- College of Materials & Chemical Engineering, Chuzhou University, 1 West Huifeng Road, Chuzhou, 239000, P. R. China
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Rui Pan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Menghua Xu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Jiao Ma
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| |
Collapse
|
18
|
Li Y, Dong Y, Wang X, Li G, Xue H, Xin W, Zhang Q, Guan W, Fu J. Regio-, Site-, and Stereoselective Three-Component Aminofluorination of 1,3-Dienes via Cooperative Silver Salt and Copper Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yang Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yujiao Dong
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Guangfu Li
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Huiqing Xue
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wanyang Xin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wei Guan
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Junkai Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
19
|
Su S, Wu T, Xia Y, Wink DJ, Lee D. Cycloisomerization of Alkyne-Tethered N-Acyloxycarbamates to 2-(3H)Oxazolones through Nitrenoid-Mediated Carboxyamidation. Chemistry 2023; 29:e202203371. [PMID: 36628950 DOI: 10.1002/chem.202203371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
The cycloisomerization of alkyne-tethered N-benzoyloxycarbamates to 2-(3H)oxazolones is described. Two catalytic systems are tailored for intramolecular 5-exo-alkyne carboxyamidation and concomitant alkene isomerization. PtCl2 /CO (5 mol%, toluene, 100 °C) promotes both carboxyamidation and alkene isomerization but has a limited substrate scope. On the other hand, FeCl3 (5 mol%, CH3 CN, 100 °C) promotes carboxyamidation effectively but a cocatalyst is required for the exocyclic alkene isomerization. Thus, a two-step one-pot protocol has been developed for a broader reaction scope, which involves FeCl3 -catalyzed carboxyamidation and base-induced alkene isomerization. Crossover experiments suggest that these reactions proceed mainly through a mechanism involving acylnitrenoid intermediates rather than carbenoid intermediates.
Collapse
Affiliation(s)
- Siyuan Su
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Tongtong Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Donald J Wink
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, Illinois, 60607, USA
| |
Collapse
|
20
|
Huang H, Lambert TH. Regiodivergent Electrophotocatalytic Aminooxygenation of Aryl Olefins. J Am Chem Soc 2022; 144:18803-18809. [PMID: 36194776 PMCID: PMC10405276 DOI: 10.1021/jacs.2c08951] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A method for the regiodivergent aminooxygenation of aryl olefins under electrophotocatalytic conditions is described. The procedure employs a trisaminocyclopropenium (TAC) ion catalyst with visible light irradiation under a controlled electrochemical potential to convert aryl olefins to the corresponding oxazolines with high chemo- and diastereoselectivity. With the judicious choice between two inexpensive and abundant reagents, namely water and urethane, either 2-amino-1-ol or 1-amino-2-ol derivatives could be prepared from the same substrate. This method is amenable to multigram synthesis of the oxazoline products with low catalyst loadings.
Collapse
Affiliation(s)
- He Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
21
|
Wu YL, Jiang M, Rao L, Cheng Y, Xiao WJ, Chen JR. Selective Three-Component 1,2-Aminoalkoxylation of 1-Aryl-1,3-dienes by Dual Photoredox and Copper Catalysis. Org Lett 2022; 24:7470-7475. [PMID: 36173401 DOI: 10.1021/acs.orglett.2c03124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A three-component 1,2-aminooxygenation reaction of 1,3-dienes by dual photoredox and copper catalysis is described. This protocol uses N-aminopyridinium salts as N-centered radical precursors and nucleophilic alcohols as oxygen sources, providing modular and practical access to 1,2-aminoalkoxylation products with good yields and regioselectivity. Preliminary mechanistic studies support the radical property of the reaction and the involvement of N-centered radical intermediates.
Collapse
Affiliation(s)
- Ya-Li Wu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
| | - Li Rao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
22
|
Zhao C, Liu Y, Zhang X, He G, Liu H, Ji D, Hu Y, Chen Q. Bioinspired and Ligand‐Regulated Unnatural Prenylation and Geranylation of Oxindoles with Isoprene under Pd Catalysis. Angew Chem Int Ed Engl 2022; 61:e202207202. [DOI: 10.1002/anie.202207202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Chao‐Yang Zhao
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Ying‐Ying Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Xiang‐Xin Zhang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Gu‐Cheng He
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Heng Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yan‐Cheng Hu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|
23
|
Burg F, Rovis T. Rh(III)-catalyzed Intra- and Intermolecular 3,4-Difunctionalization of 1,3-Dienes via Rh(III)-π-allyl Amidation with 1,4,2-Dioxazolones. ACS Catal 2022; 12:9690-9697. [PMID: 37829170 PMCID: PMC10569259 DOI: 10.1021/acscatal.2c02537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We herein report a modular strategy, which enables Rh(III)-catalyzed diastereoselective 3,4-amino oxygenation and diamination of 1,3-dienes using different O- and N-nucleophiles in combination with readily available 3-substituted 1,4,2-dioxazolones (78 examples, 37-91% yield). Previous attempts to functionalize the internal double bond rested on the use of plain alcoholic solvents as nucleophilic coupling partners thus dramatically limiting the scope of this transformation. We have now identified hexafluoroisopropanol as a non-nucleophilic solvent which allows the use of diverse nucleophiles and greatly expands the scope, including an unprecedented amino hydroxylation to selectively install valuable, unprotected β-amino alcohols across 1,3-dienes. Moreover, various elaborate alcohols prove to be compatible providing unique access to complex organic molecules. Finally, this method is employed in a series of intramolecular reactions to deliver valuable nitrogen heterocycles as well as γ- and δ-lactones.
Collapse
Affiliation(s)
- Finn Burg
- Department of Chemistry, Columbia University, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York 10027, United States
| |
Collapse
|
24
|
Qi H, Zhao Y, Li W, Chen S. Synthesis of 1,4-benzoxazines via Y(OTf) 3-catalyzed ring opening/annulation cascade reaction of benzoxazoles with propargylic alcohols. Chem Commun (Camb) 2022; 58:9120-9123. [PMID: 35880715 DOI: 10.1039/d2cc03080b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient Y(OTf)3-catalyzed cascade formal [4 + 2] cyclization approach for the formation of 1,4-benzoxazine scaffolds from benzoxazoles and propargyl alcohols through a ring-opening and regioselective ring-closure process has been developed. By using this mild and practical protocol, a broad range of aldehyde-containing 1,4-benzoxazine compounds were prepared in moderate to excellent yields with good functional group tolerance. Mechanistic studies indicated that an SN1 nucleophilic substitution of benzoxazole with a propargyl cation was involved in this transformation.
Collapse
Affiliation(s)
- Hongbo Qi
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Yupeng Zhao
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Wencong Li
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
25
|
Zhao C, Liu Y, Zhang X, He G, Liu H, Ji D, Hu Y, Chen Q. Bioinspired and Ligand‐Regulated Unnatural Prenylation and Geranylation of Oxindoles with Isoprene under Pd Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chao‐Yang Zhao
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Ying‐Ying Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Xiang‐Xin Zhang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Gu‐Cheng He
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Heng Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yan‐Cheng Hu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|
26
|
Dai DT, Yang MW, Chen ZY, Wang ZL, Xu YH. Chelation-Controlled Stereospecific Cross-Coupling Reaction between Alkenes for Atroposelective Synthesis of Axially Chiral Conjugated Dienes. Org Lett 2022; 24:1979-1984. [DOI: 10.1021/acs.orglett.2c00386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dong-Ting Dai
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Meng-Wei Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhi-Yuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
27
|
Ariyarathna JP, Alom NE, Roberts LP, Kaur N, Wu F, Li W. Lewis Acid-Catalyzed Halonium Generation for Morpholine Synthesis and Claisen Rearrangement. J Org Chem 2022; 87:2947-2958. [PMID: 35142512 PMCID: PMC9205334 DOI: 10.1021/acs.joc.1c02804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We disclose here practical strategies toward the synthesis of morpholines and Claisen rearrangement products based on the divergent reactivity of a common halonium intermediate. These reactions employ widely available alkenes in a Lewis acid-catalyzed halo-etherification process that can then transform them into the desired products with exceptional regioselectivity for both activated and unactivated olefins. Our mechanistic probe reveals an interesting regiochemical kinetic resolution process.
Collapse
Affiliation(s)
- Jeewani P Ariyarathna
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Nur-E Alom
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Leo P Roberts
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Navdeep Kaur
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Fan Wu
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Wei Li
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
28
|
Wu M, Ruan X, Han Z, Gong L. Palladium‐Catalyzed Cascade C−H Functionalization/Asymmetric Allylation Reaction of Aryl α‐Diazoamides and Allenes: Lewis Acid Makes a Difference. Chemistry 2022; 28:e202104218. [DOI: 10.1002/chem.202104218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Min‐Song Wu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Xiao‐Yun Ruan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Zhi‐Yong Han
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Liu‐Zhu Gong
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
29
|
Pan M, Tong Y, Qiu X, Zeng X, Xiong B. One-pot synthesis of 3-trifluoromethylbenzo[ b][1,4]oxazines from CF 3-imidoyl sulfoxonium ylides with 2-bromophenols. Chem Commun (Camb) 2022; 58:12443-12446. [DOI: 10.1039/d2cc04863a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot two-step fashion for the synthesis of 3-trifluoromethyl-1,4-benzoxazines from CF3-imidoyl sulfoxonium ylides and 2-bromophenols via lithium-bromide-promoted O–H insertion of sulfoxonium ylides and annulation has been demonstrated.
Collapse
Affiliation(s)
- Mingshi Pan
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yixin Tong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xiaodong Qiu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Biao Xiong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| |
Collapse
|
30
|
Coldham I, El-Tunsi A, Carter N, Yeo SH, Priest JD, Choi A, Kobras CM, Ndlovu S, Proietti Silvestri I, Fenton AK. Kinetic Resolution by Lithiation: Highly Enantioselective Synthesis of Substituted Dihydrobenzoxazines and Tetrahydroquinoxalines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1638-2478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractKinetic resolution provided a highly enantioselective method to access a range of 3-aryl-3,4-dihydro-2H-1,4-benzoxazines using n-butyllithium and the chiral ligand sparteine. The enantioenrichment remained high on removing the tert-butoxycarbonyl (Boc) protecting group. The intermediate organolithium undergoes ring opening to an enamine. The kinetic resolution was extended to give enantiomerically enriched substituted 1,2,3,4-tetrahydroquinoxalines and was applied to the synthesis of an analogue of the antibiotic levofloxacin that was screened for its activity against the human pathogen Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Iain Coldham
- Department of Chemistry, University of Sheffield
| | | | | | - Song-Hee Yeo
- Department of Chemistry, University of Sheffield
| | | | - Anthony Choi
- Department of Chemistry, University of Sheffield
| | - Carolin M. Kobras
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield
| | | | | | - Andrew K. Fenton
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield
| |
Collapse
|
31
|
Lu JL, Kang Y, Zhang Z, Huang YA, Tan LQ, Zhang XZ, Peng JB. A palladium catalyzed stereo-convergent aminocarbonylation of 1,3-dienes with nitroarenes: synthesis of ( E, E)-dienamides. Org Chem Front 2022. [DOI: 10.1039/d2qo01478e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A palladium catalyzed stereo-convergent aminocarbonylation of 1,3-dienes with nitroarenes has been developed. The reaction of mixtrues of E/Z isomers of 1,3-dienes reacted with nitroarenes and produced (E,E)-dienamides with high stereoselectivities.
Collapse
Affiliation(s)
- Jin-Liang Lu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Yun Kang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Yin-Ai Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Lu-Qi Tan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| |
Collapse
|
32
|
Bhosale VA, Nigríni M, Dračínský M, Císařová I, Veselý J. Enantioselective Desymmetrization of 3-Substituted Oxetanes: An Efficient Access to Chiral 3,4-Dihydro-2 H-1,4-benzoxazines. Org Lett 2021; 23:9376-9381. [PMID: 34817183 DOI: 10.1021/acs.orglett.1c03419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we describe a versatile transition metal/oxidant free synthesis of the chiral 2H-1,4-benzoxazines through chiral phosphoric acid (CPA) catalyzed enantioselective desymmetrization of prochiral oxetanes (30 examples) in up to 99% yield and 99% enantioselectivity under mild reaction conditions. The reported strategy not only complements the conventional 2H-1,4-benzoxazine synthetic strategies but also provides access to key intermediates of therapeutic candidates, i.e., prostaglandin D2 receptor antagonist and M1 positive allosteric modulator (PAM) compound VU0486846.
Collapse
Affiliation(s)
- Viraj A Bhosale
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Martin Nigríni
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| |
Collapse
|
33
|
Hirose J, Wakikawa T, Satake S, Kojima M, Hatano M, Ishihara K, Yoshino T, Matsunaga S. Cp*Rh III/Chiral Disulfonate/CuOAc Catalyst System for the Enantioselective Intramolecular Oxyamination of Alkenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jumpei Hirose
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takumi Wakikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shun Satake
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Manabu Hatano
- Graduate School of Pharmaceutical Sciences, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
34
|
Ye C, Gao F, Wei H, Chen J, Yang G, Yuan Q, Zhang W. Pd(II)-Catalyzed Enantioselective Ring-Contraction for the Construction of 1,4-Benzoxazines. J Org Chem 2021; 86:16573-16581. [PMID: 34726916 DOI: 10.1021/acs.joc.1c01874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enantioselective ring-contraction reactions have not been widely reported. We have developed an enantioselective ring contraction of 5,6-dihydro-2H-benzo[b][1,4]oxazocines, affording enantiomerically enriched 3,4-dihydro-2H-1,4-benzoxazine derivatives as single regioisomers. An acidic additive is necessary in order to obtain the products with good yields and enantiomeric ratios (up to 93% yield, 98:2 er). The reaction was successfully performed on a gram scale, and the products can be derivatized easily.
Collapse
Affiliation(s)
- Chenghao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Feng Gao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Haipeng Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Guoqiang Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qianjia Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,College of Chemistry, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, P. R. China
| |
Collapse
|
35
|
Burg F, Rovis T. Diastereoselective Three-Component 3,4-Amino Oxygenation of 1,3-Dienes Catalyzed by a Cationic Heptamethylindenyl Rhodium(III) Complex. J Am Chem Soc 2021; 143:17964-17969. [PMID: 34668705 DOI: 10.1021/jacs.1c09276] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The direct oxyamination of olefins is a compelling tool to rapidly access β-amino alcohols-a privileged motif ubiquitous in natural products, pharmaceuticals and agrochemicals. Although a variety of expedient methods are established for simple alkenes, selective amino oxygenation of 1,3-dienes is less explored. Within this context, methods for the oxyamination of 1,3-dienes that are selective for the internal position remain unprecedented. We herein report a modular three-component approach to perform an internal and highly diastereoselective amino oxygenation of 1,3-dienes catalyzed by a cationic heptamethylindenyl (Ind*) Rh(III) complex.
Collapse
Affiliation(s)
- Finn Burg
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
36
|
Giofrè S, Keller M, Lo Presti L, Beccalli EM, Molteni L. Switchable Oxidative Reactions of N-allyl-2-Aminophenols: Palladium-Catalyzed Alkoxyacyloxylation vs an Intramolecular Diels-Alder Reaction. Org Lett 2021; 23:7698-7702. [PMID: 34570517 PMCID: PMC8524420 DOI: 10.1021/acs.orglett.1c02539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The Pd(II)-catalyzed
reaction of N-allyl-2-aminophenols
in the presence of PhI(OCOR)2 as the oxidant resulted in
an alkoxyacyloxylation process, with the formation of functionalized
dihydro-1,4-benzoxazines. The reaction performed in the absence of
palladium catalyst switched to an intramolecular Diels–Alder
reaction (IMDA) pathway, which was the result of an oxidative dearomatization
of the 2-aminophenol, nucleophilic addition, and Diels–Alder
reaction cascade, highlighting the role of the oxidant as both a nucleophilic
donor and an oxidizing agent.
Collapse
Affiliation(s)
- Sabrina Giofrè
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Manfred Keller
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| | - Leonardo Lo Presti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Egle M Beccalli
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Letizia Molteni
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
37
|
Guo Z, Xie J, Hu T, Chen Y, Tao H, Yang X. Kinetic resolution of N-aryl β-amino alcohols via asymmetric aminations of anilines. Chem Commun (Camb) 2021; 57:9394-9397. [PMID: 34528982 DOI: 10.1039/d1cc03117a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient kinetic resolution of N-aryl β-amino alcohols has been developed via asymmetric para-aminations of anilines with azodicarboxylates enabled by chiral phosphoric acid catalysis. Broad substrate scope and high kinetic resolution performances were afforded with this method. Control experiments supported the critical roles of the NH and OH group in these reactions.
Collapse
Affiliation(s)
- Zheng Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Jinglei Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Tao Hu
- University of Chinese Academy of Sciences, Beijing 100049, China.,iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
38
|
Mumford EM, Hemric BN, Denmark SE. Catalytic, Enantioselective Syn-Oxyamination of Alkenes. J Am Chem Soc 2021; 143:13408-13417. [PMID: 34375090 DOI: 10.1021/jacs.1c06750] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The chemo-, regio-, diastereo-, and enantioselective 1,2-oxyamination of alkenes using selenium(II/IV) catalysis with a chiral diselenide catalyst is reported. This method uses N-tosylamides to generate oxazoline products that are useful both as protected 1,2-amino alcohol motifs and as chiral ligands. The reaction proceeds in good yields with excellent enantio- and diastereoselectivity for a variety of alkenes and pendant functional groups such as sulfonamides, alkyl halides, and glycol-protected ketones. Furthermore, the rapid generation of oxazoline products is demonstrated in the expeditious assembly of chiral PHOX ligands as well as diversely protected amino alcohols.
Collapse
Affiliation(s)
- Emily M Mumford
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Brett N Hemric
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Scott E Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
39
|
Tang M, Gu H, He S, Rajkumar S, Yang X. Asymmetric Enamide–Imine Tautomerism in the Kinetic Resolution of Tertiary Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mengyao Tang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Institute of Organic Chemistry Shanghai 200032 China
| | - Huanchao Gu
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Shunlong He
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Subramani Rajkumar
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Xiaoyu Yang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
40
|
Forster D, Guo W, Wang Q, Zhu J. Photoredox Catalytic Three-Component Amidoazidation of 1,3-Dienes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03545] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dan Forster
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Weisi Guo
- College of Chemistry & Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao 266042, P. R. China
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
41
|
Chang R, Cai S, Yang G, Yan X, Huang H. Asymmetric Aminomethylative Etherification of Conjugated Dienes with Aliphatic Alcohols Facilitated by Hydrogen Bonding. J Am Chem Soc 2021; 143:12467-12472. [PMID: 34355892 DOI: 10.1021/jacs.1c06144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The asymmetric construction of allylic C-O bonds with primary or secondary aliphatic alcohols remains a substantial challenge in Pd-catalyzed allylation chemistry. Here, we report the development of an additive-free, palladium-catalyzed asymmetric aminomethylative etherification of conjugated dienes that enables the efficient, asymmetric O-allylation of primary and secondary aliphatic alcohols as well as water. Mechanism studies revealed that the hydrogen-bonding interaction between the alcohol and the in situ introduced aminomethyl moiety is critical to facilitate the nucleophilic addition of the alcohol to the π-allylpalladium species, which opened up the possibility of using aliphatic alcohols and water as nucleophilic substrates. This reaction tolerates a broad range of functional groups and shows remarkable regioselectivities and uniformly high enantioselectivities, which provides a direct and rapid approach to optically pure allylic 1,3-amino ethers and 1,3-amino alcohols from simple starting materials.
Collapse
Affiliation(s)
- Rui Chang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Shoule Cai
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Guoqing Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Xuyang Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, People's Republic of China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
42
|
Tang M, Gu H, He S, Rajkumar S, Yang X. Asymmetric Enamide-Imine Tautomerism in the Kinetic Resolution of Tertiary Alcohols. Angew Chem Int Ed Engl 2021; 60:21334-21339. [PMID: 34312956 DOI: 10.1002/anie.202106151] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 12/23/2022]
Abstract
An efficient protocol for kinetic resolution of tertiary alcohols has been developed through an unprecedented asymmetric enamide-imine tautomerism process enabled by chiral phosphoric acid catalysis. A broad range of racemic 2-arylsulfonamido tertiary allyl alcohols could be kinetically resolved with excellent kinetic resolution performances (with s-factor up to >200). This method is particularly effective for a series of 1,1-dialkyl substituted allyl alcohols, which produced chiral tertiary alcohols that would be difficult to access via other asymmetric methods. Facile and versatile transformations of the chiral α-hydroxy imine and enamide products, especially the efficient stereodivergent synthesis of all four stereoisomers of β-amino tertiary alcohols using one enantiomer of the catalyst, demonstrated the value of this kinetic resolution method.
Collapse
Affiliation(s)
- Mengyao Tang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Shanghai Institute of Organic Chemistry, Shanghai, 200032, China
| | - Huanchao Gu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shunlong He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Subramani Rajkumar
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
43
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
44
|
Pham HN, Arrault A, Vanthuyne N, Acherar S. Multigram-scale HPLC enantioseparation as a rescue pathway for circumventing racemization problem during enantioselective synthesis of ethyl 3,4-dihydro-2H-1,4-benzoxazine-2-carboxylate. Chirality 2021; 33:324-336. [PMID: 33908096 DOI: 10.1002/chir.23313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/23/2021] [Accepted: 04/12/2021] [Indexed: 11/05/2022]
Abstract
Racemic ethyl 3,4-dihydro-2H-1,4-benzoxazine-2-carboxylate is a key synthon for the design of promising therapeutic drugs. It is mainly synthesized from racemic ethyl 2,3-dibromopropionate and 2-aminophenol in presence of K2 CO3 in refluxed acetone. Unfortunately, synthesis of (R)- and (S)-enantiomers using the enantioselective version of this reaction, which should normally be performed with a double SN 2 mechanism, is unsuitable due to a racemization process involving the dehydrobromination of enantiopure ethyl 2,3-dibromopropionate into ethyl 2-bromoacrylate. For the first time, the enantioselective version is studied (ee ≈ 55-66%), and the percentage of racemization process has estimated to around 34-46% after determination of the optimal experimental conditions for analytical HPLC enantioseparation of racemate. The influence of the experimental and purification conditions on the racemization rate is also studied. The results indicate that racemization occurs faster at the beginning of the reaction but the initiation of the double SN 2 process takes place more faster to limit the racemization rate. The study of the influence of experimental conditions (reaction times, temperature, solvent or type of base, etc.) on the degree of racemization of the (R)- enantiomer is performed and shows that despite changes in the experimental conditions, the synthesis of the (R)- enantiomer is always accompanied by a racemization rate which is difficult in reducing. In parallel, (R)- and (S)-enantiomers are obtained in high enantiopurity (ee > 99.5%) by preparative HPLC enantioseparation of racemate on multigram scale and characterized by optical rotation measurements, ECD and UV spectra.
Collapse
Affiliation(s)
- Hong-Ngoc Pham
- LCPM, CNRS, Université de Lorraine, F-54000 Nancy, France.,Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi (USTH), Hanoi, Vietnam
| | - Axelle Arrault
- LCPM, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Nicolas Vanthuyne
- Centrale Marseille, iSm2, Aix Marseille Université CNRS, Marseille, France
| | - Samir Acherar
- LCPM, CNRS, Université de Lorraine, F-54000 Nancy, France
| |
Collapse
|
45
|
Wu Z, Hu M, Li J, Wu W, Jiang H. Recent advances in aminative difunctionalization of alkenes. Org Biomol Chem 2021; 19:3036-3054. [PMID: 33734255 DOI: 10.1039/d0ob02446e] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alkenes are versatile building blocks in modern organic synthesis. In the difunctionalization reactions of alkenes, two functional groups can be simultaneously introduced into the π system. This is an efficient strategy for the synthesis of multifunctional compounds with complex structures and has the advantages of atom and step economy. Nitrogen-containing organic compounds are widely found in natural products and synthetic compounds, such as dyes, pesticides, medicines, artificial resins, and so on. Many natural products with high biological activity and a broad range of drugs have nitrogen-containing functional groups. The research on the construction methods of C-N bonds has always been one of the most important tasks in organic synthesis, especially in drug synthesis, and the synthetic methods starting from simple and easily available raw materials have been a topic of interest to chemists. The aminative difunctionalization of alkenes can efficiently construct C-N bonds, and at the same time, prepare some compounds that usually require multiple steps of reaction. It is one of the most effective strategies for the simple and efficient synthesis of functionalized nitrogen-containing compounds. This review outlines the major developments focusing on the transition metal-catalyzed or metal-free diamination, aminohalogenation, aminocarbonation, amino-oxidation and aminoboronation reactions of alkenes from 2015-2020.
Collapse
Affiliation(s)
- Ziying Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | |
Collapse
|
46
|
Torii K, Kawakubo A, Lin X, Fujihara T, Yajima T, Obora Y. Palladium-Catalyzed Difunctionalization of 1,3-Diene with Amine and Disilane under a Mild Re-oxidation System. Chemistry 2021; 27:4888-4892. [PMID: 33470481 DOI: 10.1002/chem.202100043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/19/2021] [Indexed: 01/02/2023]
Abstract
A highly regioselective and stereoselective difunctionalization reaction of 1,3-diene with amine and disilane to form C-N and C-Si bonds via a one-step Pd/Cu/O2 system is disclosed. The difunctionalization reaction affords allylic silanes, including the allylic amine moiety, in up to 92 % yield in the absence of any acid, base, or external ligand. The developed synthetic methodology can be scaled to 100 g in high yield with high Z-selectivity, which demonstrates the feasibility of the reaction for industrial applications.
Collapse
Affiliation(s)
- Kazuyuki Torii
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, 564-8680, Japan
| | - Atsushi Kawakubo
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, 564-8680, Japan
| | - Xianjin Lin
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, 564-8680, Japan
| | - Tetsuaki Fujihara
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tatsuo Yajima
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, 564-8680, Japan
| | - Yasushi Obora
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, 564-8680, Japan
| |
Collapse
|
47
|
Lu FD, Lu LQ, He GF, Bai JC, Xiao WJ. Enantioselective Radical Carbocyanation of 1,3-Dienes via Photocatalytic Generation of Allylcopper Complexes. J Am Chem Soc 2021; 143:4168-4173. [DOI: 10.1021/jacs.1c01260] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fu-Dong Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Gui-Feng He
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Jun-Chuan Bai
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
48
|
Wata C, Hashimoto T. Organoiodine-Catalyzed Enantioselective Intermolecular Oxyamination of Alkenes. J Am Chem Soc 2021; 143:1745-1751. [PMID: 33482057 DOI: 10.1021/jacs.0c11440] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metal-free, catalytic enantioselective intermolecular oxyamination of alkenes is realized by use of organoiodine(I/III) chemistry. The protocol is applicable toward aryl- and alkyl-substituted alkenes with high enantioselectivity and electronically controlled regioselectivity. The oxyaminated products can be easily deprotected in one step to reveal free amino alcohols in high yields without loss of enantioselectivity. A key to our success is the discovery of a virtually unexplored chemical entity, N-(fluorosulfonyl)carbamate, as a bifunctional N,O-nucleophile.
Collapse
Affiliation(s)
- Chisato Wata
- Chiba Iodine Resource Innovation Center and Department of Chemistry, Graduate School of Science, Chiba University, 1-33, Yayoi, Inage, Chiba 263-8522, Japan
| | - Takuya Hashimoto
- Chiba Iodine Resource Innovation Center and Department of Chemistry, Graduate School of Science, Chiba University, 1-33, Yayoi, Inage, Chiba 263-8522, Japan
| |
Collapse
|
49
|
Hemric BN. Beyond osmium: progress in 1,2-amino oxygenation of alkenes, 1,3-dienes, alkynes, and allenes. Org Biomol Chem 2021; 19:46-81. [PMID: 33174579 DOI: 10.1039/d0ob01938k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Olefin 1,2-difunctionalization has emerged as a popular strategy within modern synthetic chemistry for the synthesis of vicinal amino alcohols and derivatives. The advantage of this approach is the single-step simplicity for rapid diversification, feedstock nature of the olefin starting materials, and the possible modularity of the components. Although there is a vast number of possible iterations of 1,2-olefin difunctionalization, 1,2-amino oxygenation is of particular interest due to the prevalence of both oxygen and nitrogen within pharmaceuticals, natural products, agrochemicals, and synthetic ligands. The Sharpless amino hydroxylation provided seminal results in this field and displayed the value in achieving methods of this nature. However, a vast number of new and novel methods have emerged in recent decades. This review provides a comprehensive review of modern advances in accomplishing 1,2-amino oxygenation of alkenes, 1,3-dienes, alkynes, and allenes that move beyond osmium to a range of other transition metals and more modern strategies such as electrochemical, photochemical, and biochemical reactivity.
Collapse
Affiliation(s)
- Brett N Hemric
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
50
|
Wang DK, Li L, Xu Q, Zhang J, Zheng H, Wei WT. 1,3-Difunctionalization of alkenes: state-of-the-art and future challenges. Org Chem Front 2021. [DOI: 10.1039/d1qo01002f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarizes the advances in 1,3-difunctionalization of alkenes mediated by Pd-, Ni-, Fe-, and Cu-based catalysts, as well as under metal-free conditions, with an emphasis on the reaction mechanisms and factors governing regioselectivity.
Collapse
Affiliation(s)
- Dong-Kai Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, 315211, P. R. China
| | - Long Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, 315211, P. R. China
| | - Qing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, 315211, P. R. China
| | - Jianfeng Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, 315211, P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, 315211, P. R. China
| |
Collapse
|